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Precise bond percolation thresholds on several four-dimensional lattices
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We study bond percolation on several four-dimensional (4D) lattices, including the simple (hyper) cubic
(SC), the SC with combinations of nearest neighbors and second nearest neighbors (SC-NN+2NN), the
body-centered-cubic (bcc), and the face-centered-cubic (fcc) lattices, using an efficient single-cluster growth
algorithm. For the SC lattice, we find pc = 0.160 131 2(2), which confirms previous results (based on other
methods), and find a new value pc = 0.035 827(1) for the SC-NN+2NN lattice, which was not studied previously
for bond percolation. For the 4D bcc and fcc lattices, we obtain pc = 0.074 212(1) and 0.049 517(1), which are
substantially more precise than previous values. We also find critical exponents τ = 2.3135(5) and � = 0.40(3),
consistent with previous numerical results and the recent four-loop series result of Gracey [Phys. Rev. D 92,
025012 (2015)].

DOI: 10.1103/PhysRevResearch.2.013067

I. INTRODUCTION

Percolation, which was introduced by Broadbent and Ham-
mersley [1] in 1957, is one of the fundamental models in
statistical physics [2,3]. In percolation systems, sites or bonds
on a lattice are either occupied with probability p, or not with
probability 1 − p. When increasing p from below, a cluster
large enough to span the entire system from one side to the
other will first appear at a value pc. This point is called the
percolation threshold.

The percolation threshold is an important physical quantity,
because many interesting phenomena, such as phase transi-
tions, occur at that point. Consequently, finding percolation
thresholds for a variety of lattices has been a long-standing
subject of research in this field. In two dimensions, percolation
thresholds of many lattices can be found analytically [4–7],
while others must be found numerically. In three and higher
dimensions, there are no exact results, and all thresholds must
be determined by approximation schemes or numerical meth-
ods. Many effective numerical simulation algorithms [8–11]
have been developed. For example, the “cluster multiple label-
ing technique” was proposed by Hoshen and Kopelman [8] to
determine the critical percolation concentration, percolation
probabilities, and cluster-size distributions for percolation
problems. Newman and Ziff [10,11] developed a Monte Carlo
algorithm which allows one to calculate quantities such as the
cluster-size distribution or spanning probability over the entire
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range of site or bond occupation probabilities from zero to one
in a single run, and takes an amount of time that scales roughly
linearly with the number of sites on the lattice.

Much work in finding thresholds has been done with these
and other techniques. Series estimates of the critical percola-
tion probabilities for the bond problem and the site problem
were presented by Sykes and Essam [12], which can be traced
back to the 1960s. Lorenz and Ziff [13] performed extensive
Monte Carlo simulations to study bond percolation on three-
dimensional lattices using an epidemic cluster-growth ap-
proach. Determining the crossing probability [2,14,15] R(p)
as a function of p for different size systems, and using scaling
to analyze the results is also a common way to find pc. Binder
ratios have also been used to determine the threshold [16–18].
By examining wrapping probabilities, Wang et al. [16] and
Xu et al. [19] simulated the bond and site percolation models
on several three-dimensional lattices, including simple cu-
bic (SC), the diamond, body-centered-cubic (bcc), and face-
centered-cubic (fcc) lattices. Other recent work on percolation
includes Refs. [20–29].

Percolation has been investigated on many kinds of lattices.
In three and higher dimensions, the most common of these
lattices are the SC, the bcc, and the fcc lattices. Thanks to the
techniques mentioned above, precise estimates are known for
the critical thresholds for site and bond percolation and related
exponents in three dimensions. However, in four dimensions
(4D), the estimates of bond percolation thresholds that have
been determined for the bcc and fcc lattices are much less
precise [30] than the values that have been found for some
other lattices (i.e., two vs five or six significant digits). In
addition, to the best of our knowledge, the bond percolation
threshold on SC lattice with the combinations of nearest
neighbors (NN) and second nearest neighbors (2NN), namely,
(SC-NN+2NN), has not been reported so far. We note that the
notation 2N+3N is also used for NN and 2NN [31].
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In this paper, we employ the single-cluster growth
method [13] to study bond percolation on several lattices in
4D. While confirming previous results of SC lattice, we obtain
more precise estimates of percolation thresholds for bcc and
fcc lattices. We also find a new value for the bond threshold of
the complex-neighborhood lattice, SC-NN+2NN. Note that
percolation on lattices with complex neighborhoods can also
be interpreted as the percolation of extended objects on a
lattice that touch or overlap each other [32].

