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Abrupt phase transition of epidemic spreading in simplicial complexes

Joan T. Matamalas ®, Sergio Gomez ©, and Alex Arenas
Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

® (Received 7 October 2019; accepted 22 January 2020; published 27 February 2020)

Recent studies on network geometry, a way of describing network structures as geometrical objects, are
revolutionizing our way to understand dynamical processes on networked systems. Here, we cope with the
problem of epidemic spreading, using the susceptible-infected-susceptible (SIS) model, in simplicial complexes.
In particular, we analyze the dynamics of the SIS in complex networks characterized by pairwise interactions
(links) and three-body interactions (filled triangles, also known as 2-simplices). This higher-order description
of the epidemic spreading is analytically formulated using a microscopic Markov chain approximation. The
analysis of the fixed point solutions of the model reveals an interesting phase transition that becomes abrupt with
the infectivity parameter of the 2-simplices. Our results pave the way to advance in our physical understanding
of epidemic spreading in real scenarios where diseases are transmitted among groups as well as among pairs and
to better understand the behavior of dynamical processes in simplicial complexes.
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The collective behavior of dynamical systems on networks,
has been a major subject of research in the physics community
during the last decades [1-5]. In particular, our understand-
ing of both natural and man-made systems has significantly
improved by studying how network structures and dynami-
cal processes combined shape the overall system behavior.
Recently, the network science community has turned its at-
tention to network geometry [6-9] to better represent the
kinds of interactions that one can find beyond typical pairwise
interactions.

These higher-order interactions are encoded in geometrical
structures that describe the different kinds of simplex structure
present in the network: a filled clique of m + 1 nodes is known
as an m-simplex, and together a set of 1-simplexes (links), 2-
simplexes (filled triangles), etc., comprise the simplicial com-
plex. While simplicial complexes have been proven to be very
useful for the analysis and computation in high dimensional
data sets, e.g., using persistent homologies [10-14], little is
understood about their role in shaping dynamical processes,
save for a handful of examples [15-18].

A more accurate description of dynamical processes on
complex systems necessarily requires a new paradigm where
the network structure representation helps to include higher-
order interactions [19]. Simplicial geometry of complex net-
works is a natural way to extend many-body interactions in
complex systems. The standard approach so far consists in
understanding the coexistence of two-body (link) interactions
and three-body interactions (filled triangles). Note that this
approach is different from considering pairwise interactions
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among three elements of a triangle, it refers to the interaction
of the three elements, in the filled triangle, at unison.

Here we present a probabilistic formalization of the higher-
order interactions of an epidemic process, represented by the
well-known susceptible-infected-susceptible (SIS) model [20]
in one- and two-simplices, revealing that the consideration
of higher-order structure (filled triangles) can change the
character of the phase transition of the epidemic spreading
to the endemic state. Specifically, we find that for a signif-
icant region of the parameters space the continuous phase
transition that has been well-characterized in networks so
far [5] becomes abruptly discontinuous [21]. These results
are important for physicists working on network science,
independently on the particular dynamical process we have
chosen, to explain why this physical phenomena could arise
in complex systems. Similar results have been reported for
social contagion dynamics [17] using a mean-field approach.

For the mathematical formalization of the dynamical pro-
cess, we use simplicial complexes extensions of the mi-
croscopic Markov chain aproach (MMCA) [22-27], and of
the epidemic link equations (ELE) [28], that compute the
probabilities of 1 and 2-simplexes to transmit the epidemics.
This formalism allows us to get physical insight into the
phase transition and its consequences at the level of our
understanding of plausible epidemic scenarios.

Let us start by considering the dynamics of the SIS model
in networks. We consider a network of N nodes and L links,
where the nodes can have two states, susceptible (S) or
infected (I). The classical interaction so far considers that the
infection propagates, pairwise, from certain infected individu-
als to their neighbors with a probability 8, and infected nodes
eventually recover with probability w. In the simplicial com-
plex scenario, we will consider also triangular interactions,
i.e., every node also interacts within the 2-simplexes with the
two neighbors at unison, with an infection probability 8%
when the other two members are infected. We can define a
system of N discrete-time MMCA equations that capture the
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evolution over time of the probability p; of node i being in an
infected state as

pilt + 1) = (1 = pi@)(1 = qi()g;" ) + pit)(1 = ),
ey

where g;(t) defines the probability that node i is not infected
by any pairwise interaction with its neighbors,

gty =[]0 - Bpit)), @)

JeTi

and in (t) is the probability that node i is not infected by any
of its interactions at the 2-simplicial level,

gi @)= [] a=B2pi®)pet)). 3)

JLeh;

Here, I'; and A; represent the sets of 1 and 2-simplexes
containing node i, respectively.

