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This paper systematically develops the resource theory of asymmetric distinguishability, as initiated roughly
a decade ago [Matsumoto, Reverse test and characterization of quantum relative entropy, arXiv:1010.1030].
The key constituents of this resource theory are quantum boxes, consisting of a pair of quantum states, which
can be manipulated for free by means of an arbitrary quantum channel. We introduce bits of asymmetric
distinguishability as the basic currency in this resource theory, and we prove that it is a reversible resource
theory in the asymptotic limit, with the quantum relative entropy being the fundamental rate of resource
interconversion. The distillable distinguishability is the optimal rate at which a quantum box consisting of
independent and identically distributed (i.i.d.) states can be converted to bits of asymmetric distinguishability,
and the distinguishability cost is the optimal rate for the reverse transformation. Both of these quantities are
equal to the quantum relative entropy. The exact one-shot distillable distinguishability is equal to the min-relative
entropy, and the exact one-shot distinguishability cost is equal to the max-relative entropy. Generalizing these
results, the approximate one-shot distillable distinguishability is equal to the smooth min-relative entropy, and the
approximate one-shot distinguishability cost is equal to the smooth max-relative entropy. As a notable application
of the former results, we prove that the optimal rate of asymptotic conversion from a pair of i.i.d. quantum states
to another pair of i.i.d. quantum states is fully characterized by the ratio of their quantum relative entropies.
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I. INTRODUCTION

Distinguishability plays a central role in all sciences. That
is, the ability to distinguish one possibility from another is
what allows us to discover new scientific laws and make
predictions of future possibilities. In the process of scientific
discovery, we form a hypothesis based on conjecture, which
is to be tested against a conventional or null hypothesis by
repeated trials or experiments. With sufficient statistical evi-
dence, one can determine which hypothesis should be rejected
in favor of the other. If the null hypothesis is accepted, one can
form alternative hypotheses to test against the null hypothesis
in future experiments.

What is essential in this approach is the ability to perform
repeated trials. Repetition allows for increasing the distin-
guishability between the two hypotheses. A natural question
in this context is to determine how many trials are required to
reach a given conclusion. If the two different hypotheses are
relatively distinguishable, then fewer trials are required to de-
cide between the possibilities. In this sense, distinguishability
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can be understood as a resource, because it limits the amount
of effort that we need to invest in order to make decisions.

One of the fundamental settings in which distinguisha-
bility can be studied in a mathematically rigorous manner
is statistical hypothesis testing. The basic setup is that one
draws a sample x from one of two probability distributions
p ≡ {p(x)}x∈X or q ≡ {q(x)}x∈X , with common alphabet X ,
with the goal being to decide from which distribution the
sample x has been drawn. Let p be the null hypothesis and q
the alternative. A type-I error occurs if one decides q when the
distribution being sampled from is in fact p, and a type-II error
occurs if one decides p when the distribution being sampled
from is in fact q. The goal of asymmetric hypothesis testing is
to minimize the probability of the type-II error, subject to an
upper bound constraint on the probability of committing the
type-I error.

In the scientific spirit of repeated experiments, we can
modify the above scenario to allow for independent and iden-
tically distributed (i.i.d.) samples from either the distribution p
or q. One of the fundamental results of asymptotic hypothesis
testing is that, with a sufficiently large number of samples,
it becomes possible to meet any upper bound constraint on
the type-I error probability while having the type-II error
probability decaying exponentially fast with the number of
samples, with the optimal error exponent being given by the
relative entropy [1,2]:

D(p‖q) =
∑
x∈X

p(x) log2[p(x)/q(x)]. (1)
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That is, there exists a sequence of schemes that can achieve
this error exponent for the type-II error probability while mak-
ing the type-I error probability arbitrarily small in the limit
of a large number of samples. At the same time, the strong
converse property holds: any sequence of schemes that has a
fixed constraint on the type-I error probability is such that its
type-II error probability cannot decay any faster than the ex-
ponent D(p‖q). This gives a fundamental operational meaning
to the relative entropy and represents one core link between
hypothesis testing and information theory [3], the latter being
the fundamental mathematical theory of communication [4].

Another perspective on the above process of decision mak-
ing in hypothesis testing, the resource-theoretic perspective
[5,6] not commonly adopted in the literature on the topic, is
that it is a process by which we distill distinguishability from
the original distributions into a more standard form. That is,
we can think of the distributions p and q being presented as
a black box or ordered pair (p, q). Given a sample x ∈ X , we
can perform a common transformation T : X → {0, 1} that
outputs a single bit, “0” to decide p and “1” to decide q. The
common transformation T can even be stochastic. In this way,
one transforms the initial box to a final box as

(p, q) T−→ (p f , q f ), (2)

where p f ≡ {p f (y)}y∈{0,1} and q f ≡ {q f (y)}y∈{0,1} are binary
distributions. Then the probability of a type-I error is p f (1),
and the probability of a type-II error is q f (0). Since the goal
is to extract or distill as much distinguishability as possible,
we would like for q f (0) to be as small as possible given a
constraint ε ∈ [0, 1] on p f (1) (i.e., p f (1) � ε).

Once we have adopted this resource-theoretic approach to
distinguishability, it is natural to consider two other questions,
the first of which is the question of the reverse process
[5,6]. That is, we would like to start from initial binary
distributions pi ≡ {pi(y)}y∈{0,1} and qi ≡ {qi(y)}y∈{0,1} having
as little distinguishability as possible, and act on their samples
with a common transformation R : {0, 1} → X in order to
produce the distributions p ≡ {p(x)}x∈X and q ≡ {q(x)}x∈X ,
while allowing for a slight error when reproducing p. That is,
we would like to perform the dilution transformation

(pi, qi ) R−→ ( p̃, q), (3)

where p̃ ≡ { p̃(x)}x∈X is a distribution satisfying d (p, p̃) � ε,
for some suitable metric d of statistical distinguishability. In
this way, we characterize the distinguishability of p and q in
terms of the least distinguishable distributions pi and qi that
can be diluted to prepare or simulate p and q, respectively.
This dilution question is motivated by related questions in the
theory of quantum entanglement [7].

The second, more general question is regarding the ex-
istence of a common transformation T : X → Z that con-
verts initial distributions p and q into final distributions r ≡
{r(z)}z∈Z and t ≡ {t (z)}z∈Z :

(p, q) T−→ (r̃, t ), (4)

where r̃ ≡ {r̃(z)}z∈Z is a distribution satisfying d (r, r̃) � ε.
One can then ask about the rate or efficiency at which it is
possible to convert a pair of i.i.d. distributions to another pair
of i.i.d. distributions.

This resource-theoretic approach to distinguishability of-
fers a unique and powerful perspective on statistical hypoth-
esis testing and distinguishability, similar to the perspective
brought about by the seminal work on the resource theory
of quantum entanglement [7], which has in turn inspired a
flurry of activity on resource theories in quantum information
and beyond [8]. Although the reverse process in Eq. (3) may
seem nonsensical at first glance (why would one want to dilute
fresh water to salt water? [9]), it plays a fundamental role
in characterizing distinguishability as a resource, as well as
for addressing the general question posed in Eq. (4). It is
also natural from a thermodynamic or physical perspective
to consider reversibility and cyclicity of processes. Another
application for the reverse process is in understanding the
minimal resources required for simulation in various quantum
resource theories [8].

II. MAIN RESULTS

The main goal of this paper is to develop systemati-
cally the resource-theoretic perspective on distinguishabil-
ity, which was initiated in Refs. [5,6]. More precisely, the
theory developed here is a resource theory of asymmetric
distinguishability, given that approximation is allowed for
the first distribution in all of the distillation, dilution, and
general transformation tasks mentioned above. The theory
that we develop applies in the more general setting of quantum
distinguishability, as it did in Refs. [5,6], in particular when
the distributions p and q are replaced by quantum states ρ and
σ , respectively, and the common transformations allowed on
a quantum box (ρ, σ ) are quantum channels.

Some key findings of our work are as follows.
(1) We introduce the fundamental unit or currency of this

resource theory, dubbed “bits of asymmetric distinguishabil-
ity.” Then the distinguishability distillation and dilution tasks
amount to distilling bits of asymmetric distinguishability from
a box (ρ, σ ) and diluting bits of asymmetric distinguishability
to a box (ρ, σ ), respectively.

(2) We formally define the exact one-shot distinguisha-
bility distillation and dilution tasks, and we prove that the
optimal number of bits of asymmetric distinguishability that
can be distilled from a box (ρ, σ ) is equal to the min-relative
entropy [10] [see (31)], while the optimal number of bits of
asymmetric distinguishability that can be diluted to a box
(ρ, σ ) is equal to the max-relative entropy [10] [see (35)], giv-
ing both of these quantities fundamental operational interpre-
tations in the resource theory of asymmetric distinguishability.

(3) We define the approximate one-shot distinguishability
distillation and dilution tasks, and we prove that the optimal
number of bits of asymmetric distinguishability that can be
distilled from a box (ρ, σ ) is equal to the smooth min-relative
entropy [11–13] [see (44)], while the optimal number of bits
of asymmetric distinguishability that can be diluted to a box
(ρ, σ ) is equal to the smooth max-relative entropy [10] [see
(48)], giving both of these quantities fundamental operational
interpretations in the resource theory of asymmetric distin-
guishability.

(4) We prove that the optimization problems correspond-
ing to one-shot distinguishability distillation and dilution,
as well as the optimization corresponding to the quantum
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generalization of the transformation problem considered in
Eq. (4), are characterized by semidefinite programs (see
Appendices B and C). Thus all of these quantities can be
computed efficiently.

(5) We finally consider the asymptotic version of the
resource theory and prove that it is reversible in this setting,
with the optimal rate of distillation or dilution equal to the
quantum relative entropy. The implication of this result is that
the rate or efficiency at which a pair of i.i.d. quantum states
can be converted to another pair of i.i.d. quantum states is fully
characterized by the ratio of their quantum relative entropies
[see (62)].

In what follows, we provide more details of the resource
theory of asymmetric distinguishability and a full exposition
of the main results stated above. We relegate details of math-
ematical proofs to several appendices, and we note here that
some of the technical lemmas in the appendices may be of
independent interest.

As far as we are aware, the first proposal for a resource
theory of distinguishability was given in Refs. [5,6], which
we have highlighted above. It appears that this aspect of the
work [5,6] has gone largely unnoticed since its posting to the
arXiv, given that there have been several subsequent proposals
or calls to formalize a resource theory of distinguishability
[14–16] that apparently were not aware of Refs. [5,6].

III. RESOURCE THEORY OF ASYMMETRIC
DISTINGUISHABILITY

We begin by establishing the basics of the resource theory
of asymmetric distinguishability. The basics include the ob-
jects being manipulated, called “boxes,” the fundamental units
of resource, “bits of asymmetric distinguishability,” and the
free operations allowed, which are simply arbitrary quantum
physical operations.

The basic object to manipulate in the resource theory
of asymmetric distinguishability is the following “box” or
ordered pair:

(ρ, σ ), (5)

where ρ and σ are quantum states acting on the same Hilbert
space. The interpretation of the box (ρ, σ ) is that it corre-
sponds to two different experiments or scenarios. In the first,
the state ρ is prepared, and in the second, the state σ is
prepared. The box is handed to another party, who is not aware
of which experiment is being conducted (i.e., which state has
been prepared).

One basic manipulation in this resource theory is to trans-
form this box into another box by means of any quantum
physical operation N , as allowed by quantum mechanics.
Such physical operations are mathematically described by
completely positive, trace-preserving (CPTP) maps and are
known as quantum channels. By acting on the box (ρ, σ ) with
the common quantum channel N , one obtains the transformed
box (N (ρ),N (σ )). Observe that it is not necessary to know
which experiment is being conducted in order to perform this
transformation; one can perform it regardless of whether ρ

or σ was prepared. For this reason, all quantum channels are
allowed for free in this resource theory, so that the transfor-

mation

(ρ, σ ) N−→ (N (ρ),N (σ )) (6)

is allowed for free.
If the channel being performed to transform the box in

Eq. (5) is an isometric channel U (ω) = UωU † (where U is
an isometry satisfying U †U = I and ω is an arbitrary state),
resulting in the box

(U (ρ),U (σ )), (7)

then it is possible to invert this transformation and return to
the original box in Eq. (5). A quantum channel that inverts the
action of U is given by

θ → U †θU + Tr[(I − UU †)θ ]τ, (8)

where θ is an arbitrary state and τ is some state.
Another kind of invertible transformation is the appending

channel Aτ (ω) = ω ⊗ τ , which appends the state τ and has
the following effect on the box:

(Aτ (ρ),Aτ (σ )) = (ρ ⊗ τ, σ ⊗ τ ). (9)

One can recover the original box (ρ, σ ) from (9) by discarding
the second system (described mathematically by partial trace).
Thus isometric channels and appending channels are perfectly
reversible operations in this resource theory.

The fundamental goal of this resource theory is to deter-
mine how and whether it is possible to transform an initial box
(ρ, σ ) to another box (τ, ω) for states τ and ω, by means of a
common quantum channel N . Mathematically, the question
is to determine, for fixed states ρ, σ , τ , and ω, whether
there exists a completely positive and trace-preserving map N
such that N (ρ) = τ and N (σ ) = ω. As it turns out, various
instantiations of this question have been studied considerably
in prior work [17–30], and a variety of results are known
regarding it. In this paper, we offer a fresh resource-theoretic
perspective on this matter.

Motivated by practical concerns, one important variation
of the aforementioned box transformation problem is to deter-
mine whether it is possible to accomplish the transformation
approximately as

(ρ, σ ) N−→ (τε, ω) (10)

with some tolerance ε ∈ [0, 1] allowed, such that the state
τε is ε-close to the desired τ . The precise way in which we
allow some tolerance is motivated exclusively by operational
concerns. In a single run of the first experiment in which
ρ is prepared, the transformation N (ρ) = τε occurs. Then a
third party would like to assess how accurate the conversion
is. Such an individual can do so by performing a quantum
measurement {�x}x with outcomes x (satisfying �x � 0 for
all x and

∑
x �x = I). The probability of obtaining a particular

outcome �x is given by the Born rule Tr[�xτε]. What we
demand is that the deviation between the actual probability
Tr[�xτε] and the ideal probability Tr[�xτ ] be no larger than
the tolerance ε. Since this should be the case for any possible
measurement outcome, what we demand mathematically is
that

sup
0���I

|Tr[�τε] − Tr[�τ ]| � ε. (11)
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It is well known that

sup
0���I

|Tr[�τε] − Tr[�τ ]| = 1
2‖τε − τ‖1, (12)

indicating that our notion of approximation is most naturally
quantified by the normalized trace distance 1

2‖τε − τ‖1.
Thus, the mathematical formulation of the approximate

box transformation problem is as follows:

ε((ρ, σ ) → (τ, ω))

:= inf
N∈CPTP

{ε ∈ [0, 1] : N (ρ) ≈ε τ, N (σ ) = ω}, (13)

where the notation ζ ≈ε ξ for states ζ and ξ is a shorthand for
1
2‖ζ − ξ‖1 � ε, i.e.,

ζ ≈ε ξ ⇔ 1
2‖ζ − ξ‖1 � ε. (14)

The fact that we allow for approximate conversion for the
first state but not the second is related to the fact that the
resource theory presented here is a resource theory of asym-
metric distinguishability. In Appendix C, we show that (13) is
equivalent to a semidefinite program (SDP), implying that it
is efficiently computable with respect to the dimensions of the
states involved. In the case that ε((ρ, σ ) → (τ, ω)) = 0, this
means that it is possible to perform the desired transformation
(ρ, σ ) → (τ, ω) exactly, reproducing the previous result from
Ref. [28].