With regard to the latter system, Malarz and co-
workers [31,33–36] have carried out several studies on lattices
with various complex neighborhoods, that is, lattices with
combinations of two or more types of neighbor connections,
in two, three, and four dimensions. Their results have all
concerned site percolation, and are generally given to only
three significant digits. Here we show that the single-cluster
growth method can be efficiently applied to one of these
lattices also. Our goal was to find results to at least five
significant digits, which was not difficult to achieve using the
methods given here. Note that in general, for Monte Carlo
work, increasing the precision by one digit requires at least
100 times more work in terms of the number of simulations,
not to mention the additional work studying corrections to
scaling and other necessary quantities.

Precise percolation thresholds are needed in order to study
the critical behavior, including critical exponents, critical
crossing probabilities, critical and excess cluster numbers, etc.
Four dimensions is interesting because it is close enough to
six dimensions for ε = 6 − d series analysis to have a hope of
yielding good results [37], and in general there is interest on
how thresholds depend upon dimensionality [25,30,38–41].
The study of how thresholds depend upon lattice structure,
especially the coordination number z, has also had a long
history [42–46]. Having thresholds of more lattices is useful
for extending those correlations.

In the following sections, we present the underlying the-
ory, and discuss the simulation process. Then we present
and briefly discuss the results that we obtained from our
simulations.

II. THEORY

The central property describing the cluster statistics in
percolation is ns, defined as the number of clusters (per site)
containing s occupied sites or bonds, as a function of the
occupation probability p. At the percolation threshold pc, ns

is expected to behave as

ns ∼ A0s−τ (1 + B0s−� + · · · ), (1)

where τ is the Fisher exponent, and � is the leading
correction-to-scaling exponent. Both τ and � are expected
to be universal, namely, the same for all lattices of a given
dimensionality. The A0 and B0 are constants that depend
upon the system (are nonuniversal). The probability a vertex
belongs to a cluster with size greater than or equal to s will
then be

P�s =
∞∑

s′=s

s′ns′ ∼ A1s2−τ (1 + B1s−� + · · · ), (2)

where A1 = A0/(τ − 2) and B1 = (τ − 2)B0/(τ + � − 2).
Multiplying both sides of Eq. (2) by sτ−2, we have

sτ−2P�s ∼ A1(1 + B1s−� + · · · ). (3)

It can be seen that there will be a linear relationship between
sτ−2P�s and s−� for large s, if we choose the correct value of
�. This linear relationship can be used to determine the value
of percolation threshold, because for p �= pc the behavior will
be nonlinear.

Taking the logarithm of Eq. (2), we find

ln P�s ∼ ln A1 + (2 − τ ) ln s + ln(1 + B1s−�)

∼ ln A1 + (2 − τ ) ln s + B1s−�, (4)

for large s. Similarly,

ln P�2s ∼ ln A1 + (2 − τ ) ln 2s + B1(2s)−�. (5)

Then it follows that

ln P�2s − ln P�s

ln 2
∼ (2 − τ )(ln 2s − ln s)

ln 2
− B1s−�(2−� − 1)

ln 2

∼ (2 − τ ) + B2s−�, (6)

where (ln P�2s − ln P�s)/ ln 2 is the local slope of a plot
of ln P�2s vs ln s, and B2 = B1(2−� − 1)/ ln 2. Equation (6)
implies that, if we make a of plot of the local slope vs s−� at
pc, linear behavior will be found for large s, and the intercept
of the straight line will give the value of (2 − τ ). Of course,
there will be higher-order corrections to Eqs. (1) and (6)
related to an (unknown) exponent �1, but for large s linear
behavior in this plot should be found. We did not attempt to
characterize the higher-order corrections to scaling.

