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Majorana fermions are predicted to arise at the ends of nanowire devices which combine superconductivity,
strong spin-orbit coupling, and an external magnetic field. By manipulating networks of these devices with
suitable gating, it has been suggested that braiding operations may be performed which act as logic operations,
suitable for quantum computation. However, the unavoidable misalignment of the magnetic field in any realistic
device geometry has raised questions about the feasibility of such braiding. In this paper, we numerically simulate
braiding operations in devices with Y-junction and tuning-fork geometries using an experimentally motivated
nanowire model. We study how the static and dynamical features vary with geometric parameters and identify
parameter choices that optimize the probability of a successful braid. Notably, we find that there is an optimal
Y-junction half-angle (about 20° for our parameter values), which balances two competing mechanisms that
reduce the energy gap to excitations. In addition, we find that a tuning-fork geometry has significant advantages
over a Y-junction geometry, as it substantially reduces the effect of dynamical phase oscillations that complicate
the braiding process. Our results suggest that performing a successful braid is in principle possible with such

devices and is within experimental reach.
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I. INTRODUCTION

Bound states of Majorana fermions are believed to exhibit
non-Abelian statistics [1-9] and so offer the exciting possibil-
ity of realizing a topological quantum computer [10,11]. This
ambition, coupled with experimental advances, has focused
a great deal of recent effort toward realizing emergent Ma-
jorana quasiparticles in condensed matter systems. Notably,
suitable Majorana bound states are predicted to arise in certain
fractional quantum Hall states [12], in p-wave superconduc-
tors in one and two dimensions [13,14], and in many other
low-temperature solid-state systems [15]. Beyond this, many
varied theoretical proposals have been suggested which would
allow the non-Abelian properties of Majorana modes to be
leveraged into a topological qubit [6]. While compelling ex-
perimental evidence for the existence of Majorana modes has
been detected in many of these settings (and in particular in
nanowires [16-28]), a completely unambiguous signature of
Majorana modes remains lacking. In this work, we study the
braiding of a pair of Majorana fermions in a realistic nanowire
device, which, if reproduced experimentally, could provide
one such unambiguous signature.

The area of Majorana nanowires is now fairly mature [7-9],
but much of our understanding of such systems stems from
Kitaev’s toy model of a p-wave superconducting chain [14]. In
the topological regime of this model, the ends of the wire host
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a pair of localized Majorana zero modes (MZMs), which may
be moved around by adjusting the local system parameters.
By forming networks of such wires, non-Abelian braiding
operations may be performed. The Kitaev model, however,
requires exotic superconducting pairing and is therefore diffi-
cult to realize in a real material. Instead, most experiments are
believed to approximate the more realistic nanowire models of
Refs. [15,29,30]. In these systems, strong spin-orbit coupling,
s-wave superconducting pairing, and a moderately strong
magnetic field conspire to produce the conditions necessary
for MZMs.

Nanowires based on this model have now been developed
by several groups, both by using direct epitaxial growth and
by depleting regions of a two-dimensional electron gas to
leave an effectively one-dimensional (1D) channel [16-28].
Many of these experiments have reported transport signatures
consistent with the existence of MZMs: Notably, a MZM
should lead to a robust zero-bias conductance peak quantised
to 2¢%/h [31,32] (although disorder and finite-temperature
effects may disguise this [33]). However, such a signature
is not definitive evidence of a MZM: Similar peaks can also
be caused by spurious Andreev bound states, nontopological
states close to zero energy which form due to local varia-
tions in the device parameters [34—39]. It has been suggested
that more convincing evidence for Majorana modes could
be obtained through interference experiments [40—43], by
performing simultaneous tunneling into the device at each
end of the wire [34], or by studying spin-dependent transport
signatures [44]. Ultimately, however, the most direct way to
probe the non-Abelian nature of MZMs would be to perform
a logic operation such as a braid. Such operations could form
the basis of a topological quantum computer (albeit one that
is not, on its own, universal [45]).
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FIG. 1. (a) Ideal Majorana braid: two pairs of Majorana fermions (y;) are created from the vacuum, and one from each pair is braided.
After this process, each pair of Majorana fermions fuses to form a complex fermion (c;). (b) Sequence of moves for performing a braid in
a nanowire Y-junction, starting in the top left. Red (thick) lines indicate sections of the wire in the topological regime, gray (narrow) lines
indicate sections of the wire in the trivial regime, and red disks indicate Majorana fermions realized at the phase boundaries. The labels y;
indicate how the starting positions of the Majorana modes may be identified with those in panel (a). Note that this exchange must be carried
out twice to perform a complete braid. (c) Schematic experimental setup for manipulating Majorana fermions in a real device. A section of a
nanowire is shown (NW), with a superconducting layer grown on top (SC). When a moderate magnetic field is applied along the axis of the
nanowire, the system may enter a topological superconducting phase. Side gates may be used (yellow [left] switched on, gray [right] switched
off) to adjust the local electrostatic potential and thus change the location of the trivial regions (light gray [left]) and topological regions (red

[right]).

Experimentally, we might envisage performing a braid
following the proposal of Ref. [46], where a series of side
gates are attached to a three-legged device (or “Y-junction”),
as in Fig. 1. By adjusting the voltage of the side gates, the local
chemical potential may be changed, and different regions of
the wire can be made topological or trivial as desired. If there
are initially two pairs of MZMs, one Majorana from each
pair can be braided following the protocol indicated in Fig. 1.
Although the non-Abelian nature of this operation has been
confirmed in the ideal case [46], there has been some doubt
about its feasibility in a real material system. One concern is
that the magnetic field (directed along the mother branch of a
Y-junction) is not parallel to the wire direction in the prongs
of the device, which is known to reduce the size of the bulk
gap [16,47-49]. In addition, the effective superconducting
pairing in the nonparallel legs can lead to the formation of a
m-junction [46]. Beyond this, decoherence and quasiparticle
poisoning times may be too short to allow the successful
completion of a braid [50-54].

In this paper, we numerically study the feasibility of such
a braid in a realistic nanowire system. In previous works,
braiding of Majoranas has been performed successfully in
numerical simulations of the Kitaev model [55,56], while
braiding of non-Majorana defects has also been carried out
in simulations of the Su-Schrieffer-Heeger model [57]. In
this work, we instead focus on the more realistic continuum
nanowire model [15,29,30], which allows us to take into ac-
count the misalignment of the external magnetic field and the
device geometry directly. As our starting point, we use param-
eters from existing state-of-the-art simulations of nanowire
devices, which have been shown to reproduce experimental
conductance data extremely well [27,34]. However, motivated
by an ongoing experimental collaboration, we also incor-
porate material parameters and system geometries that are
particularly relevant to devices grown using IBM’s template-
assisted selective epitaxy (TASE) technique [58—62]. While
we do not claim to draw categorical conclusions about braid-
ing in a specific (existing or proposed) device, we believe
our results provide qualitative and approximate quantitative

statements about braiding in devices which are within current
experimental reach, and which overall are encouraging.

The structure of this paper is as follows. In Sec. II, we
introduce the nanowire model we will be using throughout this
paper and discuss the ideal braiding properties of Majorana
fermions. In Sec. III, we study the static (instantaneous)
properties of a nanowire Y-junction as the braid is performed
and identify geometric parameters which optimize the impor-
tant energy scales of the system. In Sec. IV, we study the
dynamical properties of the system by performing numerical
braiding simulations. In particular, we consider how the braid-
ing success varies as parameters and timescales are modified.
In Sec. V, we discuss how using a tuning-fork geometry
offers several advantages over a Y-junction geometry, and
investigate the robustness of our conclusions to variations in
the underlying parameters. Finally, in Sec. VI, we summarize
our results and provide some concluding remarks.