We can also consider the asymptotic version of the box
transformation problem, in which the box consists not just of
a single copy of the states ρ and σ but many copies of them
[i.e., the box (ρ⊗n, σ⊗n) instead of the original (ρ, σ )]. By
considering the asymptotic setting with approximation error,
we can modify the original box transformation question as
follows: what is the optimal rate R at which the transformation

(ρ⊗n, σ⊗n) → (τ̃⊗nR, ω⊗nR) (15)

is possible, for large n and arbitrarily small approxima-
tion error? In this setting, the SDP characterization of
ε((ρ⊗n, σ⊗n) → (τ⊗nR, ω⊗nR)) is not particularly useful, due
to the fact that the computational complexity of the optimiza-
tion problem grows exponentially with increasing n, and so
we resort to other, information-theoretic methods to address
it.

A. Bits of asymmetric distinguishability

One way of addressing the various formulations of the box
transformation problem is to break the transformation down
into two steps, in which we first distill a standard box and
then dilute this standard box to the desired one. It turns out
that the most natural way to do so is to consider the following
basic unit of currency or fiducial box:

(|0〉〈0|, π ), (16)

where

π := 1
2 (|0〉〈0| + |1〉〈1|) (17)

is the maximally mixed qubit state. We also refer to the object
in Eq. (16) as “one bit of asymmetric distinguishability.”

As before, we should think of the box in Eq. (16) as being
in correspondence with two different experiments. In the first

experiment, the first state ρ = |0〉〈0| (“null hypothesis”) is
prepared, and in the second experiment, the second state
σ = π (“alternative hypothesis”) is prepared. A distinguisher
presented with this box, and unaware of which experiment
is being conducted, can try to determine which state ρ or σ

has been prepared. Suppose that the distinguisher performs
a measurement of the observable σZ := |0〉〈0| − |1〉〈1| and
assigns the outcome +1 to the decision “ρ was prepared” and
−1 to the decision “σ was prepared.” Then in the case that the
state ρ was prepared, he can determine this with zero chance
of error; on the other hand, if the state σ was prepared, then
he can determine this with probability equal to 1/2. In other
terms, with this strategy, he has zero chance of making a type-I
error (misidentifying ρ) and he has a 50% chance of making
a type-II error (misidentifying σ ).

The above strategy of basing the decision rule on the
outcome of a σZ measurement is not the only strategy that the
distinguisher can perform. By performing a quantum channel
N that accepts a qubit as input and outputs another quantum
system, the distinguisher can convert the box in Eq. (16) to the
following box:

(N (|0〉〈0|),N (π )). (18)

After doing so, the distinguisher can base his decision rule
on the outcome of a general quantum measurement. However,
if the goal is to have zero chance of making a type-I error,
then it is intuitive and can be proven that no strategy can
perform better than the σZ measurement strategy given in the
previous paragraph. Thus arbitrary channels acting on the box
in Eq. (16) do not increase distinguishability.

One bit of asymmetric distinguishability is not a particu-
larly strong resource. Indeed, with only one bit of asymmetric
distinguishability, there is still a large chance of making a
type-II error. However, the following box, consisting of m bits
of asymmetric distinguishability, improves the situation:

(|0〉〈0|⊗m, π⊗m). (19)

For such a box, there is a much smaller chance of making
a type-II error. Indeed, by performing m independent mea-
surements of the observable σZ on each qubit and assigning
the outcome “(+1, . . . ,+1)” to the decision “|0〉〈0|⊗m was
prepared” and the outcome “not (+1, . . . ,+1)” to the de-
cision “π⊗m was prepared,” the distinguisher still has zero
chance of making a type-I error, but now has a one out of
2m chance of making a type-II error. So with each extra bit of
asymmetric distinguishability, the chance of making a type-II
error decreases by a factor of two. This is the value of having
more bits of asymmetric distinguishability.

Note that the following transformation is forbidden when
n > m:

(|0〉〈0|⊗m, π⊗m) �→ (|0〉〈0|⊗n, π⊗n). (20)

That is, one cannot increase bits of distinguishability by
the action of a quantum channel; i.e., there is no quantum
channel N that performs the map N (|0〉〈0|⊗m) = |0〉〈0|⊗n

and N (π⊗m) = π⊗n for n > m. Quantum channels have a
linear action on their inputs, and this linearity forbids such
transformations, as shown in Appendix D.

A major goal of any resource theory is to quantify the
amount of resource. For the simple boxes presented above,
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any Rényi relative entropy suffices as a good quantifier of the
number of bits of asymmetric distinguishability contained in
them. Two prominent examples of measures were put forward
roughly a decade ago as measures of distinguishability and
studied therein as quantum information-theoretic quantities of
interest [10]. They are known as the min- and max-relative
entropies, defined respectively as follows for states ρ and σ :

Dmin(ρ‖σ ) := − log2 Tr[�ρσ ], (21)

Dmax(ρ‖σ ) := inf{λ � 0 : ρ � 2λσ }, (22)

where �ρ denotes the projection onto the support of ρ. If ρ

is orthogonal to σ , then Dmin(ρ‖σ ) = ∞, and if supp(ρ) �⊆
supp(σ ), then there is no finite λ � 0 such that ρ � 2λσ ,
implying that Dmax(ρ‖σ ) = ∞. Evaluating these measures
for the box given in Eq. (19), one finds that

Dmin(|0〉〈0|⊗m‖π⊗m) = mDmin(|0〉〈0|‖π ) = m, (23)

Dmax(|0〉〈0|⊗m‖π⊗m) = mDmin(|0〉〈0|‖π ) = m, (24)

consistent with the notion that the box in Eq. (19) contains m
bits of asymmetric distinguishability.

By performing the following quantum channel:

ω → Tr[|0〉〈0|⊗mω]|0〉〈0| + Tr[(I⊗m − |0〉〈0|⊗m)ω]|1〉〈1|,
(25)

one can convert the box in Eq. (19) to the following box:

(|0〉〈0|, 2−m|0〉〈0| + (1 − 2−m)|1〉〈1|). (26)

Furthermore, by performing the quantum channel

θ → 〈0|θ |0〉|0〉〈0|⊗m + 〈1|θ |1〉 I⊗m − |0〉〈0|⊗m

2m − 1
, (27)

one can convert the box in Eq. (26) back to the box in Eq. (19).
For this reason, these boxes have an equivalent number of
bits of asymmetric distinguishability, being equivalent by free
operations. It also means that we can take the box in Eq. (26)
to be the basic form of m bits of asymmetric distinguishability.
Once we have done that, it is then sensible to allow m in
Eq. (26) to be any non-negative real number, so that the box
in Eq. (26) has m bits of asymmetric distinguishability, with
m a non-negative real number. For this case, we still find that

Dmin(|0〉〈0|‖σ ) = Dmax(|0〉〈0|‖σ ) = m, (28)

with σ = 2−m|0〉〈0| + (1 − 2−m)|1〉〈1|.
Going forward from here, we take the box in Eq. (26) to be

the basic form of m bits of asymmetric distinguishability, for
m any non-negative real number.

B. Exact distillation and dilution tasks

In any resource theory, the basic questions concern distil-
lation and dilution tasks, and whether and in what senses the
resource theory might be reversible [7,8]. In a distillation task,
the goal is to process a general resource with free operations in
order to distill as much of the basic resource as possible, while
in the dilution task, the goal is to perform the opposite: process
as little of the basic resource as possible, using free operations,
in order to generate or dilute from it a more general resource.
A prominent goal is to determine the ultimate rates at which

these resource interconversions are possible and from there
one can determine whether the resource theory is reversible.

In the resource theory of asymmetric distinguishability,
the goal of exact distinguishability distillation is to process
a general box (ρ, σ ) with an arbitrary quantum channel in
order to distill as many bits of asymmetric distinguishability
as possible. Mathematically, we can phrase this task as the
following optimization problem:

D0
d (ρ, σ ) := log2 sup

P∈CPTP
{M:P (ρ) = |0〉〈0|, P (σ ) = πM},

(29)

where the choice of Dd in D0
d (ρ, σ ) stands for distillable

distinguishability, the “0” in D0
d (ρ, σ ) indicates that we do

not allow any error, CPTP denotes the set of CPTP maps
(quantum channels), and

πM := 1

M
|0〉〈0| +

(
1 − 1

M

)
|1〉〈1|. (30)

As we show in Appendix E 1, the following equality holds:

D0
d (ρ, σ ) = Dmin(ρ‖σ ), (31)

where Dmin(ρ‖σ ) is the min-relative entropy [10], as defined
in Eq. (21). The equality in Eq. (31) thus assigns to Dmin(ρ‖σ )
a fundamental operational meaning as the exact distillable
distinguishability in the resource theory of asymmetric dis-
tinguishability. A strongly related operational meaning for
Dmin(ρ‖σ ) in quantum hypothesis testing was already given
in Ref. [10].

In the case that ρ is orthogonal to σ , then this means that
the box (ρ, σ ) can be converted to the box (|0〉〈0|, |1〉〈1|), by
means of the quantum channel

ω → Tr[�ρω]|0〉〈0| + Tr[(I − �ρ )ω]|1〉〈1|. (32)

From the latter box, one can obtain as many bits of asym-
metric distinguishability as desired. Indeed by performing the
channel

T m(ω) = 〈0|ω|0〉 |0〉〈0| + 〈1|ω|1〉π2m , (33)

where π2m := 2−m|0〉〈0| + (1 − 2−m)|1〉〈1|, one can obtain
m bits of asymmetric distinguishability from the box
(|0〉〈0|, |1〉〈1|). Since this is possible for any m � 0, it follows
that the box (|0〉〈0|, |1〉〈1|) has an infinite number of bits
of asymmetric distinguishability, consistent with the fact that
Dmin(ρ‖σ ) = ∞ when ρ is orthogonal to σ .

The goal of exact distinguishability dilution is the op-
posite: process as few bits of asymmetric distinguishability
as possible, using free operations, in order to generate the
box (ρ, σ ). Mathematically, we can phrase this task as the
following optimization problem:

D0
c (ρ, σ ) := log2 inf

P∈CPTP
{M : P (|0〉〈0|) = ρ, P (πM ) = σ },

(34)

where the choice of Dc in D0
c (ρ, σ ) stands for distinguishabil-

ity cost and the “0” in D0
c (ρ, σ ) again indicates that we do not

allow any error. As we show in Appendix E 2, the following
equality holds:

D0
c (ρ, σ ) = Dmax(ρ‖σ ), (35)
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where Dmax(ρ‖σ ) is the max-relative entropy [10], as defined
in Eq. (22). The equality in Eq. (35) thus assigns to the
max-relative entropy Dmax(ρ‖σ ) a fundamental operational
meaning as the exact distinguishability cost of the box (ρ, σ ).

In the case that the support of ρ is not contained in the sup-
port of σ , then there is no finite value of M nor any quantum
channel P that performs the transformations P (|0〉〈0|) = ρ

and P (πM ) = σ . However, in the limit M → ∞, the box
(|0〉〈0|, πM ) becomes the box (|0〉〈0|, |1〉〈1|), which is inter-
preted as containing an infinite number of bits of asymmetric
distinguishability, as discussed after (33). In this case, we
can pick the channel P as P (ω) = 〈0|ω|0〉ρ + 〈1|ω|1〉σ , and
then the transformation P (|0〉〈0|) = ρ and P (|1〉〈1|) = σ is
easily achieved. Thus, in this sense, if the support of ρ is not
contained in the support of σ , then the distinguishability cost
D0

c (ρ, σ ) = ∞, consistent with the fact that Dmax(ρ‖σ ) = ∞
in this case.

An important case to consider in any resource theory is
the case of independent and identically distributed (i.i.d.)
resources. For our case, this means that we should analyze
the box (ρ⊗n, σ⊗n) for arbitrary n � 1. Due to the additivity
of Dmin(ρ‖σ ) and Dmax(ρ‖σ ), it follows that

D0
d (ρ⊗n, σ⊗n) = nDmin(ρ‖σ ), (36)

D0
c (ρ⊗n, σ⊗n) = nDmax(ρ‖σ ), (37)

so that the number of bits of asymmetric distinguishability
distilled and required in each respective task scales precisely
linearly with n.

Due to the fact that we generally have Dmin(ρ‖σ ) �=
Dmax(ρ‖σ ) for states ρ and σ , it follows that the resource
theory of asymmetric distinguishability is not reversible if
we demand exact conversions from one box to another. In
fact, the irreversibility in the exact case can be as extreme
as desired. By picking ρ = |0〉〈0| and σ = |ψ〉〈ψ | for |ψ〉 =√

1 − δ|0〉 + √
δ|1〉 and δ ∈ (0, 1), we have that Dmin(ρ‖σ ) =

− log2(1 − δ) while Dmax(ρ‖σ ) = ∞ for all δ ∈ (0, 1), so
that the exact distillable distinguishability can be arbitrarily
close to zero while the exact distinguishability cost is always
infinite in this case.

C. Approximate distillation and dilution tasks

In realistic experimental scenarios, it is typically not pos-
sible to perform transformations exactly, thus motivating the
need to consider approximate transformations and approxi-
mations of the ideal resources. For the resource theory of
asymmetric distinguishability, we define an ε-approximate bit
of asymmetric distinguishability as

(̃0ε, π ), (38)

where ε ∈ [0, 1] and

0̃ε := (1 − ε)|0〉〈0| + ε|1〉〈1|, (39)

so that 0̃ε ≈ε |0〉〈0|. The motivation for this choice is op-
erational as before [see the discussion before (13)]. Also,
since the maximally mixed state π is diagonal in any basis,
it suffices to consider (38) as the basic definition of an ε-
approximate bit of asymmetric distinguishability, because one
could simply perform the diagonalizing unitary for a general

qubit state τ to bring a general box (τ, π ) into the form of
(38).

Generalizing (26) and (38), the following box represents m
approximate bits of asymmetric distinguishability:

(̃0ε, 2−m|0〉〈0| + (1 − 2−m)|1〉〈1|). (40)

If m is an integer, then this box is equivalent by the transfor-
mation in Eq. (27) to the following one:(̃

0m
ε , π⊗m

)
, (41)

where

0̃m
ε := (1 − ε)|0〉〈0|⊗m + ε

I⊗m − |0〉〈0|⊗m

2m − 1
, (42)

so that 0̃m
ε ≈ε |0〉〈0|⊗m.

With such a notion in place, we can now generalize exact
distillation of asymmetric distinguishability to its approximate
version. The goal of ε-approximate distinguishability distilla-
tion is to distill as many ε-approximate bits of asymmetric
distinguishability as possible from a given box (ρ, σ ). Math-
ematically, it corresponds to the following optimization for
ε ∈ [0, 1]:

Dε
d (ρ, σ ) := log2 sup

P∈CPTP
{M : P (ρ) ≈ε |0〉〈0|, P (σ ) = πM}.