III. SIMULATION RESULTS AND DISCUSSIONS

The basic algorithm of the single-cluster growth method is
as follows. An individual cluster starts to grow at the seeded
site that is located on the lattice. We choose the origin of
coordinates for the seeded site, though any site on the lattice
can be chosen under periodic or helical boundary conditions.
From this site, a cluster is grown to neighboring sites by
occupying the connecting bonds with a certain probability p or
leaving them unoccupied with probability 1 − p. All of these
clusters are allowed to grow until they terminate in a complete
cluster, or when they reach an upper size cutoff, their growing
is halted.

To grow the clusters, we check all neighbors of a growth
site for unvisited sites, which we occupy with probability p,
and put the newly occupied growth site on a first-in, first-out
queue. Growth sites are those occupied whose neighbors have
yet to be checked for further growth, and unvisited sites are
those sites whose occupation has not yet been determined,
for one particular run. To simulate bond percolation, we
simply leave the sites in the unvisited state when we do not
occupy them through an occupied bond. (For site percolation,
unoccupied visited sites are blocked from ever being occupied
in the future.) The single-cluster growth method is similar to
the Leath algorithm [9].

We utilize a simple programming procedure to avoid clear-
ing out the lattice after each cluster is formed: the lattice
values are started out at 0, and for cluster (run) n, any site
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whose value is less than n is considered unoccupied. When a
site is occupied in the growth of a new cluster, it is assigned
the value n. This procedure saves a great deal of time because
we can use a very large lattice, and do not have to clear
out the whole lattice after every cluster, many of which are
small.

Following is a pseudocode of this basic algorithm:

Set all lat[x] = 0
for runs = 1 to runsmax

Put origin on queue
set lat[0]=runs
do

get x = oldest member of queue
for dir = 0 to directionmax-1

set xp = x + deltax[dir]
if (lat[xp & W] < runs)

if (rnd < prob)
set lat[xp & W] = runs
put xp on queue

while ((queue != empty) && (size < max))

The actual code is not too many lines longer than this.
rnd is a random in the range (0,1). max is the maximum
cluster size, 215 to 217 here. We use a one-dimensional array
lat of length L4 = 228 = 268 435 456, and use the bit-wise
“and” function & to carry out the helical wraparound by
writing lat[xp & W] with W = L4 − 1. (This works only
for L that are powers of 2.) The deltax array is the eight
values 1,−1, L,−L, L2,−L2, L3,−L3 for the SC lattice, and
generalized accordingly for the other lattices. The size of the
cluster is just the value of the queue insert pointer.

For site percolation, one simply replaces the last five lines
by

if (lat[xp & W] < runs)
set lat[xp & W] = runs
if (rnd < prob)
put xp on queue

while ((queue != empty) && (size < max)).

The size of the cluster is identified by the number of
occupied sites it contains. Then the number of clusters whose
size (number of sites) fall in a range of (2n, 2n+1 − 1) for
n = 0, 1, 2, . . . is recorded in the nth bin. If a cluster is still
growing when it reaches the upper cutoff, it is counted in
the last bin. The cutoff was 217 occupied sites for the SC
lattice, 216 for fcc and SC-NN+2NN, and 215 for the bcc
lattice. The cutoff had to be lower in the latter case because
of the expanded nature of the bcc lattice represented on the
SC lattice.

While the single-cluster growth method requires separate
runs to be made for different values of p, it is not difficult
to quickly zero in on the threshold to four or five digits,
and then reserve the longer runs for finding the sixth digit.
It is also simple to analyze the results as shown here—
one does not need to study things like the intersections of
crossing probabilities for different size systems or create large
output files of intermediate microcanonical results to find
estimates of the threshold. The output files here are simply
the 16–18 values of the bins for each value of p described
above.

FIG. 1. Plot of the local slope (ln P�2s − ln P�s )/ ln 2 vs s−� with
� = 0.40 for the SC lattice under different values of p. The solid
line in the figure is a guideline through the data points for p =
0.160 131 2 ≈ pc. The intercept −0.3135 is an estimate for 2 − τ by
Eq. (6).