II. MAJORANA FERMIONS IN NANOWIRES

A. Nanowire models

Majorana fermions arise in condensed matter systems as
emergent fermionic quasiparticles which are their own “an-
tiparticles.” Explicitly, Majorana fermions associated with
operators y; satisfy the relations yf =y, and {y;, y;} = 28;;.
They can always be defined (at least mathematically) by com-
bining complex fermion creation and annihilation operators
(c'J‘? and ¢ j) through the relations

Vi =ci+e,  yy=ilch—c), ()

and in this way may be thought of as fractional excita-
tions of the underlying electrons of a system. However, the
transformation given above is not usually very useful—the
resulting Majorana operators are often entangled in space and
do not correspond to physically meaningful excitations of the
system. Nevertheless, in the presence of superconductivity
(where the particle number is only conserved modulo two
and the quasiparticles are coherent superpositions of particles
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and holes) Majorana modes can arise as natural excitations. In
particular, Majorana modes that are pinned to zero energy and
are spatially well separated can arise as topological degrees of
freedom.

The simplest 1D model which exhibits MZMs is the pre-
viously mentioned Kitaev chain [14], which has the Hamilto-
nian

N N 1 . .
Hx = —u Z[c}cj] ~3 Z[tcj'.cH_1 + Ae"7>cj.cj.+1 + H.c.].
J J

@)

In this Hamiltonian, c; creates a spinless fermion on site
J»  is the chemical potential, ¢+ > O describes the intersite
hopping, and Ae'® describes the p-wave superconducting
pairing. When written in terms of Majorana fermions, this
Hamiltonian describes pairing between Majorana fermions on
the same site and between Majorana fermions from neighbor-
ing sites. If || < ¢, the system is in the topological regime,
and an unpaired MZM arises at each end of the chain.'

Unfortunately, p-wave superconductivity is difficult to
realize in the laboratory, but more realistic models which
support MZMs were introduced in Refs. [15,29,30]. In these
cases, the underlying system is a 1D semiconducting nanowire
with strong Rashba spin-orbit coupling, usually correspond-
ing experimentally to InAs or InSb. The nanowire is then
proximity coupled to an s-wave superconductor, achieved
experimentally by depositing a material such as Al as a thin
layer on top of the nanowire, as shown schematically in
Fig. 1(c). In zero magnetic field, a system of this kind is
a trivial quasi-1D superconductor. However, if a magnetic
field aligned with the nanowire axis is increased in strength,
the bulk gap may close and reopen in a topological phase
transition, resulting in a topological superconductor (TSC)
with MZMs at its ends. This process may be thought of as
a competition between the spin-orbit coupling, the external
field, and the superconducting pairing, which conspire to
produce the effective p-wave pairing required for the Kitaev
model.

The 1D Hamiltonian for the continuum nanowire model
may be written in Bogoliubov-de Gennes form as

N "
Hyw = <— - af — a0 0y — ,u) T, + Vzor + Aoz, (3)

which acts on the Nambu spinor 1ﬁx = (ch, Cles c;x, —CLC)T.
In this expression, the nanowire extends along the x direction,
m™* is the effective mass of the nanowire material, ok is the
Rashba spin-orbit coupling parameter, V; is the Zeeman term,
and Ay is the s-wave pairing gap induced by proximity. The
Pauli matrices {z,, 7y, 7;} act in particle-hole space, while
{ox, 0y, 0.} act in spin space. The model is in the topological
regime when the topological criterion,

Vz > A2+ 2, 4)

is satisfied [15,29,30]. Deep in the topological phase, the
Hamiltonian can be shown to reduce to that of Eq. (2) [46].

"We note that Eq. (2) is also related to the XY spin chain through
the Jordan-Wigner transformation—see, for example, Ref. [63].

The continuum nanowire model has been used as a starting
point for many theoretical and numerical studies of devices
believed to host MZMs (see, for example, Refs. [34,64]).
By incorporating components such as leads, by adjusting the
dimensionality, or by adding new terms to the Hamiltonian,
a variety of different experimental setups can be simulated,
and the effects on the stability and behavior of the resulting
Majorana modes studied. Notably, the continuum nanowire
model has been used to produce numerical conductance sim-
ulations which agree extremely well with several state-of-the-
art experimental measurements [27,34]. In this way, numerical
simulations have provided important supporting evidence for
the existence of Majorana modes in real nanowire devices.

B. Majorana braiding

Majorana fermions, being examples of non-Abelian Ising
anyons, are useful for quantum computing due to their ability
to store information nonlocally. In the ideal case, when a pair
of localized Majorana fermions are brought together, one of
two things may happen: The pair may annihilate, or the pair
may fuse to form an ordinary complex fermion. However,
when the Majorana fermions are well separated, there is no
local measurement which can be made to distinguish which
outcome (or fusion channel) will result from this process.
Instead, the outcome depends on the topology of the trajec-
tories that the Majorana fermions have followed up to this
point. A benefit of this nonlocal encoding of the state is
that local perturbations, which are prevalent in any realistic
experimental system, cannot easily affect this topology, which
endows the state with an inherent robustness. On the other
hand, to be useful for quantum computing, the state will need
to remain coherent over timescales long enough to perform a
topological operation.

In this paper, we focus on one such operation: a braid be-
tween two Majorana fermions (i.e., two sequential exchanges)
which alternates between the two fusion channels. Although
the braid only directly involves two Majorana modes, we
require a set of four MZMs in total in order to alter the fu-
sion channel, as the particle-hole symmetry requires the total
fermion parity to be conserved. Abstractly, we can imagine
creating two pairs of MZMs from the vacuum ({y;, y»} and
{y3, ¥4}), as shown at the top of Fig. 1. At this stage, if we
were to bring the two MZMs from each pair back together
they would annihilate. We can therefore label this state as

Ini =0, = 0) = c162[R2), &)

where n; = /¢, is an occupation number, |€2) is the initial
vacuum, and we have used the complex fermion operators
c| = %(Vl +iy;) and ¢; = %()/3 + iy4). (Note, however, that
there is a gauge freedom in this choice.) For later use, we
define this initial state as the |0) state of a topological qubit.
To perform the braid, we adiabatically exchange the Ma-
jorana fermions y, and y3 twice with the same orientation,
so that each one returns to its initial position but with their
trajectories intertwined, as indicated in Fig. 1. It may be
shown that a braid of this form results in the transformation
Y2 = —¥2, ¥3 = —y3 [46], and so
| — c'{', 6)

¢ — —c} (7)
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in terms of complex fermion operators. In this way, after the
braid the pairs {y, y»} and {y3, y4} now each fuse to form a
complex fermion, and the starting state has been transformed
to

I = 1,m = 1) = (=)l e} Q). ®)

If we identify this state as the |1) state of a topological qubit,
then the braid may be interpreted as a Pauli o, operation or a
NOT gate. We observe that total parity is conserved throughout
this process, as required by particle-hole symmetry.

The ideal case discussed above and illustrated in Fig. 1(a)
considers an adiabatic braid involving only four degenerate
Majorana fermions. In a real system, any MZMs will neces-
sarily be part of a much larger spectrum of states, the MZMs
themselves will not be at exactly zero energy, and any braiding
process will take place over a finite amount of time. All of
these factors can negatively affect a braid’s success.

In this paper, we will reproduce this braid in nanowire
Y-junctions and tuning forks described by the Hamiltonian in
Eq. (3), following the sequence of moves shown in Fig. 1(b).
In this setup, we set the locations of the topological regions
of the wire by altering the local chemical potential p so that
the topological criterion [Eq. (4)] is locally satisfied, forming
MZMs at the boundary. By changing the local chemical
potential as a function of time, we move the boundaries of
the topological regions and, consequently, the positions of
the MZMs. In contrast to the ideal case, a real nanowire
has a continuum of bulk excited states: The braid must be
performed slowly enough that the initial state does not mix
with these excitations. On the other hand, the Majorana modes
themselves will not be exactly at zero energy. Instead, the
overlap between Majorana modes at different ends of the
device will lead a small energy splitting, while the ideal
braid assumes that the Majorana modes exist in a degenerate
zero-energy subspace. Our braid must be performed quickly
enough that this assumption still effectively holds, and the
dynamical phases that are introduced by this energy splitting
must be carefully taken into account. We will study the effects
of these considerations on the braiding process in the next few
sections.