The system of equations (1) updates the probability of a
node i being infected as the probability of being susceptible
at time ¢ and becoming infected by some neighbor, or some
group of neighbors in a triangle [first term on the right-hand
side (r.h.s.) of the equation], or the probability that node i was
already infected at time ¢ and it does not recover. This system
of equations is a contraction map Tz g , : p(t) — p(t + 1)
for every value of the parameters, and then the existence of
fixed points is guaranteed by the Banach fixed point theorem
[29]. We can solve the system by iteration. A naive approxi-
mation of Eq. (1) is the homogeneous assumption in which all
nodes have the same degree (k), belong to the same number
of 2-simplexes (k), and have the same probability of being
infected (p;(t) = p(t)). Expanding up to second order in p,
and developing the equation at the stationary state (p(t) = p),
it reveals the structure responsible for the abrupt transitions
we could foresee:

(1 — p)[Bkp + (B*k™ — B*k(k — 1)/2)p’l —up=0. (4)

This third-order algebraic equation has a trivial solution,
p = 0, and two more roots, that depending on the parameters,
provides up to two additional physical solutions with p €
(0, 1]. For the parameters with three physical solutions, the
stability analysis shows that the middle one is unstable, thus
being responsible of the abrupt transitions, see Fig. 1. This
result is equivalent to that obtained in [17].

Note, however, that Eq. (1) and in turn Eq. (4) carries
the implicit assumption that the probability of being infected
by one neighbor is independent on the probability of being
infected by any other neighbor. This assumption is a mean-
field approximation, whose validity is severely compromised
in the current scenario, where we account for the infectivity in
triads, and hence neighbors are unlikely to be independent.

To palliate the previous limitation, we can define the sim-
plicial epidemic model at a level of links using a system of
3L equations. The size of this system is very large compared
to the previous MMCA system of N equations at the level
of nodes; however, we can simplify the model to a system
of L 4+ N equations if we consider the constrains imposed by
the probabilistic model, i.e., the node marginal probabilities
have to be the same regardless the link that we consider
to compute them. These restrictions read as follows: for a
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FIG. 1. Phase diagram of the mean-field approximation detailed
in Eq. (4). We consider a network with average degree (k) = 12, an
average number of triangles that each node is part of (k) = 5, a re-
covery probability © = 0.2, and two different infection probabilities
through ternary interactions: (a) 8% = 0.0; (b) 82 = 0.1. Solid lines
represent stable solutions and dashed lines depict unstable solutions
to Eq. (4). The dotted area represents the region of parameters that
enables a convergence to an endemic stable state from below.

link connecting nodes i and j, the probability of a node i
to be in the susceptible state is P’ = P3° + P/, where P’
is the joint probability of node i being susceptible and node
J being susceptible, and P/ is the joint probability of node
i being susceptible and node j being infected. Equivalently
P! = P/l + P!’. Wrapping up these restrictions we can write
the epidemic link equations, ELE [28], for the simplicial
model, for every node i, as

Ple+1)=(1-P®)1—-q)g ®)+P )1 -p,
(5)

where ¢;(¢) defines the probability that node i is not infected
by any pairwise interaction with its neighbors,

P3(t)
. P J— 1
at)=1] (1 B Pf(r))’ (6)

Jeri

and in(t) is the probability that node i is not infected by any
of the interactions at the 2-simplicial level,

P»S-"(t)
A _pAYUr
;=[] (1 B Pf(t))' N

Jrel;

Note that, to write down the previous equations, we have
made use of Bayes’ theorem, substituing the conditional
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FIG. 2. Schematic representation of the contribution of different
interactions to the joint probability between the states of node i
and node j, through node i. Black solid lines account for direct
interactions between node i and its neighbors. The checked pattern
area represents a 2-simplex interaction with node i where node j is
not participating, and the dotted pattern areas represent 2-simplex
interactions with node i where node j is participating. All these
contributions participate in Eqgs. (9) to (11), respectively.

probabilities P;i's of node j to be infected knowing that node
i is susceptible, by the joint probability P/ /P’; equivalently,
for the 2-simplicial terms, P;QS = lSIIrI /PS

The system still requires of L equations, one for every link,

that account for the probability of having a link connecting
two nodes in the infected state /1, transitioning from the four
possible states SS, SI, IS, I1. It reads

Plla+1) = P¥0)(1 - gi()q;;0)) (1 — q;i)q5;))
+ P (1 = (1 = B)gi () (g () (1 — )
+PE (1= (1 = B)guf)g ) (A — )
+P A — ), (8)

where we have used: the probability of node i not being
infected by any neighbor different from j through a link,

PSI
a0 =] ( B ((;)) ) ©

rely
r#j

the probability of node i not being infected by any 2-simplex
not containing node j,