The simulations on the SC lattice, SC-NN+2NN lattice,
bcc lattice, and fcc lattice were carried out for system size
L × L × L × L with L = 128, and with periodic boundary
conditions. For each lattice, we produced 109 independent
samples. Then the number of clusters greater than or equal
to size s could be found based on the data from our sim-
ulation, and the corresponding quantities, such as the local
slope (ln P�2s − ln P�s)/ ln 2, and sτ−2P�s, could be easily
calculated.

Figures 1 and 2, respectively, show the plots of the local
slope and sτ−2P�s vs s−� for the SC lattice under different
values of p. When p is away from pc, no matter if it is larger
or smaller than pc, the curves show a deviation from linearity.
When p is very near to pc, we can see better linear behavior
for large s. The linear behavior here is in good agreement with
the theoretical predictions of Eqs. (3) and (6).

FIG. 2. Plot of sτ−2P�s vs s−� with � = 0.40 for the SC lattice
under different values of p. The solid line in the figure is a guideline
following the points for p = 0.160 131 2 ≈ pc.
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FIG. 3. Plot of the local slope (ln P�2s − ln P�s )/ ln 2 vs s−� with
� = 0.40 for the SC-NN+2NN lattice under different values of p.
The solid line in the figure is a guideline through the data points for
p = 0.035 827 ≈ pc. The intercept −0.3137 is an estimate for 2 − τ

by Eq. (6).

Based on these simulation results, for bond percolation on
the SC lattice in 4D, we conclude

SC:
pc = 0.160 131 2(2), τ = 2.3135(7), and � = 0.40(3).

Here numbers in parentheses represent errors in the last
digit(s), determined from the observed statistical errors.

The simulation results for the other three lattices, i.e.,
the plots of the local slope and sτ−2P�s vs s−� for the SC-
NN+2NN, bcc, and fcc lattices under different values of p,
are shown in Figs. 3–8. From these figures, we can see similar
behavior as the SC lattice. In order to avoid unnecessary
repetition, we do not discuss the data one by one, and directly
show the deduced values of pc and the two exponents below.

FIG. 4. Plot of sτ−2P�s vs s−� with � = 0.40 for the SC-
NN+2NN lattice under different values of p. The solid line in the
figure is a guideline following the points for p = 0.035 827 ≈ pc.

FIG. 5. Plot of the local slope (ln P�2s − ln P�s )/ ln 2 vs s−�

with � = 0.41 for the bcc lattice under different values of p. The
solid line in the figure is a guideline through the data points for
p = 0.074 212 ≈ pc. The intercept −0.3134 is an estimate for 2 − τ

by Eq. (6).

SC-NN+2NN:
pc = 0.035 827(1), τ = 2.3138(12), and � = 0.40(3).

BCC:
pc = 0.074 212(1), τ = 2.3133(9), and � = 0.41(3).

FCC:
pc = 0.049 517(1), τ = 2.3135(9), and � = 0.41(3).

From these values, we have obtained precise estimates of
the percolation threshold, and also confirmed the universality
of the Fisher exponent τ .

When the probability p is away from pc, a scaling function
needs to be included. Then the behavior can be represented as

P�s ∼ A2s2−τ f [B2(p − pc)sσ ], (7)

FIG. 6. Plot of sτ−2P�s vs s−� with � = 0.41 for the bcc lattice
under different values of p. The solid line in the figure is a guideline
following the points for p = 0.074 212 ≈ pc.
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FIG. 7. Plot of the local slope (ln P�2s − ln P�s )/ ln 2 vs s−�

with � = 0.41 for the fcc lattice under different values of p. The
solid line in the figure is a guideline through the data points for
p = 0.049 517 ≈ pc. The intercept −0.3135 is an estimate for 2 − τ

by Eq. (6).

