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Twisted bilayer graphene aligned with hexagonal boron nitride:
Anomalous Hall effect and a lattice model
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A recent experiment reported a large anomalous Hall effect in magic angle twisted bilayer graphene (TBG)
aligned with a hexagonal boron nitride (h-BN) substrate at 3/4 filling of the conduction band. In this paper
we study this system theoretically and propose explanations of this observation. We emphasize that the physics
for this system is qualitatively different from the pure TBG system. The aligned h-BN breaks in-plane twofold
rotation symmetry and gaps out the Dirac crossings of ordinary TBG. The resulting valence and conduction bands
of each valley carry equal and opposite Chern numbers C = ±1. A useful framework is provided by a lattice
extended Hubbard model for this system, which we derive. An obvious possible explanation of the anomalous
Hall effect is that at 3/4 filling the system is a spin-valley polarized ferromagnetic insulator where the electrons
completely fill a Chern band. We also examine an alternate, more radical proposal of a compressible valley-
polarized but spin-unpolarized composite Fermi-liquid metallic state. We argue that either state is compatible
with current experiments and propose ways to distinguish between them in the future. We also briefly discuss
the physics at 1/2 filling.
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I. INTRODUCTION

Moiré superlattices from twisted van der Waals het-
erostructures have emerged as promising platforms to study
strongly correlated effects with high tunability [1–5]. Cor-
related insulators and superconductors have been found
in twisted bilayer graphene and ABC stacked trilayer
graphene/hexagonal boron nitride (TG/h-BN) [2–5].

Very recently a large anomalous Hall effect was observed
[6] in magic angle–twisted bilayer graphene (MA TBG) at
conduction-band filling ν = 3

4 . Specifically, hysteretic jumps
in both the Hall resistivity (ρxy) and longitudinal resistivities
(ρxx ) were observed. At the lowest temperatures, the maximal
measured Hall resistivity is ρxy ≈ 0.5 h

e2 and the corresponding
resistivity is ρxx ≈ 0.3 h

e2 , corresponding to a large Hall angle.
Evidence for nonlocal transport, indicative of conducting
channels at the sample edge, have been presented. A key
new feature of the device studied in Ref. [6] is that one of
the graphene layers is nearly aligned with a h-BN substrate.
This alignment has many important effects, as we explain
below, and serves to distinguish this system from previous
experiments on magic angle TBG where no such anomalous
Hall effect has been reported.

In this paper we study theoretically the MA TBG-hBN
system and propose possible explanations of these observa-
tions. A spontaneously spin-valley polarized Chern insulator
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at 3/4 filling provides a simple and natural explanation for
the large anomalous Hall effect. We also consider a different
novel state which may also explain the data—a compressible
composite Fermi-liquid metal with valley polarization but no
spin polarization. We propose experiments to distinguish these
two distinct states.

In the absence of alignment with h-BN, the moiré band
structure of MA-TBG has “active,” nearly flat bands that are
well separated from other bands. The active bands live in each
of two mini Brillouin zones (MBZs) corresponding to the two
valleys of the underlying graphene layers. Within each valley
the conduction and valence active bands are connected by
Dirac points at the corners of the MBZ. These Dirac points are
protected by an excellent emergent C2T symmetry [7], where
C2 refers to a twofold rotation and T is time reversal. Either
C2 or T maps one valley to the other, but their combination
preserves the valley index. This C2T symmetry maps nonzero
Berry curvature B(k) to −B(k) and thus forbids nonzero mass
terms for the Dirac crossings. If, however, C2T is broken
then the Dirac points will become gapped. Experimentally,
the presence of Dirac points is evidenced by studying the
properties of the system filled to the charge neutrality point
(CNP). Typically at CNP the system is metallic with a low but
nonzero conductance.