PS”([)
A _ _pAalirt
q,.,.a)—g (1 B Pf(t)) (10)
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FIG. 3. Incidence of the epidemic p as function of infection
probability S on a random network of N = 2000 nodes. We consider
a network with average degree (k) = 12, an average number of
triangles that each node is part of (k®) = 5, a recovery probability
w = 0.2, and two different infection probabilities through ternary
interactions: (a) B2 = 0.0 and (b) 0.1. The incidence has been
analytically computed using ELE (solid line), MMCA (dashed line)
and the mean-field approximation (dotted line). Results obtained
from Monte Carlo simulations, performed using the quasistationary
approach [33], are depicted by solid dots.

and the probability of node i not being infected by any 2-
simplex contatining node j,
PI(t)
Al . (11)

Doy _pA
uy® =1 (1 =

rel;;

See an illustration of the different contributions to Egs. (9)
to (11) in Fig. 2. To solve the system of Egs. (5) and (8),
we still need a closure for the ternary joint probabilities PIS]IrI
found in Eqs. (10) and (11). To break the hierarchy of clusters
produced by these terms we must rely on approximations. The
classical pair approximation in statistical physics [30], also
used in the context of epidemics by Mata and Ferrerira [31],
would consist in approximating P, ~ P Pil/P]. However,
Cator and Van Mieghem [32], propose a different closure
P3" ~ P}/ P!. The main problem with these proposals in the
current scenarlo is that the symmetry of the elements in the
2-simplexes is broken, and this concurs in a degeneration of
solutions. For example, using the second option, we could
choose between three different closures for P;;": P/ P, P! PJ,
or P{IP}. Each alternative makes use of one node and one
link (the link opposite to the chosen node in the triangle)

probabilities, but there is no indication in the structure of
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FIG. 4. Incidence of the epidemic p as function of infection
probability B on a random network with N = 8000 nodes, built
according to [34]. The average degree of the network is (k) = 4 and
the average number of triangles per node is (k) = 3. The recovery
probability is i = 0.2, and we use two different infection probabil-
ities through ternary interactions: (a) 8% = 0.00 and (b) 0.14. The
incidence has been analytically computed using ELE (solid line),
MMCA (dashed line) and the mean-field approximation (dotted line).
Results obtained from Monte Carlo simulations, performed using the
quasistationary approach [33], are depicted by solid dots.

which ones should be preferred. To avoid such degeneracies,
the closure proposal should be symmetric, and hence our
approach consists in the following closure approximation:

SI pSI pll
§11 — Pij Pir Pjr (12)
iir = pSplpl

itjtr

In this way, all the node and link probabilities of the 2-simplex
structures are used, avoiding the asymmetries introduced in
the two previous closures, which were designed to handle

connected triads of nodes, not necessarily forming triangles
as in our current case.

The results of the previous mathematical formulation can
now be obtained by fixed point iteration. In Fig. 3, we present
the results for homogeneous random networks, when the
simplicial structure is not considered (8% = 0), and when
2-simplices are included (B“ # 0). We observe that in the
second case, when the simplical structure is considered for
the higher-order dynamics of the SIS model, the incidence
of the epidemics p = zlv > P! reveals an abrupt transition in
all the previous approaches: MMCA, its mean-field version
MF, and ELE. Nevertheless, the most accurate approximation
when compared with the Monte Carlo simulation of the
system, is provided by the epidemic link equations ELE. This
is specially crucial when we try to capture the critical point
of the transition. Unfortunately, the critical point at which
the transition occurs eludes our analytical determination in
ELE, given that nor the usual linearization technique [22,28],
neither the next generation matrix method (NGM) [35] pro-
vided meaningful results. In Fig. 4, we corroborate our results
on heterogeneous (scale-free) networks constructed following
the analytical proposal in Ref. [34]. We observe how hetero-
geneity in degree highlights the differences in the determina-
tion of the critical point obtained by ELE, MMCA, and MF.

Summarizing, we have presented the mathematical for-
mulation of the SIS model in simplicial complexes, using a
discrete time probabilistic description of the process, in the
node approximation MMCA, and in the link approximation
ELE. Both descriptions predict an abrupt transition, as well
as the stationary homogeneous approximation of the MMCA,
the MF. The accuracy of the predictions is largely better
for ELE, and reveals that this approximation is extremely
useful when dealing with the simplicial geometry of com-
plex networks. For the determination of the critical points of
ELE, we think that further analysis using ideas on stability
of subsystems [36] of 1-simplices and 2-simplices, are a
promising line of research. The results are not only important
for epidemic spreading, but for any other contagion process
that can be described within the probabilistic framework of
MMCA.
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