(43)

As we show in Appendix F 1, the following equality holds

Dε
d (ρ, σ ) = Dε

min(ρ‖σ ), (44)

where Dε
min(ρ‖σ ) is the smooth min-relative entropy [11–13],

defined as

Dε
min(ρ‖σ ) := − log2 inf

0���I
{Tr[�σ ] : Tr[�ρ] � 1 − ε}.

(45)
Thus the equality in Eq. (44) assigns to the smooth min-
relative entropy an operational meaning as the ε-approximate
distillable distinguishability of the box (ρ, σ ). This op-
erational interpretation is directly linked to the role of
Dε

min(ρ‖σ ) in quantum hypothesis testing [13,31–35]. Note
that Dε

min(ρ‖σ ) is also known as “hypothesis testing relative
entropy” in the literature, which is terminology introduced in
Ref. [13]. This quantity can be computed efficiently by means
of a semidefinite program [36], the proof of which we recall
in Appendix B.

Note that by combining (31), (44), and the fact that
limε→0 Dε

d (ρ, σ ) = D0
d (ρ, σ ), we conclude the following

limit:

lim
ε→0

Dε
min(ρ‖σ ) = Dmin(ρ‖σ ). (46)

We provide an alternative proof in Appendix A 3.
We can also generalize the distinguishability dilution task

to the approximate case. In this case, we define the ε-
approximate distinguishability cost of the box (ρ, σ ) to be
the least number of ideal bits of asymmetric distinguishability
that are needed to generate the box (ρε, σ ), where ρε ≈ε ρ.
This notion of approximate distinguishability cost is fully
operational and consistent with the more general problem in
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Eq. (13). The precise definition of the ε-approximate distin-
guishability cost of the box (ρ, σ ) is as follows:

Dε
c (ρ, σ ) := log2 inf

P∈CPTP
{M : P (|0〉〈0|) ≈ε ρ, P (πM )=σ }.

(47)

As we show in Appendix F 2, the following equality holds:

Dε
c (ρ, σ ) = Dε

max(ρ‖σ ), (48)

where Dε
max(ρ‖σ ) is the smooth max-relative entropy [10],

defined as

Dε
max(ρ‖σ ) := inf

ρ̃: 1
2 ‖ρ̃−ρ‖1�ε

Dmax(̃ρ‖σ ). (49)

Thus the equality in Eq. (48) assigns to the smooth max-
relative entropy a fundamental operational meaning as the
ε-approximate distinguishability cost of the box (ρ, σ ). The
smooth max-relative entropy can also be efficiently calculated
by means of a semidefinite program, the proof of which we
give in Appendix B.

Note that by combining (35), (48), and the fact that
limε→0 Dε

c (ρ, σ ) = D0
c (ρ, σ ), we conclude the following

limit:

lim
ε→0

Dε
max(ρ‖σ ) = Dmax(ρ‖σ ). (50)

We provide an alternative proof in Appendix A 3.
An application of the operational approach to distinguisha-

bility taken here is the following bound relating Dε
min and

Dε
max:

Dε1
min(ρ‖σ ) � Dε2

max(ρ‖σ ) + log2

(
1

1 − ε1 − ε2

)
, (51)

where ε1, ε2 � 0, and ε1 + ε2 < 1. The bound in Eq. (51)
is most closely related to the upper bound in theorem 11 in
Ref. [37], but we employ a different notion of smoothing for
the smooth max-relative entropy. It also generalizes the bound
from Eq. (47) in Ref. [36] (by appropriately working through
the different conventions here and in Ref. [36]) and is in the
same spirit as proposition 5.5 in Ref. [38] and Eq. (22) in
Ref. [39].

The main idea for arriving at the bound in Eq. (51) follows
from resource-theoretic reasoning. Any approximate distilla-
tion protocol performed on the box (|0〉〈0|, πM ) that leads to
the box (̃0ε, πK ), for ε ∈ [0, 1), is required to obey the bound

log2 K � log2 M + log2(1/[1 − ε]), (52)

which follows as a consequence of the fundamental limi-
tation in Eq. (44). One way to realize the transformation
(|0〉〈0|, πM ) → (̃0ε, πK ) is to proceed in two steps: first per-
form an optimal dilution protocol (|0〉〈0|, πM ) → (ρε2 , σ )
such that log2 M = Dε2

max(ρ‖σ ) and then perform an optimal
distillation protocol (ρ, σ ) → (̃0ε1 , πK ) such that log2 K =
Dε1

min(ρ‖σ ). By employing the triangle inequality, the error
of the overall transformation is no larger than ε1 + ε2. Since
the fundamental limitation in Eq. (52) applies to any protocol,
the bound in Eq. (51) follows. We give a detailed proof in
Appendix G.

D. Asymptotic distillable distinguishability
and distinguishability cost

We can now reconsider the i.i.d. case of a box (ρ⊗n, σ⊗n)
in the context of approximate distillation and dilution. Recall
that the quantum relative entropy D(ρ‖σ ) is defined as [40]

D(ρ‖σ ) := Tr[ρ(log2 ρ − log2 σ )], (53)

if supp(ρ) ⊆ supp(σ ) and D(ρ‖σ ) = ∞ otherwise. By defin-
ing the asymptotic distillable distinguishability and asymp-
totic distinguishability cost of the box (ρ, σ ) as follows:

Dd (ρ, σ ) := lim
ε→0

lim
n→∞

1

n
Dε

d (ρ⊗n, σ⊗n), (54)

Dc(ρ, σ ) := lim
ε→0

lim
n→∞

1

n
Dε

c (ρ⊗n, σ⊗n), (55)

respectively, we conclude from the quantum Stein’s lemma
[31,32] and the asymptotic equipartition property for the
smooth max-relative entropy [41] that

Dd (ρ, σ ) = Dc(ρ, σ ) = D(ρ‖σ ), (56)

thus demonstrating the fundamental operational interpretation
of the quantum relative entropy in the resource theory of
asymmetric distinguishability. It is worthwhile to note that we
can conclude the stronger statement

Dε
d (ρ⊗n, σ⊗n) = nD(ρ‖σ ) + O(

√
n), (57)

Dε
c (ρ⊗n, σ⊗n) = nD(ρ‖σ ) + O(

√
n), (58)

from Refs. [38,39,42] (see Appendix H). Thus the equality
of approximate distillable distinguishability and approximate
distinguishability cost in the i.i.d. case holds in the leading
order term, with a difference in sublinear in n terms. As
discussed in Appendix L, the second-order term in Eq. (57)
can be identified exactly by appealing to Refs. [39,42]. The
second-order term in Eq. (58) can be identified also by appeal-
ing to Ref. [39], but there is a need in this case to change the
quantification of error in the resource theory of asymmetric
distinguishability from normalized trace distance to infidelity.

As a consequence of the fundamental equality in Eq. (56),
we conclude that the resource theory of asymmetric distin-
guishability is reversible in the asymptotic setting. That is,
for large n, by starting with the box (ρ⊗n, σ⊗n) one can
distill it approximately to nD(ρ‖σ ) bits of asymmetric dis-
tinguishability, and then one can dilute these nD(ρ‖σ ) bits
of asymmetric distinguishability back to the box (ρ⊗n, σ⊗n)
approximately.

E. Asymptotic box transformations

We can also solve the asymptotic box transformation prob-
lem stated around (15). Before doing so, let us formalize
the problem. Let n, m ∈ Z+ and ε ∈ [0, 1]. An (n, m, ε) box
transformation protocol for the boxes (ρ, σ ) and (τ, ω) con-
sists of a channel N (n) such that

N (n)(ρ⊗n) ≈ε τ⊗m, (59)

N (n)(σ⊗n) = ω⊗m. (60)

A rate R is achievable if for all ε ∈ (0, 1], δ > 0, and
sufficiently large n, there exists an (n, n[R − δ], ε) box
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transformation protocol. The optimal box transformation rate
R((ρ, σ ) → (τ, ω)) is then equal to the supremum of all
achievable rates.

On the other hand, a rate R is a strong converse rate if
for all ε ∈ [0, 1), δ > 0, and sufficiently large n, there does
not exist an (n, n[R + δ], ε) box transformation protocol. The
strong converse box transformation rate R̃((ρ, σ ) → (τ, ω))
is then equal to the infimum of all strong converse rates.

Note that the following inequality is a consequence of the
definitions:

R((ρ, σ ) → (τ, ω)) � R̃((ρ, σ ) → (τ, ω)). (61)

The final result of our paper is the following fundamental
equality for the resource theory of asymmetric distinguisha-
bility:

R((ρ, σ )→ (τ, ω)) = R̃((ρ, σ )→ (τ, ω)) = D(ρ‖σ )

D(τ‖ω)
, (62)

indicating that the quantum relative entropy plays a central
role as the optimal conversion rate between boxes.

We should clarify (62) a bit further. It holds whenever
supp(ρ) ⊆ supp(σ ) and supp(τ ) ⊆ supp(ω). If supp(ρ) ⊆
supp(σ ) but supp(τ ) �⊆ supp(ω), then D(ρ‖σ )

D(τ‖ω) = 0 and it is not
possible to perform the transformation at a non-negligible
rate. If supp(ρ) �⊆ supp(σ ) but supp(τ ) ⊆ supp(ω), then
D(ρ‖σ )
D(τ‖ω) = ∞ and it is possible to produce as many copies of
τ and ω as desired.

The proof of this result consists of two parts: achievability
and optimality. For the achievability part, i.e., the bound

R((ρ, σ ) → (τ, ω)) � D(ρ‖σ )

D(τ‖ω)
, (63)

we first distill bits of asymmetric distinguishability from
(ρ⊗n, σ⊗n) at the rate ≈D(ρ‖σ ). After doing so, we then
dilute these ≈nD(ρ‖σ ) bits of asymmetric distinguishability
to the box (τ⊗m, ω⊗m), such that m ≈ n[D(ρ‖σ )/D(τ‖ω)],
establishing that R((ρ, σ ) → (τ, ω)) � D(ρ‖σ )

D(τ‖ω) . For the opti-
mality part, i.e., the strong converse bound

R̃((ρ, σ ) → (τ, ω)) � D(ρ‖σ )

D(τ‖ω)
, (64)

we suppose that there exists a sequence of (n, m, ε) box trans-
formation protocols and then employ a pseudocontinuity in-
equality for sandwiched Rényi relative entropy (lemma 1) and
its data processing inequality to conclude that R̃((ρ, σ ) →
(τ, ω)) � D(ρ‖σ )

D(τ‖ω) . Alternatively, we can employ a pseudocon-
tinuity inequality for the Petz-Rényi relative entropy (lemma
3) and its data processing inequality. See Appendix J for
details. We note here that the bounds in propositions 1 and
2 are exponential strong converse bounds, demonstrating that
the error in the transformation converges to one exponentially
fast if the rate of conversion is strictly larger than D(ρ‖σ )

D(τ‖ω) .

IV. CONCLUSION

In this paper, we have developed the resource theory of
asymmetric distinguishability. The main constituents consist
of boxes as the objects of manipulation, all quantum channels
as the free operations, and bits of asymmetric distinguisha-

bility as the fundamental currency of interconversion. The
resource theory is reversible in the asymptotic case, and the
quantum relative entropy emerges as the fundamental rate
at which boxes can be converted. Our one-shot results can
be compactly summarized as follows. (1) The min-relative
entropy is equal to the exact one-shot distillable distinguisha-
bility. (2) The max-relative entropy is equal to the exact
one-shot distinguishability cost. (3) The smooth min-relative
entropy is equal to the approximate one-shot distillable distin-
guishability. (4) The smooth max-relative entropy is equal to
the approximate one-shot distinguishability cost.

Thus each of these one-shot entropies are fundamentally
operational quantities. Finally, the ratio of quantum relative
entropies of two pairs of quantum states is equal to the optimal
rate of asymptotic box transformations between them.

Going forward from here, there are many interesting di-
rections to pursue. The resource theory of asymmetric dis-
tinguishability for quantum channels has recently been de-
veloped in Ref. [43]. The main constituents consist of a
channel box (N ,M), for quantum channels N and M, as the
basic objects of manipulation, superchannels [44] as the free
operations, and bits of asymmetric distinguishability as the
fundamental currency. Some basic results are that the one-shot
distillable distinguishability of a channel box is equal to the
smooth channel min-relative entropy [45], and the one-shot
distinguishability cost is equal to the smooth channel max-
relative entropy [46,47]. The theory reduces to the theory for
quantum states in the case that the channels are environment-
seizable, as defined in Ref. [48].

It remains open to determine optimal error exponents and
strong converse exponents for the distinguishability dilution
task, as well as for the more general box transformation
problem. These quantities have been established for distin-
guishability distillation (i.e., hypothesis testing) [49–53], and
so there is a strong possibility that these operational quantities
could be determined for the dual task. Some of the bounds
in Appendix K could be useful for this purpose. The same
questions remain open for second-order asymptotics.

In Appendix L, we explore a variation of the resource the-
ory of asymmetric distinguishability in which the infidelity is
employed as a measure of approximation, rather than the nor-
malized trace distance. There are similar interesting questions
regarding this variation, in particular, whether error exponents
and strong converse exponents for distinguishability dilution
could be proven to be optimal.

One could also consider the case in which the boxes consist
of not just two states but multiple states, connecting with the
theory of quantum state discrimination [54,55]. The boxes
could even consist of a continuum of states or channels,
connecting with quantum estimation theory [56,57] and the
resource theoretic approach put forward in Ref. [58]. The
boxes could also consist of a state and a set of states, with
the set of free operations restricted, which allows for connect-
ing with general resource theories [8,59]. Extending this, the
boxes could consist of a channel and set of channels, with
restricted free operations, allowing to connect with general
resource theories of quantum channels [47,60].

A particularly interesting direction would be to consider
reversibility of the resource theory of asymmetric distin-
guishability beyond the first order and investigate resource
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resonance effects. For this direction, the recent results of
Refs. [61–64] are quite relevant. Related to this, one could
investigate more fine-grained questions related to asymptotic
reversibility along the lines of Ref. [65], where we expect
similar findings to hold in the resource theory of asymmetric
distinguishability.

In the Appendices, we provide detailed proofs of all claims
in the main text. As a resource, we have included derivations
of some of the dual semidefinite programs listed below as an
ancillary file available for download with the arXiv posting of
this paper. Appendix A begins by providing some background
facts, some of which can be found in Ref. [67].

Note added in proof. Recently, we learned about the inde-
pendent and related work of Ref. [66].

ACKNOWLEDGMENTS

We are grateful to Francesco Buscemi, Nilanjana Datta,
Sumeet Khatri, and Marco Tomamichel for discussions. This
work was ultimately inspired by the talk of Robin Blume-
Kohout at the 2017 APS March Meeting in New Orleans,
Louisiana [16]. XW acknowledges support from the Depart-
ment of Defense, and MMW acknowledges support from the
National Science Foundation under Grant No. 1907615.