An important effect of alignment with h-BN is that the
broken C2 symmetry of h-BN is transmitted to the graphene
bands. Thus the Dirac points are gapped and insulating be-
havior may be obtained at the CNP. This is supported by
the measured ρxx at neutrality in Ref. [6], which is much
bigger than the typical measured values in unaligned TBG
devices. Furthermore, the resulting isolated conduction and
valence bands in each valley carry Chern numbers C = 1,−1
(opposite valleys carry opposite Chern numbers). Thus the
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MA TBG-hBN is similar to the many other examples of
nearly flat ±C bands discussed theoretically recently [8]. As
emphasized in Ref. [8], at total fillings νT = 1, 3 nearly flat
± Chern bands are an excellent platform for the quantum
anomalous Hall effect, as well as other even more novel
many-body states. Recently Ref. [9] described a spin-valley
polarized quantum anomalous Hall state in unaligned twisted
bilayer graphene where C2T is broken by interaction effects.

A further effect of the alignment with h-BN is that there
are now two distinct moiré superlattices. In addition to the
moiré potential produced by the relative twisting of the two
graphene layers, the lattice mismatch between h-BN and
graphene produces another moiré potential [10]. These two
moiré lattices have roughly the same period but are rotated
by 90◦ relative to each other, which makes them mutually
incommensurate. However, the strength of the h-BN–induced
moiré potential is expected to be weaker than the other one,
and it is a reasonable approximation to ignore it to begin
with. It may, however, play a role by producing in-gap states
that may contribute to the lack of exact quantization of the
Hall resistivity (in addition to other mechanisms involving
disorder) in the experiments.

The experimental developments on correlated moiré su-
perlattices has spawned a large theoretical literature—for
a sample see Refs. [11–55]. An important conclusion
[12,36,37,48,49] is that the bands of TBG have a (symmetry)
protected topological structure which obstructs the construc-
tion of lattice tight-binding models with natural (“on-site”)
action of all symmetries. The C2T breaking induced by the
alignment with h-BN, however, removes this obstruction, and
it is possible to construct a lattice tight-binding model to
represent the conduction and valence band taken together
within each valley. Unsurprisingly, we show that this takes the
form of a lattice Haldane model. Combining the two valleys
and projecting the Coulomb interaction yields an effective
lattice “extended” Hubbard model suitable for TBG-hBN.
This lattice model provides a useful framework to discuss the
physics and may also be useful for future numerical studies.

II. BAND STRUCTURE

We consider a twisted bilayer graphene where the top layer
is aligned with the h-BN layer substrate. The twist angle
between the two graphene layers θM is chosen to be close to
the magic angle θM = 1.05◦−1.20◦. The twist angle between
the top h-BN layer and the top graphene layer θhBN is close to
zero. We assume the bottom h-BN substrate is misaligned and
its effect can be ignored.

We use the standard continuum model [56] (with w0
w1

= 0.7
[13] to account for lattice relaxation) to calculate the band
structure of the TBG/h-BN system. As time-reversal symme-
try flips the valley, we can focus only on the band structure
within a single valley, say +. The Hamiltonian is

H = HT BG + HhBN . (1)

Here HT BG is the continuum model for the TBG in Ref. [56].
The aligned h-BN has two effects on the top graphene

FIG. 1. Band structure for valley + of the TBG/h-BN system in
the MBZ. θM = 1.20◦. The band of valley − can be generated from
the time-reversal transformation.

layer:

HhBN =
∑

k

Mψ†
t (k)μzψt (k) +

∑
j=1,...,6

ψ†
t (k + Q′

j)Vjψt (k),

(2)

where ψt,b(k) represents electron destruction operators in the
top and bottom valley. k belongs to the whole R2 space.
The first term is an induced staggered potential on the A, B
sublattices of the top graphene layer which acts as a “mass”
term. A rough estimate is obtained from experiments on
monolayer graphene nearly aligned with h-BN [57] which
show that the band gap at the neutrality point is around
35 meV. This implies M ≈ 17 meV. The second term in
Eq. (2) represents the moiré potential coming from the lattice
mismatch between h-BN and graphene. The resulting moiré
wave vectors are incommensurate with those associated with
the TBG superlattice. Furthermore, a rough estimate from
DFT calculations gives Vj ≈ 10 meV [10], which is much
smaller than the strength of the TBG moiré term (around
110 meV [56]), and somewhat smaller than the first term. Thus
as a first approximation we ignore the Vj . This considerably
simplifies our analysis, as we now have a well-defined band
structure in the moiré superlattice of TBG.