in the scaling limit of s → ∞ and p → pc. The scaling
function f (x) can be expanded as a Taylor series,

f [B2(p − pc)sσ ] ∼ 1 + C2(p − pc)sσ + · · ·, (8)

where C2 = B2 f ′(0). We assume f (0) = 1, so that A2 = A1.
Combining Eqs. (7) and (8) leads to

sτ−2P�s ∼ A2 + D2(p − pc)sσ , (9)

where D2 = A2C2. Equation (9) predicts that sτ−2P�s will
limit to a constant value at pc for large s, while it deviates from
a constant value when p is away from pc. This provides an-
other way to determine the percolation threshold. Figs. 9–12
show the plots of sτ−2P�s versus sσ for the SC, SC-NN+2NN,
bcc, and fcc lattices, respectively. For these plots, we use the
value of σ = 0.4742, which is provided in Ref. [37]. The

FIG. 8. Plot of sτ−2P�s vs s−� with � = 0.41 for the fcc lattice
under different values of p. The solid line in the figure is a guideline
following the points for p = 0.049 517 ≈ pc.

FIG. 9. Plot of sτ−2P�s vs sσ with σ = 0.4742 and τ = 2.3135
for the SC lattice under different values of p. The dashed line in the
figure is a guideline through the points for p = 0.160 131 4 ≈ pc.

estimations of percolation thresholds are shown below, and
they are consistent with the values obtained above.

SC: pc = 0.160 131 4(2).

SC-NN+2NN: pc = 0.035 827(1).

bcc: pc = 0.074 212(1).

fcc: pc = 0.049 517(1).

Our final estimates of percolation thresholds for all the
lattices calculated in this paper are summarized in Table I,
where we also make a comparison with those of previous
studies where available. It can be seen that for the SC lattice,
our result is completely consistent with the existing ones
within the error range, including the recent more precise result
of Mertens and Moore [25].

FIG. 10. Plot of sτ−2P�s vs sσ with σ = 0.4742 and τ = 2.3137
for the SC-NN+2NN lattice under different values of p. The
dashed line in the figure is a guideline through the points for p =
0.035 827 ≈ pc.
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FIG. 11. Plot of sτ−2P�s vs sσ with σ = 0.4742 and τ = 2.3134
for the bcc lattice under different values of p. The dashed line in the
figure is a guideline through the points for p = 0.074 212 ≈ pc.

To find our results for pc, τ , and �, we basically adjusted
these values to get the best linear behavior on the two plots
of (ln P�2s − ln P�s)/ ln 2 vs s−� and sτ−2P�s vs s−�, and
horizontal asymptotic behavior on the plot of sτ−2P�s vs sσ ,
for each of the four lattices. With the incorrect value of �, for
example, we would not get linear behavior over several orders
of magnitude of s for any value of p. The curves in the latter
plots were not overly sensitive to σ so we used the recent value
σ = 0.4742 [37].

For the bcc and fcc lattices, we find significantly more
precise values of pc than van der Marck [30], who gave only
two digits of accuracy. And we give a value of pc for the
SC-NN+2NN lattice, which was not studied before for bond
percolation.

Table I also shows the coordination number z for each
lattice. The values of pc decrease with the coordination
number z as one would expect. Finding correlations between
percolation thresholds and lattice properties has a long history

FIG. 12. Plot of sτ−2P�s vs sσ with σ = 0.4742 and τ = 2.3135
for the fcc lattice under different values of p. The dashed line in the
figure is a guideline through the points for p = 0.049 517 ≈ pc.

TABLE I. Estimations of bond percolation thresholds for the 4D
percolation models.

Lattice z pc (present) pc (previous)