APPENDIX A: BACKGROUND

1. Normalized trace distance

A quantum state is described mathematically by a positive
semidefinite operator with trace equal to one. The normalized
trace distance between two quantum states ρ and σ is given by
1
2‖ρ − σ‖1, where the trace norm of an operator A is defined

as ‖A‖1 = Tr[
√

A†A]. The following variational characteriza-
tion of the normalized trace distance is well known [56]:

1
2‖ρ − σ‖1 = sup

��0
{Tr[�(ρ − σ )] : � � I}, (A1)

endowing the normalized trace distance with its operational
meaning as the largest probability difference that a single
POVM element can assign to two quantum states. The right-
hand side of (A1) is a semidefinite program as written, with
the following dual:

inf
Y�0

{Tr[Y ] : Y � ρ − σ } = 1
2‖ρ − σ‖1, (A2)

where the equality holds from strong duality.

2. Choi isomorphism

The Choi isomorphism is a standard way of characterizing
quantum channels that is suitable for optimizing over them in
semidefinite programs. For a quantum channel NA→B, its Choi
operator is given by

JN
RB := NA→B(�RA), (A3)

where �RA = |�〉〈�|RA and

|�〉RA :=
∑

i

|i〉R|i〉A, (A4)

with {|i〉R}i and {|i〉A}i orthonormal bases. The Choi opera-
tor is positive semidefinite JN

RB � 0, corresponding to NA→B

being completely positive, and satisfies TrB[JN
RB] = IR, the

latter corresponding to NA→B being trace preserving.
On the other hand, given an operator JM

RB satisfying JM
RB � 0

and TrB[JM
RB ] = IR, one realizes via postselected teleportation

[68] the following quantum channel:

MA→B(ρA) = 〈�|SR
(
ρS ⊗ JM

RB

)|�〉SR (A5)

= TrR
[
TR(ρR)JM

RB

]
, (A6)

where systems S, R, and A are isomorphic and the last line
employs the facts that (MS ⊗ IR)|�〉SR = (IS ⊗ TR(MR))|�〉SR

for TR the transpose map, defined as

TR(ρR) =
∑
i, j

|i〉〈 j|RρR|i〉〈 j|R, (A7)

and 〈�|SR(IS ⊗ XRB)|�〉SR = TrR[XRB]. We often abbreviate
the transpose map simply as

ρT
R = TR(ρR). (A8)

Since the constraints JM
RB � 0 and TrB[JM

RB ] = IR are semidef-
inite, this is a useful way of incorporating optimizations over
quantum channels into semidefinite programs.

3. Relative entropies and data processing

The Petz-Rényi relative entropy is defined for states ρ and
σ as [69]

Dα (ρ‖σ ) := 1

α − 1
log2 Tr[ρασ 1−α] (A9)

= 2

α − 1
log2 ‖ρα/2σ (1−α)/2‖2, (A10)

if α ∈ (0, 1) or α ∈ (1,∞) and supp(ρ) ⊆ supp(σ ). If α ∈
(1,∞) and supp(ρ) �⊆ supp(σ ), then Dα (ρ‖σ ) = ∞ [41].
The Petz-Rényi relative entropy obeys the following data
processing inequality [41,69,70] for a quantum channel N and
α ∈ (0, 1) ∪ (1, 2]:

Dα (ρ‖σ ) � Dα (N (ρ)‖N (σ )). (A11)

The following limits hold:

lim
α→1

Dα (ρ‖σ ) = D(ρ‖σ ), (A12)

lim
α→0

Dα (ρ‖σ ) = Dmin(ρ‖σ ), (A13)

where D(ρ‖σ ) is the quantum relative entropy defined in
Eq. (53) and Dmin(ρ‖σ ) is defined in Eq. (21). The Petz-Rényi
relative entropies are ordered in the following sense [41,70]:

Dα (ρ‖σ ) � Dβ (ρ‖σ ), (A14)

for α � β > 0.
The sandwiched Rényi relative entropy is defined for states

ρ and σ as [71,72]

D̃α (ρ‖σ ) := 1

α − 1
log2 Tr[(σ (1−α)/2αρσ (1−α)/2α )α]

= α

α − 1
log2 ‖σ (1−α)/2αρσ (1−α)/2α‖α

= 2α

α − 1
log2 ‖σ (1−α)/2αρ1/2‖2α, (A15)
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if α ∈ (0, 1) or α ∈ (1,∞) and supp(ρ) ⊆ supp(σ ). If α ∈
(1,∞) and supp(ρ) �⊆ supp(σ ), then D̃α (ρ‖σ ) = ∞. The
sandwiched Rényi relative entropy obeys the following data
processing inequality [73] for a quantum channel N and
α ∈ [1/2, 1) ∪ (1,∞):

D̃α (ρ‖σ ) � D̃α (N (ρ)‖N (σ )). (A16)

[See [74] for an alternative proof of (A16).] The following
limits hold:

lim
α→1

D̃α (ρ‖σ ) = D(ρ‖σ ), (A17)

lim
α→∞ D̃α (ρ‖σ ) = Dmax(ρ‖σ ), (A18)

lim
α→1/2

D̃α (ρ‖σ ) = − log F (ρ, σ ), (A19)

where

F (ρ, σ ) := ‖√ρ
√

σ‖2
1 (A20)

is the quantum fidelity [75]. The sandwiched Rényi relative
entropies are ordered in the following sense [71]:

D̃α (ρ‖σ ) � D̃β (ρ‖σ ), (A21)

for α � β > 0.
Note that the following inequality holds:

Dmin(ρ‖σ ) � D̃1/2(ρ‖σ ), (A22)

as a consequence of the equality [76]

F (ρ, σ ) =
(

inf
{�x}x

∑
x

√
Tr[�xρ] Tr[�xσ ]

)2

, (A23)

where the optimization is with respect to POVMs {�x}x, and
by choosing this POVM suboptimally as {�ρ, I − �ρ}.

The min-relative entropy obeys the data processing in-
equality for states ρ and σ and a quantum channel N :

Dmin(ρ‖σ ) � Dmin(N (ρ)‖N (σ )). (A24)

This inequality was proved in Ref. [10] by utilizing its relation
to the Petz-Rényi relative entropies. For an alternative proof,
first note that the inequality in Eq. (A24) is equivalent to

Tr[�ρσ ] � Tr[�N (ρ)N (σ )]. (A25)

To see the latter, let U be an isometric extension of the channel
N , so that

NA→B(ωA) = TrE [UA→BEωA(UA→BE )†]. (A26)

Then we find that

Tr[�ρσ ] = Tr[U�ρU †UσU †] (A27)

= Tr[�UρU †UσU †] (A28)

� Tr[(�N (ρ) ⊗ IE )UσU †] (A29)

= Tr[�N (ρ)N (σ )]. (A30)

The first equality follows because U�ρU † = �UρU † . The
inequality follows because the support of UρU † is contained
in the support of N (ρ) ⊗ IE , see Appendix B in Ref. [77].

The smooth min-relative entropy obeys the data processing
inequality as well, in fact for any trace nonincreasing positive
map N and for all ε ∈ (0, 1):

Dε
min(ρ‖σ ) � Dε

min(N (ρ)‖N (σ )). (A31)

This follows from the definition. Let � be an arbitrary op-
erator such that Tr[�N (ρ)] � 1 − ε and 0 � � � I . Then
it follows that Tr[N †(�)ρ] = Tr[�N (ρ)] � 1 − ε and 0 �
N †(�) � N †(I ) � I , the latter inequalities following be-
cause N † is a positive map if N is and N † is subunital if
N is trace non-increasing. So then N †(�) is a candidate
for Dε

min(ρ‖σ ) and thus Dε
min(ρ‖σ ) � − log Tr[N †(�)σ ] =

− log Tr[�N (σ )]. Since the argument holds for an arbitrary
� satisfying Tr[�N (ρ)] � 1 − ε and 0 � � � I , we con-
clude (A31).

The max-relative entropy also obeys the data processing
inequality for an arbitrary positive map N :

Dmax(ρ‖σ ) � Dmax(N (ρ)‖N (σ )). (A32)

To see this, let λ be such that ρ � 2λσ . Then from the fact that
N is positive, it follows that N (ρ) � 2λN (σ ). It then follows
that

λ � inf {μ : N (ρ) � 2μN (σ )} (A33)

= Dmax(N (ρ)‖N (σ )). (A34)

Since this is true for arbitrary λ satisfying ρ � 2λσ , we
conclude (A32).

The smooth max-relative entropy obeys the data processing
inequality for a positive, trace-preserving map N and for all
ε ∈ (0, 1):

Dε
max(ρ‖σ ) � Dε

max(N (ρ)‖N (σ )). (A35)

To see this, let ρ̃ be an arbitrary state such that
1
2‖ρ̃ − ρ‖1 � ε. (A36)

Then from the data processing inequality for normalized trace
distance under positive trace-preserving maps, it follows that

1
2‖N (̃ρ) − N (ρ)‖1 � ε. (A37)

So it follows that

Dmax(̃ρ‖σ ) � Dmax(N (̃ρ)‖N (σ )) (A38)

� Dε
max(N (ρ)‖N (σ )). (A39)

Since the inequality holds for an arbitrary state ρ̃ satisfying
(A36), we conclude (A35).

Since all of the above quantities obey the data processing
inequality for quantum channels, we conclude that they are
invariant under the action of an isometric channel U (·) =
U (·)U †:

Dmin(ρ‖σ ) = Dmin(U (ρ)‖U (σ )), (A40)

Dε
min(ρ‖σ ) = Dε

min(U (ρ)‖U (σ )), (A41)

Dmax(ρ‖σ ) = Dmax(U (ρ)‖U (σ )), (A42)

Dε
max(ρ‖σ ) = Dε

max(U (ρ)‖U (σ )), (A43)

which follows because U is a channel and the channel in
Eq. (8) perfectly reverses the action of U .
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As stated in Eq. (46), the following limit holds:

lim
ε→0

Dε
min(ρ‖σ ) = Dmin(ρ‖σ ). (A44)

In the main text, we provided an operational proof of this
limit. An alternative proof goes as follows. Consider that the
following inequality holds for all ε ∈ (0, 1):

Dε
min(ρ‖σ ) � Dmin(ρ‖σ ), (A45)

because the measurement operator �ρ (projection onto sup-
port of ρ) satisfies Tr[�ρρ] � 1 − ε for all ε ∈ (0, 1). So we
conclude that

lim inf
ε→0

Dε
min(ρ‖σ ) � Dmin(ρ‖σ ). (A46)

Alternatively, suppose that � is a measurement operator sat-
isfying Tr[�ρ] = 1 − ε (note that when optimizing Dε

min, it
suffices to optimize over measurement operators satisfying
the constraint Tr[�ρ] � 1 − ε with equality [78]). Then ap-
plying the data processing inequality for Dα (ρ‖σ ) under the
measurement {�, I − �}, which holds for α ∈ (0, 1), we find
that

Dα (ρ‖σ ) � 1

α − 1
log2[(1 − ε)α Tr[�σ ]1−α

+ εα (1 − Tr[�σ ])1−α]. (A47)

Since this bound holds for all measurement operators �

satisfying Tr[�ρ] = 1 − ε, we conclude the following bound
for all α ∈ (0, 1):

Dα (ρ‖σ ) � 1

α − 1
log2

[
(1 − ε)α

(
2−Dε

min (ρ‖σ ))1−α

+ εα
(
1 − 2−Dε

min (ρ‖σ )
)1−α]

. (A48)

Now taking the limit of the right-hand side as ε → 0, we find
that the following bound holds for all α ∈ (0, 1):

Dα (ρ‖σ ) � lim sup
ε→0

Dε
min(ρ‖σ ). (A49)

Since the bound holds for all α ∈ (0, 1), we can take the limit
on the left-hand side to arrive at

lim
α→0

Dα (ρ‖σ ) = Dmin(ρ‖σ ) � lim sup
ε→0

Dε
min(ρ‖σ ). (A50)

Now putting together (A46) and (A50), we conclude (A44).
As stated in Eq. (50), the following limit holds:

lim
ε→0

Dε
max(ρ‖σ ) = Dmax(ρ‖σ ). (A51)

In the main text, we provided an operational proof of this
limit. An alternative proof goes as follows. Consider that the
following bound holds for all ε ∈ (0, 1):

Dε
max(ρ‖σ ) � Dmax(ρ‖σ ), (A52)

which follows as a simple consequence of the fact that we can
always set ρ̃ = ρ. Then the following limit holds

lim sup
ε→0

Dε
max(ρ‖σ ) � Dmax(ρ‖σ ). (A53)

To see the other inequality, let ρ̃ be a state satisfy-
ing 1

2‖ρ̃ − ρ‖1 � ε. Then this means that ‖ρ̃ − ρ‖∞ � 2ε.

Consider that

Dmax(̃ρ‖σ )

= log2‖σ−1/2ρ̃σ−1/2‖∞
� log2(‖σ−1/2ρσ−1/2‖∞ − ‖σ−1/2 (̃ρ − ρ)σ−1/2‖∞)

� log2

(‖σ−1/2ρσ−1/2‖∞ − ‖σ−1/2‖2
∞‖ρ̃ − ρ‖∞

)
� log2(‖σ−1/2ρσ−1/2‖∞ − 2ε‖σ−1‖∞). (A54)

Since this bound holds for all ρ̃ satisfying 1
2‖ρ̃ − ρ‖1 � ε, we

conclude that

Dε
max(ρ‖σ ) � log2(‖σ−1/2ρσ−1/2‖∞ − 2ε‖σ−1‖∞).

(A55)

Then taking the limit ε → 0, we find that

lim inf
ε→0

Dε
max(ρ‖σ ) � log2 ‖σ−1/2ρσ−1/2‖∞

= Dmax(ρ‖σ ). (A56)

Putting together (A53) and (A56), we conclude (A51).

APPENDIX B: SDPs FOR SMOOTH
MIN- AND MAX-RELATIVE ENTROPIES

Here we show that the smooth min- and max-relative
entropies are characterized by semidefinite programs. We also
give the dual programs for convenience.

Consider that

Dε
min(ρ‖σ ) = − log2 inf

��0

{
Tr[�σ ] : � � I,

Tr[�ρ] � 1 − ε

}
, (B1)

which is an SDP as written. The dual SDP is given by

− log2 sup
μ,X�0

{
μ(1 − ε) − Tr[X ] :

μρ � σ + X

}
, (B2)

and is equal to Dε
min(ρ‖σ ) by strong duality. See [36] in this

context.
By employing the definition of the smooth max-relative

entropy in Eq. (49) and the dual characterization of the
normalized trace distance in Eq. (A2), we find that

Dε
max(ρ‖σ ) = log inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ :

ρ̃ � λσ, Tr[Y ] � ε,

Tr[̃ρ] = 1, Y � ρ − ρ̃,

ρ̃, Y � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (B3)

The dual SDP is given by

log sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tr[Qρ] + μ − εt :

Tr[Xσ ] � 1, Q � t I,

Q + μI � X,

X, Q, t � 0, μ ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭, (B4)

and is equal to Dε
max(ρ‖σ ) by strong duality.