The band structure is shown in Fig. 1 for M = 15 meV.
As expected, there is a finite band gap at around 5 meV
for the value of M we used. Importantly, through explicit
calculation the conduction and the valence bands for the
valley + has Chern number C = 1,−1. This Chern number
is a simple symptom of the underlying subtle band topology
[12,36,37,48,49] of the unaligned TBG system and is closely
related to the “flipped Haldane model” picture described in
Ref. [36].

Under a very small out of plane magnetic field, the re-
sponse of a massive Dirac cone at point K or K ′ has two
contributions: (1) the first part is just the nonrelativistic re-
sponse, and (2) the second part is a valley Zeeman coupling
−gv (k)μBHz

τz

2 [58], where τa, a = x, y, z is the Pauli matrix
in valley space. We numerically calculated gv for θM = 1.20◦
and M = 15 meV. Indeed, we find that the average valley
Zeeman coupling g factor is ḡv = 1

ABZ

∑
k gv (k) ≈ 4. This

implies that the two valleys have an opposite out-of-plane
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magnetic moment, which is crucial to understanding the
hysteresis of the anomalous Hall effect in Ref. [6]. The
splitting of bands between the two valleys is also crucial in
understanding the Landau fan degeneracy and the magnetore-
sistance. However, we need to emphasize that both contri-
butions need to be included. Although for an infinitesimal
field it is sufficient to consider the valley Zeeman coupling,
in reality, the most efficient way to understand the response
to Bz is to calculate Landau levels directly. We will take
this approach later to understand the magnetoresistance at
ν = 1

2 .
Combining the two valleys, we can now project the

Coulomb interaction onto these bands to obtain an effective
model. There are three important energy scales: the bandwidth
W of the conduction band, the band gap � (between conduc-
tion and valence bands), and the interaction strength U . Our
focus is on the experimentally observed correlated insulators
at ν = 1/2 and ν = 3/4 of the conduction band.

First consider the limit � � U � W . Then we only need
to keep the four conduction bands (including spin and valley)
and the problem reduces to the nearly flat ± Chern band
system studied in Ref. [8]. In the flat-band limit, the ground
state should be a ferromagnetic insulator from spin or valley
polarization. In particular, valley polarization is favored over
intervalley coherence within a Hartree-Fock calculation [8].
For ν = 3

4 , the quantum anomalous Hall effect(QAHE) with

|σxy| = e2

h emerges by polarizing both spin and valley. At
ν = 1

2 in this flat-band limit, we expect instead a spin-
polarized insulator with a quantum valley Hall effect.

III. LATTICE MODEL

Strictly speaking, the TBG/h-BN system is in a different
limit U ∼ W > �, and the detailed many-body physics may
differ from that discussed in Ref. [8]. When � < W , both
the conduction bands and the valence bands should be kept
in the low-energy model. Below we provide a lattice model
by Wannier construction of the active bands (conduction
and valence bands) which, in contrast to standard TBG, is
possible given the broken C2T symmetry. The system still has
a C3 rotation symmetry, and we numerically calculate the C3

eigenvalues at the high-symmetry momentum points from the
continuum model. We take the rotation center as the AA site.
The C3 eigenvalues at 	, K, K ′ are 1, ω, ω for the conduction
band and 1, ω∗, ω∗ for the valence band, with ω = ei 2π

3 . The
distinct eigenvalues at 	, K, K ′ imply that we cannot represent
the system on the natural triangular lattice formed by the AA
regions. A honeycomb representation is, however, possible
(see Fig. 2). The corresponding Wannier functions are readily
constructed and have the familiar fidget-spinner shape [12],
reflecting the concentration of charge in the AA regions. We
obtained the Wannier orbitals and tight-binding parameters
using the standard numerical method, similar to the method
in Ref. [59].

Let a1 = aM (0, 1) and a2 = aM (
√

3
2 , 1

2 ) be two basis vec-
tors for the honeycomb lattice and define the electron operator
ci;aσ , where a = ± and σ = ↑,↓ are the valley and spin index.

FIG. 2. Illustration of the lattice model on a Honeycomb lat-
tice. C3t (R)C−1

3 = t (C3R) generates intersublattice hopping, and
C6t ′(R)C−1(6) = t ′∗(C6R) generates intrasublattice hoppings.