We note that while in our case we can study the success
of a braid using numerical measures (such as wave-function
overlaps), evaluating a braid in a real device is a more chal-
lenging endeavor. Several techniques have been suggested to
measure the fusion channel of a pair of Majorana fermions
experimentally: In one proposal, the pair of Majoranas can be
fused across a Josephson junction and the resulting Josephson
current measured [46]. Alternatively, a Josephson junction
with a valve may be used as a parity to charge converter, which
can either be used to detect the charge of the fusion channel
directly or the channel can be measured indirectly through
cyclic current measurements [6,54].

III. STATIC PROPERTIES OF MAJORANA Y-JUNCTIONS

A. System setup

To perform a braid, we require a device with at least three
legs so that the Majorana fermions can remain well separated
and can move around one another. For our purposes, we focus
on two simple such designs: a Y-junction and a tuning fork, as

FIG. 2. (a) Nanowire device with a Y-junction geometry. Each
leg has a total length of L and the angle between each prong and the
external magnetic field is 6. (b) Nanowire device with a tuning-fork
geometry. In addition to 6, the tuning fork is labeled by a parameter
n, which describes the proportion of each right-hand leg that is
angled before straightening out.

shown in Fig. 2. Nanowires can be grown with either of these
geometries using TASE [62]. We assume that the three legs
of each device have the same length L and that the prongs of
the Y-junction each make an angle of 6 with the the direction
of the magnetic field, which we take to lie in the positive x
direction. The tuning-fork design is additionally labeled by
the parameter 1, which gives the proportion of each right-hand
leg that is angled (before becoming horizontal again). We
are particularly interested in studying how the feasibility of
a braid varies with these geometric parameters.

We simulate these devices numerically by discretizing the
continuum nanowire model of Eq. (3) on a quasi-1D lattice
with lattice spacing a. The restriction to 1D enables us to
simulate braiding processes with reasonable computational
efficiently but means that subband and orbital magnetic ef-
fects are neglected [49]. We discuss the consequences of this
approximation in Sec. V. After discretization, the Hamiltonian
for the left leg of the Y-junction is written

Ho =) (~t(@)(In+a){n| +He)r,

n

—ia(a)(|n + a){n| — H.c.)o,T; + Ag|n)(n|z,
+ [ + 2t (a)lIn){n|t; + VzIn)(nloy}, )]

with
2

t(a) = a(a) = ‘;—Z (10)

2m*a?’
and where n labels each site in the lattice.

In the right-hand legs of the Y-junction, however, the
magnetic field and nanowire axis are no longer parallel. The
continuum Hamiltonian for a nanowire making an angle 6
to the x axis may be obtained from Eq. (3) by making the
substitutions

8)? —> 83’ = 30030+ysin9’
0¢0y, — 0y0y = dy[cosBo, — sinboy], (1)

which is equivalent to replacing x — x’ and rotating the spin-
orbit coupling direction so that it remains perpendicular to
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the direction of propagation along the wire. In our setup,
the magnetic field and spin-orbit coupling direction both lie
in the xy plane; however, see Refs. [47,48] for a nanowire
Hamiltonian in which the magnetic field may vary in three-
dimensional space.

After discretization, sections of the nanowire which make
an angle of 6 with the horizontal are described by the Hamil-
tonian

g, = Z{_;(a)(m’ +a)(n'| +H.c)rt,

—ia(a)(|n’ + a)(n'| — H.c.)(cos 6o, — sinboy)1,
+ Aol ) (' |Te + (—p + 2t (a)|n) (| T
+Vz|n') (n'|oy ). (12)

We will find that the misalignment of the field and the
nanowire leg has a significant effect on the eigenstates of
the system. In addition to the above transformations, we
must also treat the central site of the Y-junction with care:
Since it connects to all three legs, we replace the diagonal
discretization offset term 2¢(a)t, with 3f(a)t,, so that the
model has a well-defined continuum limit as a — 0.

We build the discretized system and perform exact diag-
onalization using the KWANT PYTHON package [65], taking
the lattice spacing a small enough to avoid discrete artifacts.
The parameters we choose are inspired by existing numerical
works, based on InSb nanowires and aluminium superconduc-
tors, which have been shown to agree extremely well with
experimental data [27,34]. We also take additional input from
the device geometries and materials used in the TASE process
[62]. Our starting parameters (which we take as a “best
case” for such devices) are m* = 0.015m,, ag = 0.5eV A,
L=2um, Ag =0.8meV, and V; = 1.5meV. This value of
V; corresponds to a magnetic field strength of B~ 1.3 T,
assuming V; = %geff[,LBB with gesr =~ 40 [27,34]. We choose
a lattice spacing of ¢ = 10~8 m (so that the device consists of
600 sites), which we find is small enough that the low-energy
band structure and dynamical properties of the system are
stable and immune from discreteness effects. These best-case
parameters will be used throughout the simulations in Secs. III
and IV.

We note that our choices for L and Ay are slightly larger
than what has been assumed in previous simulations, but are
values we believe are achievable using the TASE technique
and using nitride-based superconductors [8]; we study the
effect of reducing these parameters in Sec. V. We change
between the topological and trivial superconducting regimes
by adjusting the chemical potential, choosing fi,p = 0 and
Uuiv = 6 meV, where the topological phase transition occurs
at . = 1.279 meV for the horizontal wire. The parameters
0 and n, which define the geometry of the devices, will be
varied.

As described in Sec. IIB, a braid can be performed by
moving the topological regions of the wire (and consequently,
the Majorana fermions at their boundaries) through the se-
quence shown in Fig. 1(b). Numerically, this is achieved by
changing the local chemical potential w(x, t) as a function of
position and time. However, there is considerable freedom in
deciding the steepness and functional form of the chemical

p (meV)

- Trivial Topological Trivial

=N W ke Ot O

0.5 1.0 1.5 2.0

FIG. 3. Sample chemical potential ramping profile for (e.g.) the
left leg of a nanowire Y-junction. The blue (solid) line indicates the
sine-squared ramp function with two phase boundaries; the dark red
(dashed) line indicates the critical value of the chemical potential at
the phase transition point; the red disks schematically indicate the
locations of the resulting Majorana fermions.

potential at the boundary between different phases, where it
varies between (tip and fiyiy. We use a sine-squared ramping
potential based on that of Ref. [56], which takes the form

(X, 1) = juyiy sin® (gr(ﬁ(x - xc(t)))>, 13)

where r(x) is the linear ramp function

0 x<0
rx)=4{4x 0<<x<1. (14)
1 x>1

In this expression, B = 5(um)~! sets the steepness of the
ramp (chosen to minimize the numerical Majorana wave-
function size), and x.(¢) identifies the position of the base of
the ramp as a function of time. In Ref. [56], the sine-squared
ramp was found to yield better braiding results than the bare
linear ramp, and it should also give a better approximation
to the smooth chemical potential profiles that would be re-
alized using side gates in an experiment. In the Appendix,
we demonstrate that a ramp potential similar to this may be
generated using a realistic arrangement of side gates. There,
we estimate that approximately 20 gates would be required
on each leg of the nanowire device to reproduce a ramping
potential to within about 5%.

An illustration of two phase boundaries described by the
sine-squared ramping profile is shown in Fig. 3. During the
braiding process, these phase boundaries are moved through-
out the device so that the two Majoranas attached to them form
a braid. (The other two Majorana fermions remain at the ends
of the nanowire legs throughout the process.)

B. Low-lying bulk states

For a successful braid, we require (at the very least) that the
quasidegenerate Majorana subspace remains separated from
other excited states by an energy gap AE. The size of this
energy gap will impose limits on the speed at which we can
perform the braid without causing diabatic excitations. For
this reason, we first study the instantaneous low-lying energy
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FIG. 4. The 20 smallest-magnitude instantaneous energy levels
for a Majorana Y-junction with 6 = 15°, as a function of time
s during the exchange described in the main text. Note that this
exchange corresponds to half a complete braid, and that we have
labeled the progress of the exchange operation with the label 0 <
s < 1. Since this plot shows the energy levels of the instantaneous
Hamiltonian, the label s is not associated with any physical timescale.
Top: The instantaneous position of the four Majorana modes at
five points during the exchange. Middle: The 20 smallest-magnitude
energy levels as a function of s during the exchange. Energy levels
corresponding to Majorana modes are shown in red (close to zero),
while energy levels corresponding to bulk states are shown in blue
(above and below). Bottom: An enlarged plot of the four Majorana
energy levels as a function of s during the exchange.

levels near the Majorana subspace as the braid progresses.
An example of this is shown in Fig. 4 for the Y-junction
with parameters as given above and with 6 = 15°. In this
plot, the progress of the exchange operation is labeled by the
parameter 0 < s < 1, which may loosely be thought of as a
dimensionless time parameter. (Note, however, that the energy
levels plotted are of the instantaneous Hamiltonian, and so s
is not associated with any physical timescale.)