SC 8 0.160 131 2(2) 0.160 05(15) [47]
0.160 130(3) [48]
0.160 131 4(13) [40]
0.160 131 0(10) [49]
0.160 131 22(6) [25]

bcc 16 0.074 212(1) 0.074(1) [30]
fcc 24 0.049 517(1) 0.049(1) [30]
SC-NN+2NN 32 0.035 827(1)

in percolation studies [42,44–46]. In Ref. [34] it was found
that the site thresholds for several three-dimensional (3D)
lattices can be fitted by a simple power law in the coordination
number z

pc(z) ∼ z−a, (10)

with a = 0.790(26) in 3D. Similar power-law relations for
various systems were studied by Galam and Mauger [43],
van der Marck [30], and others, usually in terms of (z − 1)−a

rather than vs z−a. Making a log-log plot of the 4D data
of Table I, along with the bond threshold pc = 0.2715(3)
for the 4D diamond lattice [30], which has coordination
number z = 5, in Fig. 13, we find a = 1.087. Deviations of
the thresholds from this line are within about 2%. We note
that the data for site percolation thresholds of these lattices,
taken from [25,30,36], do not show such a nice linear behavior
as do the bond thresholds, as shown in Fig. 13. We do not
know any reason for this excellent power-law dependence of
the bond thresholds, nor why the exponent has the value of
approximately 1.087.

FIG. 13. A log-log plot of percolation thresholds pc vs coordina-
tion number z for the lattices simulated in this paper (square symbols)
and the diamond lattice (circle) provided in Ref. [30]. The slope gives
an exponent of a = 1.087 in Eq. (10), and the intercept of the line
is at ln pc = 0.435. Also shown on the plot are the site thresholds
for the same five lattices (triangles) [25,30,36], in which case the
linearity of the data is not nearly as good.
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IV. CONCLUSIONS

In this paper, by employing the single-cluster growth al-
gorithm, bond percolation on SC, SC-NN+2NN, bcc, and
fcc lattices in 4D was investigated. The algorithm allowed
us to estimate the percolation thresholds with high precision
with a moderate amount of calculation. For the bcc and
fcc lattices, our results are about three orders of magnitude
more precise than previous values, and for the SC-NN+2NN
lattice, we find a value of the bond percolation threshold. In
addition, the results indicate that the percolation thresholds
pc decrease monotonically with the coordination number z,
quite accurately according to a power law of pc ∼ z−a, with
the exponent a = 1.087.

There remain many lattices where thresholds are not
known, or where they are known only to low significance,
such as two or three digits, and the methods described here can
be used to find them with high accuracy in a straightforward
manner. For example, the bond thresholds on the many com-
plex neighborhood lattices of Malarz and co-workers have not
been determined before, and knowing these thresholds may be
useful for various applications.

Another result of this paper was a precise measure-
ment of the exponent τ , which we were able to do us-
ing the finite-size scaling behavior of Eq. (6), which re-
quires the knowledge of � although the results for τ are
not very sensitive to the precise value of �. Averaging
the results over the four lattices, we find τ = 2.3135(5).
This is consistent with previous Monte Carlo values of
2.3127(6) [50], 2.313(3) [48], 2.313(2) [51], the recent Monte
Carlo result of Mertens and Moore, 2.3142(5) [25], and
also close to the recent four-loop series result 2.3124 of

Gracey [37]. In concurrent work, Deng et al. find that the
fractal dimension in 4D equals d f = 3.0446(7), which im-
plies by the scaling relation τ = 1 + d/d f = 2.3138(3) [52].
Our value 2.3135(5) is a good average of all these
measurements.

We have also found a fairly accurate value of the
corrections-to-scaling exponent �, with the result 0.40(3),
which also gives a value of ω = �d f = 1.22(9). We deter-
mined � by adjusting its value until we found a straight
line in plots like Figs. 1 and 2, while simultaneously trying
to find pc and τ . Having three different kinds of plots for
each lattice helped in this simultaneous determination of these
three parameters. Previous Monte Carlo values of � were
0.31(5) [53], 0.37(4) [50], and 0.5(1) [51]. In Ref. [37],
Gracey gives the series extrapolation of � = 0.4008 [37],
which was based upon a Padé approximation assuming the
value of � = 2 for two dimensions (2D). Redoing that calcu-
lation using � = 72/91 (2D) from Refs. [54,55], Gracey finds
� = 0.3773 [56]. Both of these values (0.4008 and 0.3773)
are consistent with our result of � = 0.40(3).

In forthcoming papers [57,58], the authors will report on
a study of many 3D lattices with complex neighborhoods for
both site and bond percolation.
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