The tight-binding model takes the form

HK = −m0

∑
i

(−1)X (i)c†
i;aσ ci;aσ

−
∑
aσ

∑
i j

(
t a
i jc

†
i;aσ c j;aσ + H.c.

)
, (3)

where X (i) = ±1 on the A and B sublattices. Time-reversal
symmetry requires that t+

i j = t−∗
i j = ti j . For each valley this is

a modified Haldane model in its topological phase (with a few
extra hopping parameters). The tight-binding parameters can
be found in Appendix B.

The fidget-spinner Wannier orbital implies that the in-
teraction is dominated by a cluster charging [12] Hubbard
interaction. Furthermore, due to the nonzero spatial overlap
between Wannier orbitals on different sites, there will be an
intersite Hund’s term J [59,60]. The interaction term is thus

HV = U
∑
�

n2
� − J

∑
i j

∑
p

Sp
i Sp

j + · · · . (4)

Here n� is the electron charge summed over the sites of a
hexagonal cluster [61]. p = 1, . . . , 15 is summed over the 15
generators of SU(4), and the ellipses represent other terms
(e.g., a pair hopping) that are less important in the insulator.

Finally, we have a lattice model by combining the kinetic
and the interaction terms [Eqs. (3) and (4)]. Strictly speaking,
we also need to add a quasiperiodic potential from the incom-
mensurate h-BN layer (see details in Appendix).

Given this lattice model, we can consider the strong-
coupling limit U � �,W . Then at integer total fillings we
will get Mott insulators where the charge on every cluster
is frozen. The corresponding insulator cannot have any Hall
response: for a nonzero σxy, a Laughlin type of threaded flux
induces charge Q = σxye, while in the U � �,W limit the
local density cannot be changed. Of course, the experimental
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system is likely in the regime U ∼ W � � and this strong-
coupling limit is not directly relevant.

IV. ANOMALOUS HALL EFFECT AT ν = 3
4

The observation of a hysteretic anomalous Hall effect in the
experiment [6] clearly shows [62] that there is spontaneous
time-reversal breaking associated with valley polarization at
ν = 3

4 . Assuming full valley polarization, we then have a
spinful “Haldane model” supplemented with interactions at
half filling of the conduction band.

If the ground state is fully spin and valley polarized, then
we get the Chern insulator and there will be a quantized
anomalous Hall effect. In an ideal sample, this state has
ρxy = ± h

e2 , ρxx = 0, corresponding to a Hall angle of 90◦.
Such a spin-valley ferromagnetic insulator state has very good
Coulomb energy but has poor kinetic energy. Thus when
W ∼ U it is interesting to contemplate other states of matter.
We will assume full valley polarization in the discussion
below.

For W � U , a simple Fermi liquid will be the ground state.
This state has σxx � e2/h, σxy ∼ e2/h. The Hall conductance
is due to a quasiparticle Berry phase that will exist at generic
filling of the Chern band. It follows that ρxy � ρxx so that the
anomalous Hall resistivity is small, unlike in the experiments.

How should we connect the Fermi liquid at W � U to
the ferromagnetic Chern insulator? A natural possibility (ac-
cessed through a Stoner mean-field theory) is that the Fermi
liquid first undergoes a transition to a partially spin-polarized
Fermi liquid, which then gives way at larger interaction
strengths to the fully spin-polarized ferromagnetic insulator.
The properties of the partially spin-polarized metal will in-
terpolate continuously between those of the spin-unpolarized
Fermi liquid and the ferromagnetic insulator. A key experi-
mental signature of this phase will be the presence of two dis-
tinct oscillation frequencies (corresponding to the spin-split
Fermi surfaces) in Shubnikov–de Haas (SdH) experiments.