We see from Fig. 4 that, as hoped, the instantaneous
Majorana energy levels remain well separated from the bulk
states throughout the braid. However, there appear to be two
distinct types of low-lying excitation: first, there is a broad
spectrum of general bulk states, and second, there is a single
pair of low-lying states which approach the Majorana levels
for 0.5 <5 <0.9.

The broad spectrum corresponds to bulk states that are
also present in a system with periodic boundary conditions,
and which numerically are found to be delocalized across
the device. These define the bulk energy gap, which is a
(complicated) function of the parameters of Hamiltonian (12).
Importantly, this bulk gap decreases when 6 increases, as the
external magnetic field and the effective spin-orbit coupling
field (which is perpendicular to B when 6 = 0°) start to
become aligned. This effect is apparent in the band structure
of a single straight nanowire, shown for a continuous periodic
system in Fig. 5(a): At 8 = 0° the electron and hole bands
are gapped and symmetric about k = 0, but when 6 = 20°,
the bands become tilted and the bulk gap reduces. This is
associated with the breaking of the symmetry o Hy (K)o, =
Hy(—K) of Hamiltonian (12) when 6 # 0 [see Ref. [49] for
further details of symmetries in TSC nanowire models]. We
find numerically (for both the periodic system and the Y-
junction device) that the bulk band gap collapses approxi-
mately linearly with 6, from its bare value near Ay at 6 = (°,
to zero at & & 35°, as shown in Fig. 5(b). Indeed, Refs. [47,48]
consider this band tilting for the infinite continuum nanowire
model and find a bulk gap closure that is consistent with
our numerical results for the Y-junction device. In particular,
Ref. [48] demonstrates that the critical angle should satisfy (in
our notation)

6. = arcsin[Ay/Vz] &~ 32.2°, (15)

which agrees very well with our numerical results.

The second type of low-energy modes, the single pair of
states which emerges from the bulk during the evolution,
is specific to the three-legged geometry: Numerically, these
states have most of their density concentrated at the junction
of the three legs. In the period where these modes are most

(c)

E (meV)
AFE (meV)

A Eyzv (ueV)

k (107m)

0 5 10 15 20 25 30
0° 0°

FIG. 5. (a) Low-lying bands of the continuum version of Hamiltonian (12) for 8 = 0° (gray dashed line) and & = 20° (blue solid line).
The band structure becomes asymmetric and the (indirect) gap gets closer to zero as 6 is increased. (b) Numerical bulk gap above zero for
the Y-junction device as a function of half-angle 6 [red (dark gray) solid line]. On the left, the gap is dominated by incipient Majorana modes
forming at the central junction, while on the right the gap is dominated by the bulk gap collapse. Light gray solid lines show linear fits in
the low-0 and high-0 regions. Vertical gray dashed line indicates the optimum value of 6 which maximizes the bulk gap. (c) Largest energy
splitting of the Majorana modes (measured relative to zero at s = 0.125) as a function of 8. The splitting increases approximately exponentially
with 6.
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significant (between 0.5 < s < 0.9 in Fig. 4), the two right-
hand legs are in the topological regime and may be interpreted
as two separate TSC nanowires forming a junction. When two
such nanowires (each hosting a pair of MZMs) are brought
together, the two MZMs that meet at the junction couple
through the (approximate) Hamiltonian term

Hi o —il cos <@>7/1V2, (16)

where y , are the relevant Majorana operators, I is a coupling
strength, and ¢4 and ¢p are the effective superconducting
pairing phases in each nanowire [14,46]. In general, this
means that when two TSC nanowires are brought together,
the two MZMs at the junction are gapped out, leaving a single,
longer TSC nanowire with a single pair of MZMs. However,
in the fine-tuned case where ¢4 — ¢pp = m (a “m-junction”
[46]), the coupling term vanishes and the resulting system has
four Majorana zero modes.

For the realistic nanowire model we are using, the induced
superconducting pairing depends on the spin-orbit coupling
direction [29,30,46], which is different in each leg. With a
half-angle of 6, the effective superconducting pairing phases
are proportional to €% oc e=® and e®® o e~ (where
¢ur and ¢rr refer to the upper-right and lower-right legs,
respectively). This means that as 6 decreases, the two legs get
closer to forming a m-junction: The single pair of low-lying
states corresponds to these incipient Majorana modes that
would arise exactly at 8 = 0°. The resulting gap is therefore
greater at larger values of 6. Expanding Eq. (16), we expect
the energy gap caused by incipient Majorana modes to in-
crease linearly with 6 (or as sin€ for large enough values
of 6).

These two sources of low-lying modes, the bulk gap
closure and the incipient Majoranas, become dominant at
different values of 6. The optimum (largest) energy gap above
the MZM subspace will be obtained for a half-angle which is
greater than zero (to avoid a w-junction), but not so great that
the bulk gap closure starts to become limiting. For our base
parameter values, we find that this is achieved for a critical
value 6, ~ 20°, as demonstrated in Fig. 5(b). Note, however,
that the energy gap at this angle is lower than its value for a
single straight nanowire at 8 = 0°. In Sec. V, we study how
this angle dependence changes for the tuning-fork geometry
and with different parameter values.

In addition to a large energy gap to excitations, we also
desire the modes corresponding to Majorana fermions to be
as close to zero energy as possible: In the ideal case, all four
MZM states would be exactly degenerate. In a real system,
however, the Majorana zero modes are extended over some
localization length &, and modes from different regions of the
device overlap in space, leading to an energy splitting. For
two modes separated in space by a distance £, the splitting is
proportional to AEyzyv o e~¢/% . In contrast to the ideal case,
this energy splitting means that our braid operation will need
to be performed quickly enough that the different MZMs can
be considered as a single subspace (i.e., the braid should be
able to mix states freely within this subspace). Even then, the
splitting will generally introduce different dynamical phases

for different states in the subspace, which will need to be taken
into account.

We can see the energy splitting between different Majorana
states in the lower panel of Fig. 4: For example, there are
two modes in red and blue with approximate energy levels
E ~ £0.65 ueV that remain constant for 0 < s < 0.4. These
correspond to the two MZMs initially localized on the lower-
right leg of the Y-junction, which remain stationary through-
out this part of the braid. They have a larger energy splitting
than the other MZM modes because they are closer together
and because they exist in the region of the wire with a smaller
bulk gap (since 6 = 15° here). We also observe oscillations
whenever two Majorana modes get closer together or move
further apart.

Since the Majorana energy splitting will be important in
interpreting the braiding results of the next section, we plot the
energy of the largest Majorana mode (relative to zero) at s =
0.125 as a function of 8 in Fig. 5(c). We choose this specific
gap in the low-energy subspace, as it is the largest constant
gap and persists long enough to have noticeable effects. We
expect the oscillatory splitting, on the other hand, to generate
dynamical phases that on average cancel out.

We note that the energy splitting shown in Fig. 5(c) in-
creases approximately exponentially with 6 and does not show
any particular behavior at the critical angle of 6, &~ 20. This
is consistent with the fact that the localization length of the
MZM is inversely proportional to the (local) bulk pairing
gap [1]. In this case, we found numerically [as in Fig. 5(b)]
that the bulk gap decays approximately linearly as AEpx
Ay — c6 for some constant c. This implies a MZM splitting
proportional to AEyzy o e <140~ (for some approximately
constant «), which reproduces the behavior of Fig. 5(c).