APPENDIX C: APPROXIMATE BOX
TRANSFORMATION IS AN SDP

We prove that the approximate box transformation problem
can be computed by a semidefinite program. First, recall that
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the problem is characterized by

ε((ρ, σ ) → (τ, ω))

:= inf
N∈CPTP

{ε ∈ [0, 1] : N (ρ) ≈ε τ, N (σ ) = ω}, (C1)

for states ρ, σ , τ , and ω. By employing the dual form of the
trace distance from (A2), we find that

ε((ρ, σ ) → (τ, ω)) = inf
YB,JN

RB

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tr[YB] :

YB � τB − TrR
[
ρT

R JN
RB

]
,

TrR
[
σ T

R JN
RB

] = ωB,

TrB
[
JN

RB

] = IR,YB, JN
RB � 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(C2)

The dual program is given by

ε((ρ, σ ) → (τ, ω))

= sup
XB,WB,ZR

⎧⎪⎪⎨⎪⎪⎩
Tr[τBXB] + Tr[ωBWB] + Tr[ZR] :

XB � IB,

ρT
R ⊗ XB + σ T

R ⊗ WB + ZR ⊗ IB � 0,

XB � 0, WB, ZR ∈ Herm

⎫⎪⎪⎬⎪⎪⎭, (C3)

with the equality holding from strong duality.

APPENDIX D: IMPOSSIBILITY OF DISTINGUISHABILITY
INCREASING TRANSFORMATIONS

It is impossible for a quantum channel N to increase
the distinguishability of a box (ρ, σ ). That is, it impossible
for the transformation (ρ, σ ) N−→ (N (ρ),N (σ )) to be such
that the distinguishability of (N (ρ),N (σ )) is strictly larger
than the distinguishability of (ρ, σ ). This follows as a direct
consequence of the data processing inequality for quantum
relative entropy [79]:

D(ρ‖σ ) � D(N (ρ)‖N (σ )), (D1)

when using quantum relative entropy as a quantifier of distin-
guishability.

For the specific transformation in Eq. (20), we find that

m = D(|0〉〈0|⊗m‖π⊗m), (D2)

n = D(|0〉〈0|⊗n‖π⊗n), (D3)

so that if the transformation in Eq. (20) existed, it would
violate (D1), due to the assumption n > m.

The fact that the transformation in Eq. (20) does not exist
can also be seen as a consequence of the linearity of quantum
channels. Let us first suppose that the boxes (|0〉〈0|⊗m, π⊗m)
and (|0〉〈0|⊗n, π⊗n) have been reversibly transformed to their
standard form as

(|0〉〈0|, π2m ), (D4)

(|0〉〈0|, π2n ), (D5)

respectively, where we recall that π2m = 2−m|0〉〈0| + (1 −
2−m)|1〉〈1|. Then the original question is equivalent to the
question of whether there exists a channel N that takes the

first box to the second for n > m. Such a channel would then
perform the transformations:

N (|0〉〈0|) = |0〉〈0|, (D6)

N (2−m|0〉〈0| + (1 − 2−m)|1〉〈1|)
= 2−n|0〉〈0| + (1 − 2−n)|1〉〈1|. (D7)

By linearity of the channel, consider that we can conclude the
action of the channel on the orthogonal state |1〉〈1|:
N (|1〉〈1|) = N ((1 − 2−m)−1(π2m − 2−m|0〉〈0|)) (D8)

= (1 − 2−m)−1[N (π2m ) − 2−mN (|0〉〈0|)] (D9)

= (1 − 2−m)−1π2n − (1 − 2−m)−12−m|0〉〈0|
(D10)

= (1 − 2−m)−1(2−n|0〉〈0| + (1 − 2−n)|1〉〈1|)
− (1 − 2−m)−12−m|0〉〈0| (D11)

= 2−n − 2−m

1 − 2−m
|0〉〈0| + 1 − 2−n

1 − 2−m
|1〉〈1|. (D12)

If n > m, then we have that 2−n−2−m

(1−2−m ) < 0, so that N (|1〉〈1|)
is not a quantum state. Thus there cannot exist a quantum
channel performing the transformation in Eq. (20) whenever
n > m.

By the same reasoning, we have that (|0〉〈0|, πM ) �→
(|0〉〈0|, πN ) whenever N > M.

APPENDIX E: ENTROPIC CHARACTERIZATIONS
OF EXACT DISTINGUISHABILITY DISTILLATION

AND DILUTION

1. Exact distillable distinguishability

We prove the equality in Eq. (31):

D0
d (ρ, σ ) = Dmin(ρ‖σ ). (E1)

Recall that

D0
d (ρ, σ ) := log2 sup

P∈CPTP
{M : P (ρ) = |0〉〈0|, P (σ ) = πM},

(E2)

First suppose that Tr[�ρσ ] �= 0. Consider that the measure-
ment channel

M(ω) = Tr[�ρω]|0〉〈0| + Tr[(I − �ρ )ω]|1〉〈1| (E3)

achieves

M(ρ) = |0〉〈0|, (E4)

M(σ ) = Tr[�ρσ ]|0〉〈0| + Tr[(I − �ρ )σ ]|1〉〈1| (E5)

= πM=1/ Tr[�ρσ ], (E6)

so that

D0
d (ρ, σ ) � log2(1/ Tr[�ρσ ]) (E7)

= − log2 Tr[�ρσ ] (E8)

= Dmin(ρ‖σ ). (E9)

Now let P be a particular quantum channel such that
P (ρ) = |0〉〈0| and P (σ ) = πM . Then by the data processing
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inequality for Dmin as recalled in Eq. (A24), we find that

Dmin(ρ‖σ ) � Dmin(P (ρ)‖P (σ )) (E10)

= Dmin(|0〉〈0|‖πM ) (E11)

= log2 M. (E12)

Since the inequality Dmin(ρ‖σ ) � log2 M holds for all chan-
nels P satisfying the constraints in Eq. (E2), we conclude that

Dmin(ρ‖σ ) � D0
d (ρ, σ ). (E13)

Combining (E7)–(E9) and (E13), we conclude the equality in
Eq. (31), i.e., Dmin(ρ‖σ ) = D0

d (ρ, σ ).
In the case that Tr[�ρσ ] = 0, then this means that the

measurement channel above is such that M(ρ) = |0〉〈0| and
M(σ ) = |1〉〈1|. In this case, as stated in the main text, the in-
terpretation is that the box (ρ, σ ) contains an infinite number
of bits of asymmetric distinguishability, so that D0

d (ρ, σ ) =
∞. This is consistent with Dmin(ρ‖σ ) = ∞ in this case.

2. Exact distinguishability cost

We now prove the equality in Eq. (35):

D0
c (ρ, σ ) = Dmax(ρ‖σ ). (E14)

First recall that

D0
c (ρ, σ ) := log2 inf

P∈CPTP
{M : P (|0〉〈0|) = ρ, P (πM ) = σ }.

(E15)

Let us first suppose that supp(ρ) ⊆ supp(σ ) and
Dmax(ρ‖σ ) = 0. By definition, this means that the condition
ρ � σ holds, which in turn implies that σ − ρ � 0. Given the
characterization of the normalized trace distance in Eq. (A2),
this means that we can set Y = σ − ρ. Since Tr[Y ] = 0, we
conclude that 1

2‖σ − ρ‖1 = 0. Since ‖ · ‖1 is a norm, this
means that ρ = σ . So in this trivial case, it follows that we
can take P in Eq. (E15) to be the replacer channel Tr[·]ρ
and it follows that we can achieve the dilution task with zero
bits of asymmetric distinguishability. So then D0

c (ρ, σ ) = 0 if
supp(ρ) ⊆ supp(σ ) and Dmax(ρ‖σ ) = 0.

Now suppose that supp(ρ) ⊆ supp(σ ) and Dmax(ρ‖σ ) >

0. Let λ > 0 be such that 2λσ � ρ. This then means that
2λσ − ρ � 0, so that ω := 2λσ−ρ

2λ−1 is a quantum state. Further-
more, we have that

σ = 2−λρ + (1 − 2−λ)ω. (E16)

Then by means of the following channel:

P (τ ) = 〈0|τ |0〉ρ + 〈1|τ |1〉ω, (E17)

we have that

P (|0〉〈0|) = ρ, (E18)

P (π2λ ) = 2−λρ + (1 − 2−λ)ω = σ, (E19)

so that this protocol accomplishes the distinguishability dilu-
tion task. This means that

D0
c (ρ, σ ) � λ. (E20)

Now taking the infimum over all λ satisfying 2λσ � ρ, we
conclude that

D0
c (ρ, σ ) � Dmax(ρ‖σ ). (E21)

Now consider an arbitrary channel P that accomplishes
the transformation (|0〉〈0|, π ) → (ρ, σ ). By the data process-
ing inequality for the max-relative entropy as recalled in
Eq. (A32), we have that

log2 M = Dmax(|0〉〈0|‖πM ) (E22)

� Dmax(P (|0〉〈0|)‖P (πM )) (E23)

= Dmax(ρ‖σ ). (E24)

Taking an infimum over all such protocols, we conclude that

D0
c (ρ, σ ) � Dmax(ρ‖σ ). (E25)

Putting together (E21) and (E25), we conclude the equality in
Eq. (35), i.e., D0

c (ρ, σ ) = Dmax(ρ‖σ ).
In the case that supp(ρ) �⊆ supp(σ ), we have that

Tr[�σρ] < 1 and by definition Dmax(ρ‖σ ) = ∞. This is con-
sistent with the fact that, in such a case, there is no finite λ � 0
such that 2λσ − ρ � 0. For if there were, then we would have
that

2λ − 1 = Tr[(2λσ − ρ)] (E26)

= Tr[{2λσ � ρ}(2λσ − ρ)] (E27)

� Tr[�σ (2λσ − ρ)] (E28)

= Tr[2λσ ] − Tr[�σρ] (E29)

= 2λ − Tr[�σρ], (E30)

where the inequality follows from Tr[{A � 0}A] � Tr[�A]
for any Hermitian operator A, projector �, and {A � 0} de-
noting the projection onto the positive eigenspace of A. The
above implies that

Tr[�σρ] � 1, (E31)

contradicting the fact that Tr[�σρ] < 1 when supp(ρ) �⊆
supp(σ ).

As explained in the main text, when supp(ρ) �⊆ supp(σ ),
there is no finite value of M nor any quantum channel P
such that P (|0〉〈0|) = ρ and P (πM ) = σ . If there were, then
by the general fact that, for a quantum channel N and states
τ and ω, supp(N (τ )) ⊆ supp(N (ω)) if supp(τ ) ⊆ supp(ω)
(see Appendix B in Ref. [77] and the fact that supp(|0〉〈0|) ⊆
supp(πM ) for all M < ∞, the existence of such a channel
P would contradict the assumption that supp(ρ) �⊆ supp(σ ).
The interpretation then is as stated in the main text: that
D0

c (ρ, σ ) = ∞ when supp(ρ) �⊆ supp(σ ), which is consistent
with the fact that Dmax(ρ‖σ ) = ∞ in such a case.

APPENDIX F: ENTROPIC CHARACTERIZATIONS
OF APPROXIMATE DISTINGUISHABILITY

DISTILLATION AND DILUTION

1. Approximate distillable distinguishability

We prove the equality in Eq. (44):

Dε
d (ρ, σ ) = Dε

min(ρ‖σ ). (F1)
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First recall that

Dε
d (ρ, σ ) := log2 sup

P∈CPTP
{M : P (ρ) ≈ε |0〉〈0|, P (σ ) = πM}.

(F2)

Let � be an arbitrary measurement operator satisfying 0 �
� � I and Tr[�ρ] � 1 − ε. Then we can take the channel P
to be as follows:

P (ω) = Tr[�ω]|0〉〈0| + Tr[(I − �)ω]|1〉〈1|, (F3)

and we find that
1
2‖P (ρ) − |0〉〈0|‖1

= 1
2‖Tr[�ρ]|0〉〈0|+Tr[(I−�)ρ]|1〉〈1|−|0〉〈0|‖1 (F4)

= 1
2‖− Tr[(I−�)ρ]|0〉〈0|+Tr[(I−�)ρ]|1〉〈1|‖1 (F5)

= (Tr[(I − �)ρ]) 1
2‖|1〉〈1| − |0〉〈0|‖1 (F6)

= Tr[(I − �)ρ] � ε. (F7)

Furthermore, we have that

P (σ ) = Tr[�σ ]|0〉〈0| + Tr[(I − �)σ ]|1〉〈1| (F8)

= πM=1/ Tr[�σ ]. (F9)

So this means that

Dε
d (ρ, σ ) � log2(1/ Tr[�σ ]) (F10)

= − log2 Tr[�σ ]. (F11)

Now maximizing the right-hand side with respect to all �

satisfying 0 � � � I and Tr[�ρ] � 1 − ε, we conclude that

Dε
d (ρ, σ ) � Dε

min(ρ‖σ ). (F12)

To see the other inequality, let P be an arbitrary channel
satisfying P (ρ) ≈ε |0〉〈0| and P (σ ) = πM . Then by the data
processing inequality for Dε

min, we have that

Dε
min(ρ‖σ ) � Dε

min(P (ρ)‖P (σ )) (F13)

= Dε
min(P (ρ)‖πM ) (F14)

� log2 M. (F15)

The last inequality above is a consequence of the following
reasoning: Let �(·) = |0〉〈0|(·)|0〉〈0| + |1〉〈1|(·)|1〉〈1| denote
the completely dephasing channel. Since P (ρ) ≈ε |0〉〈0|, we
find from applying the data processing inequality for normal-
ized trace distance that

ε � 1
2‖P (ρ) − |0〉〈0|‖1

� 1
2‖(� ◦ P )(ρ) − �(|0〉〈0|)‖1

= 1
2‖(� ◦ P )(ρ) − |0〉〈0|‖1

= 1
2‖〈0|P (ρ)|0〉|0〉〈0| + 〈1|P (ρ)|1〉|1〉〈1| − |0〉〈0|‖1

= 1 − 〈0|P (ρ)|0〉, (F16)

which implies that 〈0|P (ρ)|0〉 � 1 − ε. Thus we can take
� = |0〉〈0| in the definition of Dε

min(P (ρ)‖πM ), and we
have that Tr[�P (ρ)] � 1 − ε while Tr[�πM] = 1/M. Since
Dε

min(P (ρ)‖πM ) involves an optimization over all measure-
ment operators � satisfying Tr[�P (ρ)] � 1 − ε, we con-
clude the inequality in Eq. (F15).

Since the inequality Dε
min(ρ‖σ ) � log2 M holds for all

possible distinguishability distillation protocols, we conclude
that

Dε
min(ρ‖σ ) � Dε

d (ρ, σ ). (F17)

By combining the inequalities in Eqs. (F12) and (F17), we
conclude the equality in Eq. (44), i.e., Dε

min(ρ‖σ ) = Dε
d (ρ, σ ).

It is worthwhile to mention a somewhat singular case. In
the case that supp(ρ) �⊆ supp(σ ), we have that Tr[�σρ] < 1,
which means that Tr[(I − �σ )ρ] > 0. If we also have that
Tr[(I − �σ )ρ] � 1 − ε, then we can take the channel P to
be as follows:

P (ω) = Tr[(I − �σ )ω]|0〉〈0| + Tr[�σω]|1〉〈1|. (F18)

In such a case, we have that P (ρ) ≈ε |0〉〈0|, while
P (σ ) = |1〉〈1| = limM→∞ πM , implying that Dε

min(ρ‖σ ) =
Dε

d (ρ, σ ) = ∞ in this case.