We now describe an alternate possibility for an intermedi-
ate coupling phase. We reason by analogy to a Landau level
to which a C = 1 band is closely analogous. Since each spin
species is at half filling of the C = 1 band, we may expect
the system to be similar to that of spinful electrons in a
half-filled Landau level. In the traditional half-filled Landau
level it is well known that a compressible metallic state—the
composite Fermi liquid (CFL)—is formed. In the presence
of spin it is favorable to instead spin polarize to form a
ferromagnetic integer quantum Hall state. In contrast to the
traditional Landau level, the Chern band has a dispersion.
Thus a spin-unpolarized CFL may be competitive. Such a
state should retain much of the kinetic energy of the simple
Fermi liquid while doing better on the Coulomb energy. A
convenient description is through a parton construction ci;σ =
b fi;σ where the spinless slave boson b carries physical charge
and fσ is spin-1/2 neutral fermion. In the CFL phase, the
boson is at filling ν = 1 of a C = 1 band and can form a
fractional Chern insulator (Pfaffian state) with σ b

xy = e2

h , σxx =
0. Using the Ioffe-Larkin rule [63], we get the resistivity
tensor of the physical electrons: ρc = ρ f + ρb. In the clean

limit, ρb = (
0 − h

e2
h

e2 0 ) and |ρ f | � 1 is metallic. Then we get

ρc
xy ∼ h

e2 � ρc
xx ∼ ρ

f
xx. Then the Hall angle tan−1 (

ρc
xy

ρc
xx

) is close

to, but strictly smaller, than 90◦. More details on this CFL
phase can be found in the Appendixes.

Thus the spin-unpolarized composite Fermi liquid provides
a concrete interesting intermediate-coupling metallic state
with a large Hall angle. This state will show SdH oscilla-
tions with a frequency that, in contrast to the partially spin-
polarized Fermi liquid, matches the band theory Fermi liquid.
Other related novel states of matter can also be contemplated,
but we will leave their elaboration to the future.

Though the Hall angle in the experiments is large, it clearly
does not precisely match the expectation of an ideal quantized
anomalous Hall system or of the composite Fermi liquid.
This is possibly due both to the presence of disorder and to
the presence of the quasiperiodic potential. In particular, the
quasiperiodic potential may produce nearly extended in-gap
states which may reduce the Hall angle to close to 45◦ in the
experiment. Finally, we remark that in both the QAH and the
CFL state the conduction is predominantly through the sample
edge, which will lead to a nonlocal response consistent with
experiments.

V. CORRELATED INSULATOR AT ν = 1
2

We now turn to the correlated insulator observed at ν = 1
2 .

While more exotic phases cannot be ruled out, the observed
twofold degeneracy of the Landau fan [6] suggests a simple
picture of a ferromagnetic insulator. Valley polarization can
be ruled out because there are no anomalous Hall signatures
in the experiment. For a spin-polarized insulator, the Landau
fan from it should have sequence ν = 1, 2, . . . because of the
splitting of the zeroth Landau levels from the two valleys [64].
Especially, the ν = 1 quantum Hall state should have a large
charge gap equal to � [64]. However, in the experiment the
first Landau fan sequence seen is 2 instead of 1 [6]. Therefore
spin polarization may not be the solution at half filling. We
suggest the ν = 1

2 insulator has an intervalley-coherent order
(IVC) with τx,y or τx,y �σ valley polarization (see Appendixes).
Energetically, within a Hartree-Fock theory in momentum
space such an IVC order is known to be favored when
the anisotropy δξ (k) = |ξ+(k) − ξ−(k)| is large [8,12,59]. In
the Appendixes we show that τx �σ is selected by the inter-
valley Hund’s term breaking U(2)+ × U(2)− symmetry of
separate spin and charge conservation of each valley down
to U(1)charge × U(1)valley × SU(2)spin. An in-plane magnetic
field Hx further favors τxσy,z. The Appendixes also show that
the magnetoresistance for the IVC order can be positive or
negative depending on details. Therefore it does not contradict
the positive magnetoresistance observed in the experiment [6].

VI. CONCLUSION

In conclusion, we described several aspects of the physics
of magic angle twisted bilayer graphene aligned with a h-BN
substrate. The C2 breaking due to alignment with h-BN gaps
the Dirac points of TBG and further renders the conduction
and valence bands with Chern numbers C = ±1. This sug-
gests a natural explanation of the recent observation [6] of a
large anomalous Hall effect at 3/4 filling of the conduction
band, as a spontaneously spin-valley polarized ferromagnetic
Chern insulator. Energetically, such a state is natural when the
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Coulomb interaction is strong compared to the bandwidth.
At intermediate coupling, other more novel states with a
large anomalous but unquantized Hall effect are possible. The
concrete example we discussed—a spin-unpolarized compos-
ite Fermi liquid—may provide an alternate explanation of
the data. We constructed a lattice extended Hubbard model
for TBG/h-BN which may be useful for future numerical
explorations of intermediate coupling phases. Furthermore,
this model could also provide an effective model for TBG if
C2T is spontaneously broken, which may be also relevant to
recent experiments reported in Ref. [65].