IV. BRAIDING SIMULATIONS IN MAJORANA
Y-JUNCTIONS

A. Braiding numerics

We now see how these instantaneous energy considerations
play out when we simulate a finite-time braiding operation. As
discussed above, we perform a braid numerically by sweeping
the chemical potential as a function of space and time, follow-
ing the ramp function defined in Eq. (13) and the protocol
illustrated in Fig. 1(b). We will assume that the braid takes
place over a timescale 0 < ¢t < 7, where the total braiding
time 7 will be varied. In our units (where the Hamiltonian
parameters are given in meV), one unit of time corresponds to
4.14 ps.

In the ideal case, we would calculate the time-evolution
operator at a given time ¢ through the relation

U(t) = T exp [—i/ H(t’)dt’], (17)
0

where T indicates time ordering and where H (¢) is the time-
dependent Hamiltonian that incorporates the changes to the
chemical potential w(x, ). Numerically, however, we must
split the time-evolution operator into a finite number of steps
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(N) and use the relation

j=N
U(t) :1\/12201_[e—iH(_/Ar)7 (18)
j=1

where At =t /N, to obtain a discrete approximation to U (¢).
In practice, we increase N until the expression for U(t)
converges for a given time ¢. To calculate the factors e=HUAD
efficiently, we use a Chebychev expansion which converges
rapidly with just a small number of terms [66]. We vary the
chemical potential (x, ¢) by changing the offset of the ramp
function x.(z) linearly with time during the braiding process
[see Eq. (13) and Fig. 1(b)].

To perform a braid in an interacting system, we would take
the many-body ground state (consisting of a Slater determi-
nant of all occupied single-particle states including MZMs)
and act on it with the many-body unitary evolution Ug‘r‘;d(T),
which is a braid that takes place over a time period 7. For our
noninteracting system, we will instead consider the simpler
action of the single-particle unitary evolution Up,ig(T) on a
single-particle state that acts as a proxy for the many-body
ground state, following the method of Ref. [55]. In the absence
of any interacting terms in the Hamiltonian, this procedure
provides an equivalent probe of the non-Abelian statistics of
the MZMs.

Specifically, we recall that at + = O there are four states
close to zero energy that correspond to the four MZMs we
expect to form under the starting arrangement of the chemical
potential. The two states closest to zero energy (corresponding
to orange and green in the lower panel of Fig. 4) are equal
superpositions of the two Majorana fermions on the left leg of
the Y-junction [labeled y; and y, in Fig. 1(b)]. These states
are equal superpositions of y; and y, due to the splitting
that arises from their nonzero overlap. We write the negative-
and positive-energy states as |1_) and |1.) and associate
them with the (complex fermion) operators ¢, = %(yl + iyn)
and CT = %(yl — iyy), respectively, as in the discussion in
Sec. I B. Similarly, we associate the other two states close to
zero energy (blue and red in the lower panel of Fig. 4) with
operators ¢, = %(7/3 + iy4) and c; = %()/3 — iy4) and write
the corresponding states as |2_) and |2,). These states are
associated with Majorana fermions y3 and yu, which are ini-
tially localized on the lower-right leg of the Y-junction. Note
that these states are defined only for the chemical potential
conformation at t = 0.

As discussed in Sec. IIB, the ideal braiding operation
should map operators ¢; — clT and ¢; — —c; (up to a choice
of signs). In terms of states, this would map [1_) — |1) and
[2_) = —|24) (up to an overall phase). We can therefore test
the success of the braid by starting at # = O with the state

¥ (0)) = [1-) (19)
and acting on this with the unitary evolution operator to obtain
[V (#)) = Ubraia ()| (0)). (20)

At the end of the evolution, we compare the overlap of the
state |y (7)) with the initial states |1_) and |1). If the braid

is successful, we should find

(1_|¥(T))* =0,
(Ll (TH? =1, 21

indicating that all the weight from state |1_) has been trans-
ferred to state |1.). In general, however, the overlaps will not
take these ideal values, and there may be additional nonzero
overlaps between | (T')) and other states (either excited states
or other states from the MZM subspace).

B. Braiding results

If we perform the braid adiabatically (by numerically pro-
jecting onto the subspace of states close to zero energy at each
instant of the evolution), then we obtain wave-function over-
laps that are exactly as in Eq. (21): In this ideal case, we have
assumed that the braiding time T — oo and that the Majorana
states are degenerate, and the braiding operation reproduces
the ideal theoretical prediction. In the more realistic case,
however, where we perform the evolution unitarily, the gap
to excited states and energy splitting within the Majorana sub-
space leads to deviations from this ideal behavior. In Fig. 6, we
plot the square overlaps |(<;§|1//(T))|2 of the final state |y (T))
with a variety of initial states |¢), for 6 = 15°, 20°, and 25°.
We recall that from considerations of the instantaneous energy
gaps, 8 = 20° is close to the optimal case (with maximum
energy gap to excitations), while smaller or larger angles lead
to a suppression of the gap due to incipient Majorana modes
or bulk gap closure, respectively.

Figure 6 plots the square overlap with the ideal final state
[1+) (in solid blue), the square overlap with the starting state
[1_) (in dashed red), and the total square overlap with the
initial Majorana subspace (in solid black), for each value of 6.
These overlaps are plotted as a function of the total braiding
time 7 and are the overlaps that would be measured immedi-
ately after the braiding protocol has been completed. Unlike in
the adiabatic case, the probability of the braid being successful
(given by |(1+|1ﬁ(T))|2) oscillates as a function of the total
braiding time 7 and is suppressed significantly if the braid is
performed too quickly. The dark gray shading indicates ranges
of T for which the braiding may approximately be viewed as
successful, in which the overlap with ideal final state |1+) is
larger than the overlap with the initial state |1—). The lighter
gray shading (including the dark gray areas) indicates values
of T for which the process may approximately be viewed
as adiabatic with respect to the excited states, for which the
overlap with the total Majorana subspace is greater than 95%.

The low success rate at small T is in fact a reduction of
the square overlap with the entire MZM subspace, indicated
by the black lines in Fig. 6. This small-T feature shows that
the final braided state lies outside of the initial low-energy
subspace and is therefore due to diabatic excitations to higher
energy states that arise during the braid if it is performed too
quickly. Indeed, the overlap with the whole MZM subspace
is highest for 6 = 20°, which has the largest energy gap to
excitations. Interestingly, the equivalent overlap for 8 = 25° is
higher than that for 6 = 15°, even though the excitation gap is
smaller [see Fig. 5(b)]: This perhaps suggests that the braided
state is more strongly excited into incipient Majorana modes
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FIG. 6. Square overlaps of final state with initial states at the end of a braid for (a) 8 = 15°, (b) 8 = 20°, and (c) 6 = 25°. Blue solid lines
(with points) indicate the overlap with |¢) = |1.), the ideal final state. Red dashed lines (with points) indicate the overlap with |¢) = |1_), the
starting state. Black solid lines (without points) indicate the total square overlap with all four states within the initial zero-energy subspace.
The dark gray shading indicates regions where the overlap with the ideal final state |1+) is greater than the overlap with the initial state |1—)
and roughly indicates ranges of T for which the braid is successful. The lighter grey shading (including the dark grey regions) indicates values
of T for which the overlap with the total Majorana subspace is greater than 95%, and the braiding process can be interpreted as adiabatic with
respect to the excited states. See main text for details. We recall that one unit of time in our units corresponds to approximately 4.14 ps in

physical units.

than into generic bulk states. We also note that at very small
T, the overlap with the MZM subspace initially decreases for
each value of 6. This is due to the braid being so fast that
most of the weight of the braided state | (7)) remains in the
initial state |1_) (which is itself in the MZM subspace), as the
system does not have enough time to adjust.

We now turn to the oscillatory behavior of the overlaps
with |1_) and |1;), shown in red and blue, respectively, in
Fig. 6 (and emphasized by the dark gray shading). These
indicate oscillations of amplitude between the different states
within the (quasi)-zero-energy subspace (and includes smaller
amplitude oscillations with states |2) and |2_), not shown).
These arise due to the fact that the four MZM states are not
exactly degenerate at zero energy throughout the braid. Since
the primary oscillation period decreases as 6 increases, they
must be associated with an energy splitting that increases as a
function of 6.