2. Approximate distinguishability cost

Here we prove the equality in Eq. (48):

Dε
c (ρ, σ ) = Dε

max(ρ‖σ ). (F19)

Recall that

Dε
c (ρ, σ ) := log2 inf

P∈CPTP
{M : P (|0〉〈0|) ≈ε ρ, P (πM ) = σ }.

(F20)

Let ρ̃ be a state such that 1
2‖ρ − ρ̃‖1 � ε. Then by executing

the protocol in Eqs. (E18) and (E19), but replacing ρ with ρ̃,
we find that

Dε
c (ρ, σ ) � Dmax(̃ρ‖σ ). (F21)

Since this is possible for any state ρ̃ satisfying 1
2‖ρ − ρ̃‖1 �

ε, we conclude that

Dε
c (ρ, σ ) � Dε

max(ρ‖σ ). (F22)

To see the other inequality, consider an arbitrary channel P
performing the transformation P (|0〉〈0|) ≈ε ρ and P (πM ) =
σ . Then from the data processing inequality for the max-
relative entropy, as recalled in Eq. (A32), and its definition,
we conclude that

log2 M = Dmax(|0〉〈0|‖πM ) (F23)

� Dmax(P (|0〉〈0|)‖P (πM )) (F24)

= Dmax(P (|0〉〈0|)‖σ ) (F25)

� Dε
max(ρ‖σ ). (F26)

Since the inequality holds for an arbitrary channel P perform-
ing the transformation P (|0〉〈0|) ≈ε ρ and P (πM ) = σ , we
conclude that

Dε
c (ρ, σ ) � Dε

max(ρ‖σ ). (F27)

By combining the inequalities in Eqs. (F22) and (F27),
we conclude the equality in Eq. (48), i.e., Dε

c (ρ, σ ) =
Dε

max(ρ‖σ ).
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APPENDIX G: OPERATIONAL PROOF FOR INEQUALITY
RELATING SMOOTH MIN- AND MAX-RELATIVE

ENTROPIES

Here we prove the inequality in Eq. (51):

Dε1
min(ρ‖σ ) � Dε2

max(ρ‖σ ) + log2

(
1

1 − ε1 − ε2

)
, (G1)

for ε1, ε2 � 0 and ε1 + ε2 < 1.
First, consider that an arbitrary protocol performing the

transformation (|0〉〈0|, πM ) → (̃0ε, πK ) is required to obey
the following inequality:

log2 K � Dε
min(|0〉〈0|‖πM ) (G2)

= log2 M + log2 (1/[1 − ε]). (G3)

To see the equality in Eq. (G3), consider that � =
(1 − ε)|0〉〈0| is a measurement operator achieving
Tr[�|0〉〈0|] � 1 − ε, while Tr[�πM] = (1 − ε)/M, implying
that

Dε
min(|0〉〈0|‖πM ) � log2 M + log2 (1/[1 − ε]). (G4)

To see the other inequality, suppose that Tr[�|0〉〈0|] � 1 − ε.
Then we have that

Tr[�πM] = 1

M
Tr[�|0〉〈0|] +

(
1 − 1

M

)
Tr[�|1〉〈1|] (G5)

� 1

M
Tr[�|0〉〈0|] (G6)

� 1 − ε

M
. (G7)

Since this is a uniform bound holding for all measurement
operators � satisfying Tr[�|0〉〈0|] � 1 − ε, we conclude that

Dε
min(|0〉〈0|‖πM ) � − log2

(
1 − ε

M

)
(G8)

= log2 M + log2(1/[1 − ε]), (G9)

completing the proof of the equality in Eq. (G3).
Given that the bound log2 K � log2 M + log2 (1/[1 − ε])

holds for an arbitrary channel performing the transformation
(|0〉〈0|, πM ) → (̃0ε, πK ), we can consider a particular way of
completing it in two steps. Fix ε1, ε2 � 0 such that ε1 + ε2 <

1. In the first step, we perform the dilution transformation
(|0〉〈0|, πM ) → (ρε2 , σ ) optimally and in the second, we per-
form the distillation transformation (ρ, σ ) → (̃0ε1 , πK ) opti-
mally. For the dilution part, we have that log2 M = Dε2

max(ρ‖σ )
and there exists a channel P1 such that P1(|0〉〈0|) = ρε2 ≈ε2

ρ and P1(πM ) = σ . For the distillation part, we have that
log2 K = Dε1

min(ρ‖σ ) and there exists a channel P2 such that
P2(ρ) = 0̃ε1 ≈ε1 |0〉〈0| and P2(σ ) = πK . By composing the
two channels, we have that

(P2 ◦ P1)(πM ) = πK , (G10)

while
1
2‖(P2 ◦ P1)(|0〉〈0|) − |0〉〈0|‖1

� 1
2‖(P2 ◦ P1)(|0〉〈0|) − P2(ρ)‖1

+ 1
2‖P2(ρ) − |0〉〈0|‖1 (G11)

� 1
2‖P1(|0〉〈0|) − ρ‖1 + ε1 (G12)

� ε2 + ε1. (G13)

So this means that we have a protocol (|0〉〈0|, πM ) →
(̃0ε1+ε2 , πK ) with log2 M = Dε2

max(ρ‖σ ) and log2 K =
Dε1

min(ρ‖σ ). By (G3), we then conclude the inequality in
Eq. (51), as restated in Eq. (G1).

APPENDIX H: ASYMPTOTIC DISTILLABLE
DISTINGUISHABILITY AND DISTINGUISHABILITY COST

As a direct consequence of (44) and results from
Refs. [39,42], the following expansion holds for sufficiently
large n:

Dε
d (ρ⊗n, σ⊗n) = nD(ρ‖σ ) +

√
nV (ρ‖σ )�−1(ε) + O(ln n),

(H1)

where D(ρ‖σ ) is the quantum relative entropy. The relative
entropy variance V (ρ‖σ ) [39,42] is defined as

V (ρ‖σ ) := Tr[ρ(log2 ρ − log2 σ − D(ρ‖σ ))2], (H2)

if supp(ρ) ⊆ supp(σ ) and is otherwise undefined. Further-
more, �−1(ε) is the inverse of the cumulative normal distri-
bution function, defined as

�−1(ε) = sup {a ∈ R | �(a) � ε}, (H3)

where

�(a) = 1√
2π

∫ a

−∞
dx exp

(−x2

2

)
. (H4)

Based on the inequality in Eq. (51), we have that

D1−ε−δ
min (ρ‖σ ) � Dε

max(ρ‖σ ) + log2

(
1

δ

)
.

Then by picking δ = 1/
√

n, and applying (48), (44), (H1), and
the fact that �−1(1 − ε) = −�−1(ε), we find that

Dε
c (ρ⊗n, σ⊗n) � nD(ρ‖σ ) −

√
nV (ρ‖σ )�−1(ε) + O(log n).

(H5)

By following the proof of Eq. (21) in Ref. [39], but instead
using the normalized trace distance as the metric for smooth
max-relative entropy, we find that

Dε
max(ρ‖σ )�D1−ε2

min (ρ‖σ ) + log2 |spec(σ )|+log2

(
1

1−ε2

)
,

(H6)

where ε ∈ (0, 1) and |spec(σ )| is equal to the number of
distinct eigenvalues of σ . We give a detailed proof of (H6)
in Appendix I. By the operational interpretations of Dε

max and
D1−ε2

min , the inequality in Eq. (H6) can equivalently be written
as

Dε
c (ρ, σ ) � D1−ε2

d (ρ, σ ) + log2 |spec(σ )| + log2

(
1

1 − ε2

)
.

(H7)

Now accounting for the fact that |spec(σ⊗n)| = O(ln n) and
applying (H1), we conclude that

Dε
c (ρ⊗n, σ⊗n) � nD(ρ‖σ ) −

√
nV (ρ‖σ )�−1(ε2) + O(ln n).

(H8)
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Thus we have that

Dε
c (ρ⊗n, σ⊗n) = nD(ρ‖σ ) + O(

√
n). (H9)

APPENDIX I: BOUND RELATING SMOOTH
MAX- AND MIN-RELATIVE ENTROPIES

Here we prove the following bound:

Dε
max(ρ‖σ )

� D1−ε2

min (ρ‖σ ) + log2 |spec(σ )| + log2

(
1

1 − ε2

)
, (I1)

where |spec(σ )| is equal to the number of distinct eigenvalues
of σ .

The proof follows the proof of Eq. (21) in Ref. [39] closely,
but instead using the normalized trace distance as the metric
for smooth max-relative entropy and accounting for a minor
typo present in the proof of Eq. (39) in Ref. [39].

Let the eigendecomposition of σ be σ = ∑
x λσ

x �σ
x , where

�σ
x is the projection onto the eigenspace of σ with eigenvalue

λσ
x . Let Eσ (·) = ∑

x �σ
x (·)�σ

x denote the pinching quantum
channel. In what follows, we make use of the pinching in-
equality [80]:

ρ � |spec(σ )|Eσ (ρ). (I2)

Let μ be the largest value such that Tr[QEσ (ρ)] = 1 − ε2,
where Q = {Eσ (ρ) � 2μσ }. Due to the fact that Q commutes
with σ , we have that Eσ (Q) = Q, which implies that

Tr[QEσ (ρ)] = Tr[Eσ (Q)ρ] (I3)

= Tr[Qρ] (I4)

= 1 − ε2. (I5)

Then we set

ρ̃ = QρQ

Tr[Qρ]
, (I6)

for which we have that

F (ρ, ρ̃ ) � 1 − ε2, (I7)

by applying lemma 9.4.1 in Ref. [67]. This in turn implies that

1
2‖ρ − ρ̃‖1 � ε, (I8)

via the inequality 1
2‖ρ − ρ̃‖1 � √

1 − F (ρ, ρ̃ ) [81], so that
ρ̃ is a candidate for the optimization involved in Dε

max(ρ‖σ ).
Now consider that

ρ̃ = QρQ

Tr[Qρ]
(I9)

� QρQ

1 − ε2
(I10)

� |spec(σ )|
1 − ε2

QEσ (ρ)Q (I11)

� 2μ|spec(σ )|
1 − ε2

QσQ (I12)

� 2μ|spec(σ )|
1 − ε2

σ. (I13)

So it follows that

Dε
max(ρ‖σ ) � Dmax(̃ρ‖σ )

� μ + log2 |spec(σ )| + log2

(
1

1 − ε2

)
. (I14)

Now consider that Tr[(I − Q)ρ] = ε2 and I − Q = {Eσ (ρ) >

2μσ }, for which we have that

Tr[{Eσ (ρ) > 2μσ }(Eσ (ρ) − 2μσ )] � 0, (I15)

implying that

Tr[(I − Q)σ ] = Tr[{Eσ (ρ) > 2μσ }σ ] (I16)

� 2−μ Tr[{Eσ (ρ) > 2μσ }Eσ (ρ)] (I17)

� 2−μ. (I18)

Taking a negative logarithm, this gives

− ln Tr[(I − Q)σ ] � μ. (I19)

Since Tr[(I − Q)ρ] = ε2, this means that I − Q is a candidate
for � in the definition of smooth min-relative entropy, from
which we conclude that

μ � D1−ε2

min (Eσ (ρ)‖σ ) (I20)

� D1−ε2

min (ρ‖σ ), (I21)

where the latter inequality follows from the data processing
inequality in Eq. (A31). Putting together (I14) and (I21), we
arrive at (I1).

APPENDIX J: ASYMPTOTIC BOX TRANSFORMATIONS

We now provide a proof of Eq. (62), i.e.,

R((ρ, σ ) → (τ, ω)) = R̃((ρ, σ ) → (τ, ω)) = D(ρ‖σ )

D(τ‖ω)
,

(J1)
so that the quantum relative entropy gives the optimal conver-
sion rate for boxes. We prove this result in two steps, called
the direct part and strong converse part.

1. Achievability: direct part

We begin with the direct part. The goal is to show that for
all ε ∈ (0, 1], δ > 0, and sufficiently large n, there exists an
(n, n[R − δ], ε) box transformation protocol

(ρ⊗n, σ⊗n) → ( ˜τ⊗n[R−δ], ω⊗n[R−δ] ) (J2)

with R = D(ρ‖σ )
D(τ‖ω) . The approach we take here is related to an

approach from Ref. [82].
Fix ε ∈ (0, 1) and δ > 0. Suppose that ε = ε1 + ε2, so that

ε1, ε2 ∈ (0, 1) and ε1 + ε2 < 1. Also, suppose that δ = δ1 +
δ2 + δ3 + δ4, such that δ1, δ2, δ3, δ4 > 0.

Consider that we can perform the transformation
(ρ⊗n, σ⊗n) → (̃0ε1 , πM ) such that

log2 M = Dε1
min(ρ⊗n‖σ⊗n). (J3)

Then applying the following inequality from proposition 3.2
of Ref. [83] (see also proposition 3 of Ref. [84]):

Dε
min(ρ‖σ ) � Dα (ρ‖σ ) + α

α − 1
log2

(
1

ε

)
, (J4)
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we find that

log2 M � nDα (ρ‖σ ) + α

α − 1
log2

(
1

ε1

)
. (J5)

Set α ∈ (0, 1) such that

δ1 · D(τ‖ω) � D(ρ‖σ ) − Dα (ρ‖σ ), (J6)

which is possible due to (A12) and (A14), and for this choice
of α, take n large enough so that

δ2 · D(τ‖ω) � α

n(1 − α)
log2

(
1

ε1

)
. (J7)

Then we have that

log2 M � nD(ρ‖σ ) − nD(τ‖ω)[δ1 + δ2]. (J8)

Also, consider that we can perform the transformation
(|0〉〈0|, π ) → (τ̃⊗m, ω⊗m) (with error ε2), for fixed M, by
taking m as large as possible so that the following inequality
still holds

log2 M � Dε2
max(τ⊗m‖ω⊗m). (J9)

If it is not possible to find an m to saturate the inequality, then
one can find states τ ′ and ω′ with just enough distinguishabil-
ity such that

log2 M = Dε2
max(τ⊗m ⊗ τ ′‖ω⊗m ⊗ ω′), (J10)

while having a negligible impact on the final parameters of
the protocol. The resulting protocol then produces the states
≈ε τ⊗m ⊗ τ ′ and ω⊗m ⊗ ω′, and the final step is to perform
a partial trace over the extra ancilla system. By applying the
following inequality from proposition K

Dε2
max(ρ‖σ ) � D̃β (ρ‖σ ) + log2

(
1
/[

1 − ε2
2

])
+ 1

β − 1
log2

(
1
/
ε2

2

)
, (J11)

proved in Appendix K, we find that

log2 M � mD̃β (τ‖ω) + D̃β (τ ′‖ω′) + log2

(
1
/[

1 − ε2
2

])
+ 1

β − 1
log2

(
1
/
ε2

2

)
. (J12)

Now set β > 1 such that

δ3nD(τ‖ω) � m[D̃β (τ‖ω) − D(τ‖ω)], (J13)

which is possible due to (A17) and (A21), and for this choice
of β, take n sufficiently large so that

δ4 · D(τ‖ω) � 1

n
D̃β (τ ′‖ω′) + 1

n
log2

(
1
/[

1 − ε2
2

])
+ 1

n(β − 1)
log2

(
1
/
ε2

2

)
. (J14)

[Note that we require n large enough so that both (J7) and
(J14) hold.] Then we have that

log2 M � mD(τ‖ω) + nD(τ‖ω)[δ3 + δ4]. (J15)

Putting together (J8) and (J15), we find that

nD(ρ‖σ ) − nD(τ‖ω)[δ1 + δ2]

� mD(τ‖ω) + nD(τ‖ω)[δ3 + δ4]. (J16)

Now dividing both sides by nD(τ‖ω), we find that

m

n
� D(ρ‖σ )

D(τ‖ω)
− [δ1 + δ2 + δ3 + δ4]. (J17)

= D(ρ‖σ )

D(τ‖ω)
− δ. (J18)

The rate of this scheme is equal to m/n. The error of the
protocol is no larger then ε1 + ε2 = ε, following from an
application of the triangle inequality.