Note added in proof. Our discussion overlaps that of a
recent paper by N. Bultinck et al., also on TBG/h-BN [66].
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APPENDIX A: BAND STRUCTURE CALCULATION

The continuum model for the TBG is [56]

HT BG =
∑
α=t,b

∑
k

ψ†
α (k)h+

0 ψα (k)

+
∑

k, j=1,2,3

(ψ†
t (k + Qj)Tjψb(k) + H.c.). (A1)

Here we focus on valley +. The other valley is related by
time-reversal transformation. ψα is a two-component spinor
in terms of the A and B sublattice for each layer. h†

0 is the
standard Dirac Hamiltonian:

h+
0 = kxμ1 + kyμ2, (A2)

where μa is the Pauli matrix in the sublattice A, B space for
the top layer or the bottom layer. Tj, j = 1, 2, 3 is the moiré
term for the interlayer coupling. Q1 = R−θM/2Ko − RθM/2Ko,

where Rθ rotates a 2D vector by θ around the z direction. Ko

is one of the corners of their original large Brillouin zone:

T1 = w0 − w1μ1, (A3)

where Q2, Q3 and T2, T3 are generated by C3 symmetry:
ψα (k) → ei 2π

3 μ3ψα (C3k).
We use the parameters w1 = 110 meV and w0

w1
= 0.7

[13] to incorporate the lattice relaxation effects. This value
of w0

w1
gives a hybridization gap of around 30–40 meV

between the valence band and the band below for twist
angle θM = 1.05◦–1.20◦, consistent with the experimental
measurement [2].

As argued in the main text, the aligned h-BN layer on the
top provides a mass term for the top graphene layer:

HhBN = M
∑

k

ψ†
t (k)μzψt (k). (A4)

We then diagonalize HT BG + HhBN from Eqs. (A1) and
(A4) and get the band structure shown in Fig. 1 of the main
text. Due to the twist angle θM , the original Dirac cone at Ko

point for the top graphene layer is put at the K ′ point of the
mini Brillouin zone (MBZ) while the original Dirac cone at
Ko for the bottom graphene layer is put at the K point of the
MBZ.

In the presence of the M term in the Eq. (A4), the Dirac
crossing is gapped at the K ′ point even if we suppress the
interlayer coupling Tj to zero. With the interlayer coupling
Tj , the Dirac cone at the K point is also gapped. The band
gap at K ′ is around 10 meV while the band gap at the K
point is only 5 meV. Note that there is no symmetry relating
K and K ′. Also, the conduction and the valence bands are
well separated from the other bands using w0

w1
= 0.7, as shown

in Fig. 3, and from each other. Thus the Chern numbers
are well defined for both conduction and valence bands.
We calculate the Chern number of each band following the
same method used in Ref. [8]. For the valley +, we find
that the conduction and the valence bands have Chern num-
bers C = 1 and C = −1, respectively. Because of the time-
reversal symmetry, the other valley must have opposite Chern
numbers.

FIG. 3. Band structure for valley + of the TBG-h-BN system in the MBZ: (a) θ = 1.08◦ and (b) θ = 1.20◦. The middle two bands are well
separated from the other bands. The middle two bands have Chern numbers C = 1 and C = −1. We use w0

w1
= 0.7 to incorporate the lattice

relaxation effects.
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TABLE I. Tight-binding model parameters for the modified Haldane model in units of meV.