In Fig. 5(c), we identified the largest such (constant) energy
splitting, arising for 0 < s < 0.4 in Fig. 4, which indeed
increases exponentially with 6. We can use this to obtain a
heuristic explanation for the oscillatory behavior. First, we
recall that the braid we have simulated begins in state |1_),
which is an equal superposition of Majorana fermions y; and
y,. Halfway through the braid (i.e., at s = 1 in Fig. 4), we
have exchanged Majoranas y» and y3, and so in the ideal case,
the instantaneous state should be an equal superposition of the
original y; and a MZM located where y3 was initially. We can
write this instantaneous state in terms of the initial states as

[W(T/2)) = 5[(1-) + 11:) +e(122) + 12:)],  (22)

where ¢ is the (unspecified) phase difference between the
two pairs of terms. The combination of states |1_) and |1)
corresponds to y;, while the combination of states |2_) and
|2.+) corresponds to y3.

For the next section of the drive (corresponding approx-
imately to 1 < s < 1.4), the instantaneous state is not an
eigenstate, and so different terms in the wave-function expan-
sion will pick up different dynamical phases. Assuming the
instantaneous energy levels are constant during this time (i.e.,
ignoring the oscillatory pieces in Fig. 4), we can write the

evolved state as

Y (T/2+0) = 5P [(112) + e F114)
+ePTERTEN(2]) + e 2,))) (23)

where we have defined £y = E;, = —E; and E; =E;, =
—E,_ as the energies of the corresponding eigenstates. From
Fig. 4, the energy E, is the dominant energy scale and will
cause a shift in the relative phase of |2_) and |2.). This will
cause oscillations between Majorana modes y3 and y4, which
will in turn alter the final state of the braid.

This picture suggests that the oscillations will have a
dominant characteristic time period of approximately 7' =
7 /E,, which is comparable with the numerical oscillations
observed in the braiding overlaps. Specifically, extracting the
MZM splitting from the data in Fig. 5, we obtain predicted
time periods of 77 ~ 4800, 1800, 650 for 6 = 15°, 20°, 25°,
respectively. Extracting the time periods from Fig. 6 directly
instead gives 77 =~ 3000, 1250, 440. The differences likely
arise from the oscillatory regions of the MZM energy splitting
(where the energy levels are changing with time) and from
other energy splittings that arise during the braid. In addition
to this behavior with period Tj, other oscillations with approx-
imate time period T, = 27 /(E, — E}) ~ 2T, are also visible
in the overlap with states |2_) and |2,) (not shown).

Overall, these numerical simulations suggest that a topo-
logical braiding operation is feasible in a realistic nanowire
device, but that dynamical phases may need to be accounted
for carefully. Notably, the final braided state remains within
the low-energy subspace for a total braid duration of approxi-
mately 7 2 1000 in our units. This corresponds to T 2 4 ns,
which compares favorably to measured quasiparticle poison-
ing times which are typically on the order of microseconds
[51,52].

The oscillatory behavior of the final state overlaps demon-
strates the difficulties that may arise from dynamical phases.
To use the simulated devices directly, it would likely be neces-
sary to sweep the braiding time 7 to find a maximum braiding
success probability. This may require repeated measurements
to determine the complete profile of the overlap curves and
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FIG. 7. (a) Gap to excitations as a function of half-angle 6 for tuning forks with parameters n = 0.25 (blue, solid), n = 0.5 (yellow,
dashed), n = 0.75 (green, dotted), and n = 1 (red, dot-dashed). Vertical gray dashed lines indicate the value of 6 which maximizes the gap
for n =1 and n = 0.25 (6, =~ 20° and 6. ~ 23°, respectively). (b) Majorana energy splitting at s = 0.125 for tuning forks with parameters
n = 0.25 (blue, solid), n = 0.5 (yellow, dashed), n = 0.75 (green, dotted), and n = 1 (red, dot-dashed), shown on a logarithmic scale. (c) Final
square overlaps for a tuning-fork braiding simulation for n = 0.25 and close to optimal half-angle 8 = 23°, to be compared with Fig. 6. Black
solid line (without points) shows final square overlap with complete Majorana subspace, blue solid line (with points) shows the square overlap
with the ideal final state, and red dashed line (with points) shows the overlap with the starting state. Dark gray shading indicates values of T for
which the braid was successful. Note that the dynamical oscillations here occur over much longer timescales than for the Y-junction geometry

and are barely visible in the figure.

may be complemented by performing repeated braiding op-
erations (as suggested in Ref. [54]). More generally, these
dynamical phase effects can be minimized by reducing the
energy splitting between Majorana modes. In particular, the
most significant splitting arises from the two Majorana modes
localized in the angled prong of the Y-junction at the begin-
ning of the braid. This can be reduced by increasing the length
of the device legs (so that the Majorana modes are further
apart) or by increasing the effective superconducting gap (to
reduce the extent of the Majorana modes). However, it may
be more experimentally favorable to make just the lower-right
leg of the device longer (possibly at the expense of the others),
so that the most significant energy splitting is reduced. It may
also be advantageous to use a narrower prong angle 6, which
reduces the Majorana energy splitting (albeit at the expense
of a smaller gap to excitations). Finally, the critical angle
0. is known to increase as the ratio Ay/V; approaches one
[48] (at the expense of a smaller band gap at k = 0); there
may therefore be some advantages to reducing the external
magnetic field.

V. TUNING FORKS AND OTHER PARAMETER REGIMES

In the discussions above, we considered a Y-junction
device with experimentally motivated best-case parameters
introduced in Sec. III A. In this section, we discuss the benefits
that may arise from instead using a tuning-fork geometry [as
in Fig. 2(b)]. We also consider how robust our conclusions are
to changes in the underlying parameters.

In Fig. 7(a), we show the minimum gap to excited energy
states (during the braid) as a function of half-angle 8, for a va-
riety of choices for 7, the geometric parameter that determines
when the tuning fork straightens out [see Fig. 2(b)]. We see
that as n decreases, and more of the device becomes aligned
with the magnetic field, the larger the maximum gap becomes
(and the larger the value of 6 is for which this occurs). This
arises because the tuning-fork geometry has higher energy
bulk states as compared to the Y-junction: More of the device
is aligned with the magnetic field, and so the band tilting

effect shown in Fig. 5(a) is less significant. In this way, the
maximum excitation gap arises for larger values of 6, when
the effects of the bulk gap closure and incipient Majorana
modes are equal. For n = 0.25, the maximum gap arises at
0 ~ 23°.

The tuning-fork geometry also leads to smaller energy
splitting between the Majorana modes, as shown (for s =
0.125 during the braid) in Fig. 7(b). This is because the
splitting is exponentially small in the Majorana localization
length, which in turn is inversely related to the bulk energy
gap. For n = 0.25, the energy splitting is almost two orders of
magnitude smaller than for the Y-junction (n = 1).

These two features suggest that tuning-fork devices are
more promising geometries for realizing and braiding Ma-
jorana modes than Y-junctions. The larger bulk gap means
that the braid should not need to be performed as slowly to
be in the adiabatic regime, and the reduced Majorana energy
splitting should reduce the unhelpful effects of dynamical
phases. Indeed, in Fig. 7(c) we plot the final braiding overlaps
for the tuning-fork geometry and see that both of these advan-
tages are apparent: The overlap with the Majorana subspace is
higher for shorter braiding times 7 and the dominant period of
oscillation is significantly longer, and is barely visible in the
figure. Overall, the final braided state is close to the ideal state
for almost all of the simulated braiding times. This suggests
that the tuning-fork geometry has significant advantages over
the Y-junction geometry.

Unfortunately, we cannot improve these energy scales in-
definitely by taking n — 0. Not only would this pathological
limit be impossible to engineer, but it would also lead exactly
to a w-junction forming at the node, which would interfere
with the braiding process. The optimum value of 7 is likely
to depend on the spatial extent of the Majorana modes: When
two Majorana modes meet at the junction, they should have
most of their weight on an angled part of the device, to avoid
forming a 7 -junction.