Thus we have shown that for all ε ∈ (0, 1), δ > 0, there
exists an (n, n[R − δ], ε) box transformation protocol with
R = D(ρ‖σ )

D(τ‖ω) , concluding the proof of the achievability part.

2. Strong converse via sandwiched Rényi relative entropy

Before proving the strong converse, we establish the
following lemma as a generalization of proposition 85 of
Ref. [85]. In fact, the proof of the following lemma is
contained in the proof of proposition 2.8 of Ref. [85]. The
following lemma serves as a pseudo-continuity inequality for
the sandwiched Rényi relative entropies.

Lemma 1. Let ρ0, ρ1, and σ be quantum states such
that supp(ρ0) ⊆ supp(σ ). Fix α ∈ (1/2, 1) and β ≡ β(α) :=
α/(2α − 1) > 1. Then

D̃β (ρ0‖σ ) − D̃α (ρ1‖σ ) � α

1 − α
log2 F (ρ0, ρ1). (J19)

Proof. Consider that

D̃β (ρ0‖σ ) − D̃α (ρ1‖σ )

= 2β

β − 1
log2

∥∥ρ
1/2
0 σ (1−β )/2β

∥∥
2β

− 2α

α − 1
log2

∥∥σ (1−α)/2αρ
1/2
1

∥∥
2α

(J20)

= 2α

1 − α
log2

∥∥ρ
1/2
0 σ (1−β )/2β

∥∥
2β

+ 2α

1 − α
log2

∥∥σ (1−α)/2αρ
1/2
1

∥∥
2α

(J21)

= 2α

1 − α
log2

[∥∥ρ
1/2
0 σ (1−β )/2β

∥∥
2β

∥∥σ (1−α)/2αρ
1/2
1

∥∥
2α

]
(J22)

� 2α

1 − α
log2

∥∥ρ
1/2
0 σ (1−β )/2βσ (1−α)/2αρ

1/2
1

∥∥
1 (J23)

= 2α

1 − α
log2

∥∥ρ
1/2
0 ρ

1/2
1

∥∥
1 (J24)

= α

1 − α
log2 F (ρ0, ρ1). (J25)

The sole inequality follows from the Hölder inequality. �
The following is an auxiliary lemma that serves as a

one-shot converse for any approximate box transformation
(ρ, σ ) N−→ (τ, ω) where ω = N (σ ):

Lemma 2. Let ρ, σ , τ , and ω be quantum states and N a
quantum channel such that N (σ ) = ω. Then for α ∈ (1/2, 1)
and β ≡ β(α) := α/(2α − 1), we have that

D̃β (ρ‖σ ) � D̃α (τ‖ω) + α

1 − α
log2 F (N (ρ), τ ). (J26)
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Proof. Consider that

D̃β (ρ‖σ ) � D̃β (N (ρ)‖N (σ )) (J27)

= D̃β (N (ρ)‖ω) (J28)

� D̃α (τ‖ω) + α

1 − α
log2 F (N (ρ), τ ). (J29)

The first inequality follows from the quantum data processing
inequality in Eq. (A16) and the other from lemma 1. �

Proposition 1. Let n, m ∈ Z+ and ε ∈ [0, 1). Let ρ, σ ,
τ , and ω be quantum states and N (n) a quantum channel
constituting an (n, m, ε) box transformation protocol (i.e.,
so that N (n)(ρ⊗n) ≈ε τ⊗m and N (n)(σ⊗n) = ω⊗m). Then for
α ∈ (1/2, 1) and β ≡ β(α) := α/(2α − 1), we have that

D̃β (ρ‖σ )

D̃α (τ‖ω)
� m

n
+ 2α

n(1 − α)D̃α (τ‖ω)
log2(1 − ε). (J30)

Alternatively, if we set R = m/n, then the above bound can be
written as

−1

n
log2(1 − ε) � 1

2

(
1 − α

α

)
(R D̃α (τ‖ω) − D̃β (ρ‖σ ))

(J31)

= 1

2

(
β − 1

β

)
(R D̃α (τ‖ω) − D̃β (ρ‖σ )).

(J32)

Proof. Consider that

nD̃β (ρ‖σ )

= D̃β (ρ⊗n‖σ⊗n) (J33)

� D̃α (τ⊗m‖ω⊗m) + α

1 − α
log2 F (N (n)(ρ⊗n), τ⊗m) (J34)

= mD̃α (τ‖ω) + α

1 − α
log2 F (N (n)(ρ⊗n), τ⊗m) (J35)

= mD̃α (τ‖ω) + 2α

1 − α
log2

√
F (N (n)(ρ⊗n), τ⊗m) (J36)

� mD̃α (τ‖ω) + 2α

1 − α
log2(1 − ε), (J37)

where to get the last inequality, we used the fact that [81]

1
2‖ρ0 − ρ1‖1 � 1 −

√
F (ρ0, ρ1). (J38)

Dividing by n, we find that

D̃β (ρ‖σ ) � m

n
D̃α (τ‖ω) + 2α

n(1 − α)
log2(1 − ε), (J39)

which concludes the proof. �
We now give a proof for the strong converse statement in

Eq. (62). Our proof is related to the approach from Ref. [82].
Fix ε ∈ [0, 1) and δ > 0. We need to show that there is an n
large enough such that there does not exist an (n, n[R + δ], ε)
box transformation protocol, with R set as follows:

R = D(ρ‖σ )

D(τ‖ω)
. (J40)

From proposition 3, the following bound holds for an
arbitrary (n, m, ε) protocol, α ∈ (1/2, 1), and β ≡ β(α) :=

α/(2α − 1):

nD̃β (ρ‖σ ) + 2α

1 − α
log2(1/[1 − ε]) � mD̃α (τ‖ω). (J41)

Set δ2 such that 0 < δ2 < δD(τ‖ω). Then set δ1 > 0 such that
the following equation is satisfied

D(ρ‖σ ) + δ1 + δ2

D(τ‖ω) − δ1
= D(ρ‖σ )

D(τ‖ω)
+ δ, (J42)

i.e.,

δ1 = D(τ‖ω)[δD(τ‖ω) − δ2]

D(ρ‖σ ) + D(τ‖ω)[1 + δ]
. (J43)

Set α ∈ (1/2, 1) such that

δ1 > max{D(τ‖ω) − D̃α (τ‖ω), D̃β (ρ‖σ ) − D(ρ‖σ )},
(J44)

which is possible due to (A12), (A14), (A17), (A21), and the
fact that β = α/(2α − 1), and for this choice of α, pick n large
enough so that

δ2 >
2α

n(1 − α)
log2(1/[1 − ε]). (J45)

For these choices, we then have that

D̃β (ρ‖σ ) + 2α

n(1 − α)
log2(1/[1 − ε]) < D(ρ‖σ ) + δ1 + δ2,

(J46)

and we also have that
m

n
D̃α (τ‖ω) >

m

n
[D(τ‖ω) − δ1]. (J47)

Putting these inequalities together, we find that

m

n
<

D(ρ‖σ ) + δ1 + δ2

D(τ‖ω) − δ1
= D(ρ‖σ )

D(τ‖ω)
+ δ. (J48)

Thus the rate of the protocol m
n is strictly less than D(ρ‖σ )

D(τ‖ω) + δ,
so that an (n, n[R + δ], ε) box transformation protocol cannot
exist for the choice of n taken nor any n larger than that [for
the latter statement, note that (J45) still holds for larger n].

3. Strong converse via Petz-Rényi relative entropy

We now discuss an alternative proof of the strong converse
by going through the Petz-Rényi relative entropy. We begin
with a pseudo-continuity inequality for the Petz-Rényi relative
entropy. The proof of lemma 3 below follows the spirit of the
proof of proposition 85 of Ref. [85], but this time some steps
are different.

Lemma 3. Let ρ0, ρ1, and σ be quantum states such
that supp(ρ0) ⊆ supp(σ ). Fix α ∈ (0, 1) and β ≡ β(α) :=
2 − α ∈ (1, 2). Then

Dβ (ρ0‖σ ) − Dα (ρ1‖σ ) � 2

1 − α
log2

[
1 − 1

2
‖ρ0 − ρ1‖1

]
.

(J49)
Proof. Consider that α − 1 = 1 − β, so that

Dβ (ρ0‖σ ) − Dα (ρ1‖σ )

= 1

β − 1
log2 Tr

[
ρ

β

0 σ 1−β
] − 1

α − 1
log2 Tr

[
ρα

1 σ 1−α
]

(J50)
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= 1

β − 1
log2 Tr

[
ρ

β

0 σ 1−β
] + 1

β − 1
log2 Tr

[
ρα

1 σ 1−α
]

(J51)

= 1

β − 1
log2

(
Tr

[
ρ

β

0 σ 1−β
]

Tr
[
ρα

1 σ 1−α
])

(J52)

= 1

β − 1
log2

(∥∥ρ
β/2
0 σ (1−β )/2

∥∥2
2

∥∥σ (1−α)/2ρ
α/2
1

∥∥2
2

)
(J53)

� 1

β − 1
log2

∥∥ρ
β/2
0 σ (1−β )/2σ (1−α)/2ρ

α/2
1

∥∥2
1 (J54)

= 2

β − 1
log2

∥∥ρ
β/2
0 ρ

α/2
1

∥∥
1 (J55)

� 2

β − 1
log2 Tr

[
ρ

β/2
0 ρ

α/2
1

]
(J56)

= 2

β − 1
log2 Tr

[
ρ

β/2
0 ρ

(2−β )/2
1

]
(J57)

= 2

β − 1
log2 Tr

[
ρ

β/2
0 ρ

1−β/2
1

]
(J58)

� 2

β − 1
log2

[
1 − 1

2
‖ρ0 − ρ1‖1

]
(J59)

= 2

1 − α
log2

[
1 − 1

2
‖ρ0 − ρ1‖1

]
. (J60)

The fourth equality follows from a rewriting of the Petz-Rényi
relative entropy in terms of the Schatten 2-norm, as given
in Eq. (3.10) in Ref. [86]. The first inequality follows from
an application of the Cauchy-Schwarz inequality. The second
inequality follows from the variational characterization of the
trace norm as ‖A‖1 = supU | Tr[AU ]|, where the optimization
is over all unitaries and we pick U = I to get the inequality.
The last inequality follows from theorem 1 of Ref. [87] and
because β/2 ∈ (1/2, 1). �

Remark. We note here that the bound from lemma 3 can
be used to obtain pseudo-continuity bounds for information
quantities derived from the Petz-Rényi relative entropy, such
as mutual information and conditional entropy, much like
what is done in proposition 2.8 of Ref. [85].

The following is another auxiliary lemma that serves as
a one-shot converse for any approximate box transformation
(ρ, σ ) N−→ (τ, ω) where ω = N (σ ):

Lemma 4. Let ρ, σ , τ , and ω be quantum states and N
a quantum channel such that N (σ ) = ω. Then for α ∈ (0, 1)
and β ≡ β(α) := 2 − α, we have that

Dβ (ρ‖σ ) � Dα (τ‖ω) + 2

1 − α
log2

[
1 − 1

2
‖N (ρ) − τ‖1

]
.

(J61)

Proof. Consider that

Dβ (ρ‖σ ) � Dβ (N (ρ)‖N (σ )) (J62)

= Dβ (N (ρ)‖ω) (J63)

� Dα (τ‖ω) + 2

1 − α
log2

[
1 − 1

2
‖N (ρ) − τ‖1

]
.

(J64)

The first inequality follows from the quantum data processing
inequality in Eq. (A11) and the other from lemma 3. �

Proposition 2. Let n, m ∈ Z+ and ε ∈ [0, 1]. Let ρ, σ ,
τ , and ω be quantum states and N (n) a quantum channel
constituting an (n, m, ε) box transformation protocol (i.e.,
so that N (n)(ρ⊗n) ≈ε τ⊗m and N (n)(σ⊗n) = ω⊗m). Then for
α ∈ (0, 1) and β ≡ β(α) := 2 − α, we have that

Dβ (ρ‖σ )

Dα (τ‖ω)
� m

n
+ 2

n(1 − α)Dα (τ‖ω)
log2(1 − ε). (J65)

Alternatively, if we set R = m/n, then the above bound can be
written as

−1

n
log2(1 − ε)

�
(

1 − α

2

)
(R Dα (τ‖ω) − Dβ (ρ‖σ )) (J66)

=
(

β − 1

2

)
(R Dα (τ‖ω) − Dβ (ρ‖σ )). (J67)

Proof. Consider that

nDβ (ρ‖σ ) = Dβ (ρ⊗n‖σ⊗n) (J68)

� Dα (τ⊗m‖ω⊗m)

+ 2

1 − α
log2

[
1 − 1

2

∥∥N (n)(ρ⊗n) − τ⊗m
∥∥

1

]
(J69)

� mDα (τ‖ω) + 2

1 − α
log2(1 − ε), (J70)

Dividing by n, we find that

Dβ (ρ‖σ ) � m

n
Dα (τ‖ω) + 2

n(1 − α)
log2(1 − ε), (J71)

which concludes the proof. �
We note here that one could arrive at the strong con-

verse statement by going through steps similar to those in
Eqs. (J41)–(J48), but using proposition 2 instead.

APPENDIX K: BOUNDING THE SMOOTH
MAX-RELATIVE ENTROPY WITH QUANTUM

RELATIVE ENTROPIES

In this Appendix, we establish lower and upper bounds for
the smooth max-relative entropy in terms of the Rényi relative
entropies. We begin with the following lower bound:

Proposition 3. Let ρ and σ be quantum states. The follow-
ing bound holds for all α ∈ [1/2, 1) and ε ∈ [0, 1):

Dε
max(ρ‖σ ) � D̃α (ρ‖σ ) + 2α

α − 1
log2

(
1

1 − ε

)
. (K1)

Proof. First fix α ∈ (1/2, 1). Let ρ̃ be a state such that
1
2‖ρ̃ − ρ‖1 � ε. Then for β ≡ β(α) := α/(2α − 1), we find
that

Dmax(̃ρ‖σ ) � D̃β (̃ρ‖σ ) (K2)

� D̃α (ρ‖σ ) + α

1 − α
log2 F (̃ρ, ρ) (K3)

= D̃α (ρ‖σ ) + 2α

1 − α
log2

√
F (̃ρ, ρ) (K4)

� D̃α (ρ‖σ ) + 2α

1 − α
log2(1 − ε). (K5)

033170-19



XIN WANG AND MARK M. WILDE PHYSICAL REVIEW RESEARCH 1, 033170 (2019)

The first inequality follows from (A18) and (A21). The second
inequality follows from Lemma 1. The final inequality follows
because [81]

1 −
√

F (̃ρ, ρ) � 1
2‖ρ̃ − ρ‖1. (K6)

Since the bound holds for an arbitrary ρ̃ satisfying
1
2‖ρ̃ − ρ‖1 � ε, we conclude (K1).