In passing, we note that the tuning-fork geometry is likely
to have an additional advantage over the Y-junction geometry
in terms of orbital effects, which are beyond the scope of
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FIG. 8. Excitation gap (top) and Majorana splitting energy (bot-
tom) for different model parameter choices as a function of 6 for a
Y-junction device. Black solid line shows “best-case” parameters de-
scribed in Sec. III A. The other symbols each have a parameter alter-
ation: Ay = 0.6 meV (dark blue filled squares); Ay = 0.4 meV (light
blue open circles); L = 1.5 um (green filled circles); ag = 0.35 meV
(yellow filled triangles); iy = 3 meV (orange open squares); § =
2.5 (um)~! (dark red filled diamonds); 8 = 10 (um)~' (gray open
diamonds); doubling of the magnetic field strength so that V; =
3meV and Ay — 0.68 meV (pink open triangles). Note that the dark
red and gray symbols overlap with the best-case parameter line in the
upper panel and are not shown. See main text for details.

the one-dimensional model. Specifically, Peierls phases are
expected to be gained by electrons hopping perpendicularly
to the external magnetic field, which is most significant in
the angled legs of the device. According to Ref. [49], this is
expected to reduce the gap to excitations in a similar manner
to the interplay between the Zeeman term and spin-orbit
coupling. This effect should be smaller for the tuning-fork
geometry, which has more of the device aligned with the
external field. A detailed study of the orbital effect of the
magnetic field in three-legged devices (using 3D simulations)
remains an interesting avenue for future research.

In order to study the robustness of our conclusions, we now
relax our best-case parameter choices and observe how the
band gap and Majorana energy splitting vary. Specifically, we
alter the induced pairing gap, the length of the device legs,
the spin-orbit coupling strength, the external magnetic field,
and aspects of the braiding protocol. The results are plotted in
Fig. 8.

We see that, in general, modifying these parameters away
from their best-case values decreases the size of the bulk gap
(upper panel of Fig. 8) and increases the value of the Majorana
energy splitting (lower panel of Fig. 8). The most significant
parameters affecting the Majorana splitting are the induced
superconducting pairing gap Ay, the length of the device legs
L, and the external magnetic field strength B. Changes in A

or L of about 25% increase the Majorana splitting energy by
about one order of magnitude. Modifying the other parameters
(notably changing the steepness and strength of the chemical
potential profile) has a comparatively smaller effect on the
splitting.

A change in the magnetic field strength B affects the
Hamiltonian in two important ways: First, it directly changes
the Zeeman energy through the relation V; = % getripB, and
second, it indirectly reduces the superconducting pairing en-
ergy as the external magnetic field approaches the critical field
of the superconductor, B.. We incorporate this suppression
through the relation

Ao(B) = Agy/1 — (B/B.), (24)

which reproduces the pairing collapse observed in experi-
ments well [27]. For the nitride-based superconductors we
have assumed in this text, the critical field strength is about
B, =5 T [67], which we have used in Fig. 8. Specifically,
for the pink curve in Fig. 8, we have increased the field from
B =~ 1.3 to B~ 2.6T. This changes the Zeeman energy from
Vz =1.5 to Vz = 3.0 meV and reduces the pairing strength
from Ag=0.8 to Ag =0.68. As a result, the system has
a much larger Majorana energy splitting and a substantially
reduced bulk gap. From these energetic considerations, it
seems sensible to choose an external magnetic field which is
large enough for the system to be in the topological regime but
not so large that the pairing gap starts to collapse significantly.
We note from Fig. 8 that the bulk gap is more robust
to changes in the underlying parameters than the Majorana
energy splitting, although the precise value of the optimum
half-angle 6, is slightly different in each case. The most
dramatic changes arise when the superconducting pairing gap
A is reduced or the magnetic field strength B is increased,
with a smaller bulk energy gap having a significant effect
on the overall gap profile as a function of 6. This would
be particularly important for devices with aluminium super-
conductors, whose pairing gap is usually taken to be about
0.2meV and whose critical field B, is close to 1.1 T [27,34],
both significantly lower than for nitride superconductors.
Following the plots in Fig. 8, we would expect suitable
aluminium-based devices to require a much narrower half-
angle (in the range 5°-10°). Perhaps surprisingly, however,
the magnitude of the maximum gap does not decrease linearly
with Ag, and so aluminium-based devices should still be suit-
able for braiding operations. In addition, the smaller required
values of 6 should also suppress the Majorana splitting, to
partially compensate for the increase in localization length
due to the smaller bulk gap. These features could likely also
be further improved by using a tuning-fork geometry.
Overall, these results suggest that our conclusions on the
feasibility of braiding are reasonably robust to changes in the
parameters of the underlying model. From an experimental
perspective, it would seem most important to achieve a large
induced superconducting gap and long device legs (although
this latter condition is likely to amplify environmental effects).
Variations in the model parameters affect the Majorana energy
splitting more strongly than the overall gap to excitations,
suggesting that the effects of dynamical phases will differ
from device to device and may need to be characterized
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carefully in each case. However, these issues are likely to be
improved if a tuning-fork geometry is used instead of a pure
Y-junction, following the discussion above.

VI. CONCLUSION

In this work, we have studied the feasibility of perform-
ing braiding operations in nanowire devices in the shape of
Y-junctions and tuning forks. As a stepping stone toward
understanding a real braiding experiment, we have used a
continuum model to describe these devices, with parameters
extracted from existing transport experiments. This model
has previously been shown to give good agreement with
experimental measurements.

We began by computing the energetic properties of a Y-
junction as a putative braid is performed, noting that the gap
to excitations, which affects the speed at which a braid can be
performed, depends on two factors. First, the bulk gap may
collapse due to the misalignment of the external magnetic
field and the effective spin-orbit coupling field. This effect
is most prominent when the Y-junction makes a wide angle
to the external field. However, if the angle between the legs
is too narrow, then incipient Majorana modes may form at
the junction, which also reduces the gap to excitations. The
optimum angle which maximizes this gap depends on the
device parameters, but for our choice of values was close to
0. ~ 20°.

A realistic device also exhibits energy splitting between
low-lying Majorana modes. This is determined by the lo-
calization length of the Majorana modes, which in turn is
inversely related to the bulk gap. The energy splitting was
found to increase exponentially with the Y-junction angle, in
approximate correspondence with the closure of the bulk gap.

Both of these static considerations have important implica-
tions for the feasibility of a real braiding operation. Notably,
a smaller gap to excitations means that the braid must be
performed more slowly, while nonzero Majorana splitting
generates dynamical phases that produce oscillations in the
final braided state. We studied these effects in detail by simu-
lating a braiding operation for a Y-junction with three different
values of 6 and calculating the overlap of the final state with
the theoretical prediction. Overall, our results suggest that
such devices are capable of performing non-Abelian braiding
operations but that dynamical phase effects may need to be
carefully taken into account. In order to be successful, the
braiding operation should take place over a timescale of at
least 4 ns, which compares favorably to existing estimates of
quasiparticle poisoning times [51,52].

In Sec. V, we showed that a tuning-fork geometry has
significant advantages over the Y-junction geometry. By in-
creasing the proportion of the nanowire that is aligned with
the external magnetic field, the gap to excitations can be
increased and the Majorana energy splitting reduced. In turn,
this reduces the prominence of dynamical phase oscillations
and means that dynamical excitations to higher energy states
are suppressed, increasing the speed with which the braid can
be successfully performed. Tuning forks are also expected to
be more robust to orbital field effects. Beyond this, we studied
the robustness of our simulations to small variations in the
parameters of our underlying model, finding that the induced

pairing gap, and to a lesser extent the length of the device,
are the most important factors in determining the success of a
braid.

Our numerical results provide qualitative and quantita-
tive statements about the feasibility of braiding in realistic
nanowire devices, which we believe are overall encouraging.
In particular, our simulations suggest that such a braid lies
within experimental capabilities, although many steps un-
doubtedly remain before this becomes a reality. To further
bridge this divide between theory and experiment, a number of
extensions to this numerical work could be made. First, while
we have based our calculations on a model which has previ-
ously shown good agreement with experiments, it remains a
one-dimensional model that is incapable of capturing certain
effects (notably the effect of subbands and the orbital effect
of the field). It would be interesting to extend this type of
simulation to a full three-dimensional model which includes
these extra features, and perhaps more realistic gating setups.
In addition, we introduced superconducting pairing to the
device through a bare pairing term in the Hamiltonian. There
are now a number of works which have introduced methods to
carefully model the superconductor-nanowire interface (see,
for example, Ref. [68]), which could be incorporated into
a simulation of this kind. Finally, there are many different
mechanisms which affect the lifetime of a Majorana qubit
(see, for example, Refs. [50,69]). A direct calculation of
such lifetimes for a specific Y-junction geometry would allow
the feasibility of a braiding operation to be more sharply
evaluated. Ultimately, of course, the feasibility of braiding as
a tool for quantum computation can only be confirmed by a
successful experiment.
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APPENDIX: SIDE GATE ARRANGEMENT

In this Appendix, we show that a chemical potential ramp
profile similar to the one used in our simulations could be
achieved using a realistic arrangement of side gates. In par-
ticular, a rough calculation suggests that a gate density of
approximately one gate every 100 nm should be sufficient to
realize a ramp profile to within fluctuations of approximately
5%. For the devices we consider in the main text, this corre-
sponds to about 20 gates per leg.

To simplify the calculation, we assume that the gates
are all identical rectangular plates with width 2W and are
arranged symmetrically about the nanowire device as shown
in Fig. 9(a). Each pair of gates has a separation distance of
28, while neighboring pairs are separated by a distance 2M.
Ignoring any screening effects, a pair of gates centered at
(x =xj,y =0,z =0) and held at a potential U; generates an
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FIG. 9. (a) A section of a nanowire device with the gate arrangement and geometry considered in Appendix, showing both a plan (left) and
a cross section (right). The nanowire is shown in red with a green superconducting layer on top (running through the center of the device), while
the gates themselves are yellow (above and below the nanowire). We take d = 20nm and S = 40 nm, and allow W and M to vary. (b) A series
of gates with W = 25nm and M = 25nm [green (gray) rectangles, below], showing the potential from each gate (black solid lines, below)
and the total potential for an infinite series of gates (dark blue solid line, above). The gray band shows the vertical interval [0.95,1.05], which
is roughly the same scale as the oscillations of the total potential. (c) A region of the W-M plane indicating the value of the fluctuation ratio A,
with (solid) contours at A = 0.05 and A = 0.025 (where A increases toward the top-right corner of the plot). Dashed overlaid contours show
the number of gates N that would be found on a single 2-um leg of a nanowire device considered in the main text (only even N shown). The
black dot shows the point W = 25 nm, M = 25 nm, which are the parameters used in panel (b) and elsewhere in the text.

electrostatic potential energy at (x, y, d) given by [70,71]
Vg(x’ ya d;x]a U])

= (_eUJ) |:arctan<m>
b4 d

—i—arctan(W)} — g +y,W+x—x;)
—8S+y W —x+x)—gS—yW+x—xj)
—8(S =y, W —x+x;), (A1)
with
1 uv
glu,v) = Earetan[m] (A2)
and
R, v) = Vi + v2 + d2. (A3)

We will calculate the total potential energy at the center of
the nanowire device, ignoring screening effects, by summing
the potentials from a series of gate pairs held at different
potentials U; and centered at different locations x;. We will
assume that the center of the nanowire is at a height of d =
20nm (as is the case for nanowires grown using TASE) and
that each pair of gates has a separation of 25 = 80 nm, which
is two nanowire widths. We will allow W and M to be varied.
Since the overall energy scale can be altered using the finger
gates and the back gate, we will try to find a gate arrangement
that reproduces a ramp function between the arbitrary units
of zero and one. To simplify the calculation, we will use a
linear ramp function [rather than the sine-squared function
used in Eq. (13)], but the results should be similar for any
ramp function that varies over the same length scale.

We first consider oscillations in the electrostatic potential
away from the ramp itself, in the region where the total
potential should be constant (and, in our units, equal to one)
[see Fig. 9(b) for an illustration of these oscillations]. In this
region, all gates will be held at the same potential U; = U, and

the total potential in the center of the nanowire can be found
by summing a series of potentials of the form in Eq. (Al),
each with a different offset x; = 2j(W + M). The potential
will vary as a function of x along the nanowire device, taking
its largest value at x = x; (aligned with the center of a pair
of gates) and a minimum value at x = x; + W + M (aligned
with the midpoint between two neighboring pairs of gates).
Approximating the number of gates as infinite, we can write

Vi = ) Valx = 0:x)), (A4)
j=—00
Viin = Y Volx = j(M +W);x)), (A5)

j=—©

where we have suppressed the variables y = 0, d = 20 nm,
and U; = U which are the same for all gates and where pairs
of gates are centered at x; = 2j(W + M).

We quantify the fluctuations in the potential with the ratio

Vmax - Vmin

AW M) = ———,
Vmax + Vmin

(A6)
which, if the oscillations were sinusoidal, would give the
maximum absolute deviation relative to the mean. Figure 9(c)
shows the regions in the W-M plane for which A < 5% and
A < 2.5%. The bottom left of the figure, corresponding to
more, narrower gates, reproduces the constant potential more
accurately. In the main text, each leg of the nanowire device
was taken to have a length of 2 um. With gate dimensions as
in Fig. 9(a), each leg can therefore support approximately N
gates, where

2000

T O2M AW (A7

We superimpose contours of constant N on Fig. 9(c) to
indicate how varying W and M alters the number of gates
per leg. In particular, we can achieve a fluctuation ratio of
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FIG. 10. Top: ideal ramp profile (gray dashed line) and optimized
ramp profile generated by 11 side gates (dark blue solid line), nor-
malized so that the ideal ramp peaks at one. Gray shading indicates a
40.05 threshold. Bottom: ideal ramp profile and reconstructed ramp
profile for a linear ramp function offset from the gate centers by
50 nm. Center: Gate potentials U; for the reconstructed upper ramp
profile (blue solid line and filled circles) and lower ramp profile (red
solid line and filled squares). Green (gray) shaded bands indicate
position and extent of gates.

A < 5% using W = M = 25nm, or approximately 20 gates
per leg.

However, we must also check that this gate arrangement
can reproduce the varying part of the ideal potential profile.
To do this, we take W = M = 25 nm and try varying the indi-
vidual gate potentials U; to reproduce a linear ramp function.
Explicitly, we write the total potential as

Vi (6 {U) = D Ve x5, U)) (A8)
J

and try to reproduce the linear ramp function
p(x) = r(f(x —xc))

[see Eq. (14)] by minimizing the (scaled) mean square error
(MSE),

(A9)

MSE = [ Vial (U)) — u(0Pdx. (AL0
We carry out the minimization by taking a series of 11 gates
and performing gradient descent to find a minimum of the
MSE as a function of {U;}. As our starting point, we take each
U; to be equal to the value of the ideal ramp function at the
corresponding x;.

Figure 10 shows the reproduced ramp function for a ramp
starting at the midpoint of a gate (i.e., with x, = 0) and a ramp
starting at the midpoint between neighboring pairs of gates
(i.e., x. = 50). Also shown is the ideal linear ramp function
W(x) in gray, along with a shaded region corresponding to
w(x) £ 0.05 (which is the fluctuation tolerance we expect in
the region of constant potential). In the first case, the gate
arrangement is able to reproduce the linear ramp function
within the tolerance band. However, in the second case, the
reproduced profile lies slightly outside the tolerance band
at the top and bottom of the ramp. Despite this, in both
cases, the realistic gate arrangement is able to reproduce a
potential profile that varies between zero and one in a roughly
linear fashion. By continuously tuning the gate potentials U;
between these optimal values (shown in the central panel of
Fig. 10), the ramp function will move smoothly across the
device as required to perform a braid.

Overall, this rough calculation suggests that approximately
20 gates would be needed per leg of the nanowire device to re-
produce our ideal ramp function within a reasonable tolerance.
Equivalently, the gates should have a width of approximately
50 nm and be separated by a gap of approximately 50 nm.
An interesting avenue for further work would be to study the
effects of the unwanted oscillations on the braiding process,
and to see whether the 5% tolerance used here is sufficient or
even if it can be relaxed. Of course, a complete discussion of
this issue, beyond the scope of this work, would also require
a detailed study of the screening effects that take place within
the nanowire device, as well as the variation of the chemical
potential across the nanowire cross section.
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