The inequality in Eq. (K1) for α = 1/2 follows since (K1)
holds for all α ∈ (1/2, 1) and by taking the limit as α →
1/2. �

Another lower bound on the smooth max-relative entropy
is as follows:

Proposition 4. Let ρ and σ be quantum states. The follow-
ing bound holds for all α ∈ [0, 1) and ε ∈ [0, 1):

Dε
max(ρ‖σ ) � Dα (ρ‖σ ) + 2

α − 1
log2

(
1

1 − ε

)
. (K7)

Proof. First fix α ∈ (0, 1). Let ρ̃ be a state such that
1
2‖ρ̃ − ρ‖1 � ε. Then for β ≡ β(α) := 2 − α, we find that

Dmax(̃ρ‖σ ) � Dβ (̃ρ‖σ ) (K8)

� Dα (ρ‖σ ) + 2

1 − α
log2

[
1 − 1

2
‖ρ̃ − ρ‖1

]
(K9)

� Dα (ρ‖σ ) + 2

1 − α
log2(1 − ε). (K10)

The first inequality follows from (A14) and Eqs. (43)–(46) in
Ref. [88], the latter of which we repeat below:

D2 (̃ρ‖σ ) = log2 Tr[̃ρ2σ−1] (K11)

= log2 Tr[̃ρρ̃1/2σ−1ρ̃1/2] (K12)

� log2 sup
τ

Tr[τ ρ̃1/2σ−1ρ̃1/2] (K13)

= log2 ‖ρ̃1/2σ−1ρ̃1/2‖∞ (K14)

= Dmax(̃ρ‖σ ). (K15)

Note that the optimization above is over quantum states τ . The
second inequality in Eq. (K9) follows from lemma 3. Since the
bound holds for an arbitrary state ρ̃ satisfying 1

2‖ρ̃ − ρ‖1 � ε,
we conclude (K7).

The inequality in Eq. (K7) for α = 0 follows since (K7)
holds for all α ∈ (0, 1) and by taking the limit as α → 0. �

We now give some upper bounds on the smooth max-
relative entropy in terms of the quantum relative entropy and
the sandwiched Rényi relative entropy. The method for doing
so follows the proof approach of theorem 1 in Ref. [89] very
closely. The upper bound in proposition 5 is very similar to
theorem 1 of Ref. [89], but it is expressed in terms of quantum
relative entropy rather than observational divergence.

Proposition 5. Given states ρ and σ , the following bound
holds for all ε ∈ (0, 1):

Dε
max(ρ‖σ ) � 1

ε2

[
D(ρ‖σ ) + 1

2 ln 2
‖ρ − σ‖1

]
+ log2

(
1

1 − ε2

)
. (K16)

Proof. The statement is trivially true if ρ = σ or if
supp(ρ) �⊆ supp(σ ). So going forward, we assume that ρ �= σ

and supp(ρ) ⊆ supp(σ ). The SDP dual of Dmax(τ‖ω) is given
by

Dmax(τ‖ω) = log2 sup
��0

{Tr[�τ ] : Tr[�ω] � 1}, (K17)

implying that

Dε
max(ρ‖σ ) = log2 inf

ρ̃: 1
2 ‖ρ̃−ρ‖1�ε

sup
� : � � 0,

Tr[�σ ] � 1

Tr[�ρ̃]. (K18)

Since the objective function Tr[�ρ̃] is linear in � and ρ̃, the
set {� : � � 0, Tr[�σ ] � 1} is compact and concave, and the
set {

ρ̃ : 1
2‖ρ̃ − ρ‖1 � ε, ρ̃ � 0, Tr[̃ρ] = 1

}
(K19)

is compact and convex (due to convexity of normalized trace
distance), the minimax theorem applies and we find that

Dε
max(ρ‖σ ) = log2 sup

� : � � 0,

Tr[�σ ] � 1

inf
ρ̃: 1

2 ‖ρ̃−ρ‖1�ε

Tr[�ρ̃]. (K20)

For a fixed operator � � 0 with spectral decomposition

� =
∑

i

λi|φi〉〈φi|, (K21)

let us define the following set, for a choice of λ > 0 to be
specified later:

S := {i : 〈φi|ρ|φi〉 > 2λ〈φi|σ |φi〉}. (K22)

Let

� =
∑
i∈S

|φi〉〈φi|. (K23)

Then from the definition, we find that

Tr[�ρ] > 2λ Tr[�σ ], (K24)

which implies that
Tr[�ρ]

Tr[�σ ]
> 2λ. (K25)

Now consider from the data processing inequality under the
channel

�(ω) := Tr[�ω]|0〉〈0| + Tr[�̂ω]|1〉〈1|, (K26)

where

�̂ := I − �, (K27)

that

D(ρ‖σ )

� D(�(ρ)‖�(σ ))

= Tr[�ρ] log2

(
Tr[�ρ]

Tr[�σ ]

)
+ Tr[�̂ρ] log2

(
Tr[�̂ρ]

Tr[�̂σ ]

)
= Tr[�ρ] log2

(
Tr[�ρ]

Tr[�σ ]

)
+ 1

ln 2
(Tr[�σ ] − Tr[�ρ])

+ Tr[�̂ρ] log2

(
Tr[�̂ρ]

Tr[�̂σ ]

)
+ 1

ln 2
(Tr[�̂σ ] − Tr[�̂ρ])

� Tr[�ρ] log2

(
Tr[�ρ]

Tr[�σ ]

)
+ 1

ln 2
(Tr[�σ ] − Tr[�ρ])

� λ Tr[�ρ] + 1

ln 2
(Tr[�σ ] − Tr[�ρ]), (K28)

033170-20



RESOURCE THEORY OF ASYMMETRIC … PHYSICAL REVIEW RESEARCH 1, 033170 (2019)

where the second inequality follows because

x log2(x/y) + 1

ln 2
(y − x)

= 1

ln 2
[x ln(x/y) + y − x] � 0, (K29)

for all x, y � 0, and the last inequality follows from (K25).
Then we find that

Tr[�ρ] � λ−1

(
D(ρ‖σ ) + 1

ln 2
Tr[�ρ] − Tr[�σ ]

)
(K30)

� λ−1

(
D(ρ‖σ ) + 1

2 ln 2
‖ρ − σ‖1

)
. (K31)

Pick

λ = 1

ε2

[
D(ρ‖σ ) + 1

2 ln 2
‖ρ − σ‖1

]
, (K32)

and we conclude from the above that

Tr[�ρ] � ε2. (K33)

So this means that

Tr[�̂ρ] � 1 − ε2. (K34)

Thus the state

ρ ′ := �̂ρ�̂

Tr[�̂ρ]
(K35)

is such that (see lemma 9.4.1 in Ref. [67])

F (ρ, ρ ′) � 1 − ε2, (K36)

and in turn that [81]

1
2‖ρ − ρ ′‖1 � ε. (K37)

We also have that

ρ ′ � �̂ρ�̂

1 − ε2
. (K38)

Now let � be an arbitrary operator satisfying � � 0 and
Tr[�σ ] � 1, and let � be the projection defined in Eq. (K23)
for this choice of �. Then we find that

(1 − ε2) Tr[�ρ ′] � Tr[��̂ρ�̂] (K39)

= Tr[�̂��̂ρ] (K40)

=
∑
i/∈S

λi〈φi|ρ|φi〉 (K41)

� 2λ
∑
i/∈S

λi〈φi|σ |φi〉 (K42)

� 2λ Tr[�σ ] (K43)

� 2λ. (K44)

Thus we have found the following uniform bound for any op-
erator � satisfying � � 0 and Tr[�σ ] � 1, with ρ ′ the state

in Eq. (K35) depending on � and satisfying 1
2‖ρ − ρ ′‖1 � ε:

Tr[�ρ ′] � 2λ+log2( 1
1−ε2 )

. (K45)

Then it follows that

Dε
max(ρ‖σ ) = log2 sup

� : � � 0,

Tr[�σ ] � 1

inf
ρ̃: 1

2 ‖ρ̃−ρ‖1�ε

Tr[�ρ̃] (K46)

� log2 sup
� : � � 0,

Tr[�σ ] � 1

Tr[�ρ ′] (K47)

� λ + log2

(
1

1 − ε2

)
. (K48)

This concludes the proof. �
The proof of the following proposition follows the same

proof approach of theorem 1 in Ref. [89] (as recalled above),
but instead employs the sandwiched Rényi relative entropy
and its data processing inequality. The following proposition
was also reported recently in Ref. [90]:

Proposition 6. Given states ρ and σ , the following bound
holds for all α > 1 and ε ∈ (0, 1):

Dε
max(ρ‖σ ) � D̃α (ρ‖σ ) + 1

α − 1
log2

(
1

ε2

)
+ log2

(
1

1 − ε2

)
. (K49)

Proof. The first steps are exactly the same as (K17)–(K25).
Now consider from the data processing inequality under the
channel

�(ω) := Tr[�ω]|0〉〈0| + Tr[�̂ω]|1〉〈1| (K50)

that

D̃α (ρ‖σ ) � D̃α (�(ρ)‖�(σ )) (K51)

= 1

α − 1
log2((Tr[�ρ])α (Tr[�σ ])1−α

+ (Tr[�̂ρ])α (Tr[�̂σ ])1−α ) (K52)

� 1

α − 1
log2

(
(Tr[�ρ])α (Tr[�σ ])1−α

)
(K53)

= 1

α − 1
log2

(
Tr[�ρ]

(
Tr[�ρ]

Tr[�σ ]

)α−1
)

(K54)

= 1

α−1
log2 (Tr[�ρ])+log2

(
Tr[�ρ]

Tr[�σ ]

)
(K55)

� 1

α − 1
log2 (Tr[�ρ]) + λ. (K56)

Now picking

λ = D̃α (ρ‖σ ) + 1

α − 1
log2

(
1

ε2

)
, (K57)
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we conclude that

Tr[�ρ] � ε2. (K58)

The rest of the proof then proceeds as in Eqs. (K34)–(K48),
and we find that Dε

max(ρ‖σ ) � λ + log2 (1/[1 − ε2]). �

APPENDIX L: RESOURCE THEORY OF ASYMMETRIC
DISTINGUISHABILITY BASED ON INFIDELITY

In this paper, we employed the normalized trace distance
throughout as the measure for approximation in approximate
box transformations. As emphasized in the main text, the
primary reason for doing so is due to the interpretation of
normalized trace distance as the error in a single-shot experi-
ment, as discussed around (11). Another advantage is that the
optimizations corresponding to the one-shot operational tasks
of distillation and dilution are characterized by semidefinite
programs in both the theory presented here and in Ref. [43].

One could alternatively employ the infidelity 1 − F (ρ, ρ̃ )
as the measure for approximation. The main disadvantage in
doing so is that the interpretation in terms of error is not as
strong as it is for normalized trace distance. Furthermore, in
the resource theory of asymmetric distinguishability for quan-
tum channels, it is not clear whether the optimizations for the
operational tasks of distillation and dilution are characterized
by semidefinite programs [43].

However, there are some advantages to using the infi-
delity, which we highlight briefly here while avoiding detailed
proofs. For the rest of this Appendix, we employ the following
shorthand:

ρ ≈εF ρ̃ ⇔ 1 − F (̃ρ, ρ) � εF , (L1)

using the notation εF to emphasize that the error is with
respect to infidelity.

First, it is worthwhile to note that the one-shot distillable
distinguishability is unchanged:

DεF
d (ρ, σ ) = DεF

min(ρ‖σ ), (L2)

while the one-shot distinguishability cost becomes

DεF
c (ρ, σ ) = DεF

max(ρ‖σ ), (L3)

where

DεF
max(ρ‖σ ) := inf

ρ̃ : 1−F (̃ρ,ρ)�ε
Dmax(̃ρ‖σ ). (L4)

In the above, the superscript εF serves to distinguish
DεF

max(ρ‖σ ) from the smooth max-relative entropy in Eq. (49).
Then we have the following expansions:

DεF
d ((ρ⊗n, σ⊗n))

= nD(ρ‖σ ) +
√

nV (ρ‖σ )�−1(εF ) + O(ln n), (L5)

DεF
c ((ρ⊗n, σ⊗n))

= nD(ρ‖σ ) −
√

nV (ρ‖σ )�−1(εF ) + O(ln n), (L6)

with the key difference being that the second-order character-
ization of the εF -approximate distinguishability cost is now

tight. The inequality in Eq. (51) becomes as follows:

DεF
min(ρ‖σ )�Dε′

F
max(ρ‖σ )−log2(1−[

√
εF +

√
ε′

F ]2), (L7)

for εF , ε′
F � 0 and

√
εF + √

ε′
F < 1, which follows by em-

ploying the triangle inequality for the sine distance [91–94].
The inequality in Eq. (I1) becomes as follows:

DεF
max(ρ‖σ ) � D1−εF

min (ρ‖σ ) + log2 |spec(σ )|

+ log2

(
1

1 − εF

)
, (L8)

which is a key reason why we obtain (L6). The inequality in
Eq. (K1) becomes

DεF
max(ρ‖σ ) � D̃α (ρ‖σ ) + α

α − 1
log2

(
1

1 − εF

)
, (L9)

for α ∈ [1/2, 1), while (K49) becomes

DεF
max(ρ‖σ ) � D̃α (ρ‖σ ) + log2

(
1

1 − εF

)
+ 1

α − 1
log2

(
1

εF

)
, (L10)

for α ∈ (1,∞). The converse bound in proposition 1 becomes

−1

n
log2(1 − εF ) �

(
1 − α

α

)
(R D̃α (τ‖ω) − D̃β (ρ‖σ ))

(L11)

=
(

β − 1

β

)
(R D̃α (τ‖ω) − D̃β (ρ‖σ )),

(L12)

holding for an arbitrary (n, m, εF ) box transformation proto-
col [i.e., so that N (n)(ρ⊗n) ≈εF τ⊗m and N (n)(σ⊗n) = ω⊗m],
α ∈ (1/2, 1), and β = α/(2α − 1). For distinguishability dis-
tillation with τ = |0〉〈0| and ω = π , so that D̃α (τ‖ω) = 1,
this bound reduces to

−1

n
log2(1 − εF ) �

(
β − 1

β

)
(R − D̃β (ρ‖σ )), (L13)

holding for all β > 1, which is the optimal strong converse
exponent, as shown in Ref. [53]. For distinguishability dilu-
tion with ρ = |0〉〈0| and σ = π , so that D̃β (ρ‖σ ) = 1, and
by multiplying (L11) by n/m and setting the rate S = n/m,
the bound becomes

− 1

m
log2(1 − εF ) �

(
1 − α

α

)
(D̃α (τ‖ω) − S), (L14)

holding for all α ∈ [1/2, 1). It is an interesting open question
to determine the optimal strong converse exponent for distin-
guishability dilution.
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