θM m0 t t ′
A t ′

B t ′′ t ′′′
1 t ′′′

2

1.08◦ 1.36 1.22 0.670ei0.366π 0.731e−i0.657π 0.801e−i0.685π 0.123e−i0.48π 0.355e−i0.411π

1.20◦ 0.076 3.056 0.837ei0.56π 0.828e−i0.469π 2.062e−i0.54π 0.915e−i0.337π 0.815e−i0.434π

Valley Zeeman coupling

As discussed in the main text, the alignment of the h-BN
gives a mass to the Dirac cones at the K and K ′ points in
the MBZ for each spin and each valley. As is well known,
a massive Dirac fermion can have an out-of-plane magnetic
moment, which is opposite for opposite valleys. Therefore
there is a valley Zeeman coupling to the out-of-plane magnetic
field:

Hv = −1

2
μBBz

∑
k

gv (k)c†(k)τzc(k), (A5)

with gv ∼ 1
�

. We numerically calculated gv for θM = 1.20◦
and M = 15 meV. Indeed, we find that close to the K and
K ′ point, gv (K ) ≈ gv (K ′) ≈ 15 for both the conduction and
valence bands, which is 1 order of magnitude larger than the
spin Zeeman coupling. Averaging over the whole MBZ, we
have ḡv ≈ 4 because the valley Zeeman coupling away from
the K and K ′ points is small.

We need to emphasize that the valley Zeeman coupling
does not capture all effects of an out-of-plane magnetic field.
We should also include the part corresponding to the Landau
levels of a nonrelativistic band without any Berry curvature.
Besides, the semiclassical picture on which the valley Zeeman
coupling relies is limited to an infinitesimal magnetic field. In
graphene moiré superlattice, the magnetic flux is large ( 1

6 of
flux quanta) for Bz ≈ 5 Tesla in the experiment. Therefore,
the best way to capture the response to Bz is to calculate
the Landau levels directly. This approach has been taken by
Ref. [64]. At the neutrality point, the low-energy physics is
captured by one massive Dirac cone per valley. Because of
the polarization of pseudospin for the zeroth Landau level of
a Dirac cone, the zeroth Landau levels from the two valleys
are split by a gap equal to �. Therefore we expect a Landau
fan with ν = 2, 4 at neutrality where the twofold degeneracy
is from the spin. This is indeed what has been observed in the
experiment [6].

APPENDIX B: LATTICE MODEL

The TBG system has a Wannier obstruction to con-
struct a valley-preserving and C2T symmetric model
[12,36,37,48,49]. In the TBG-hBN, the C2T is broken by
the alignment to h-BN. As a result, there is no Wannier
obstruction for a valley-preserving lattice model. For each
valley, where the conduction and the valence bands have the
opposite Chern numbers, we can build a lattice model by
combining both bands. We constructed the Wannier orbitals
following the standard projection methods [67]. The resulting
lattice model is a modified “Haldane model” on a honeycomb
lattice for each valley. However, the two lattice sublattice
sites correspond to the AB and BA regions, while the density

is concentrated on the AA regions. Therefore each Wannier
orbital has the shape of a fidget spinner, similar to Ref. [12].

1. Tight-binding parameters

In Table I we show tight-binding parameters defined in the
main text for two twist angles.

2. Quasiperiodic potential

We also need to add a quasiperiodic potential term from
projecting the Vj term in Eq. (2) to the two orbitals:

HQP = VQP

∑
i

cos(Q′
j · Ri)c

†
i;aσ ci;aσ , (B1)

where we ignored the quasiperiodicity in the hopping terms
for simplicity. The value of VQP can be tuned by the displace-
ment field, and we keep it as a free parameter.

3. M → 0 limit

For any finite M we can build a lattice model on a honey-
comb lattice, as done in the main text. This process can even
be extrapolated to the M → 0 limit. How is this consistent
with the Wannier obstruction at M = 0? In the following we
try to resolve this puzzle. The Wannier obstruction at M = 0
is related to the C2T symmetry and is therefore different
from the intrinsic Wannier obstruction for the Chern band.
Once C2T breaking is allowed, an exponentially localized
Wannier orbital is possible and we can actually recover the
gapless Dirac crossing with a finite range of hopping, such
as R < 7. This process is conceptually similar to the Wannier
construction process by ignoring the U(1) valley symmetry in
Ref. [12].

In this process, the lattice model contains C2T breaking
terms even in the M → 0 limit. The typical C2T breaking
term is the next-nearest-neighbor hopping t ′

A ≈ −t ′
B = t ′. As

shown in Fig. 4, when the external C2T breaking term M
is large, the lattice model has a C2T breaking term t ′ ∝ M.
When M is small, the C2T breaking term in our lattice model
is obviously overestimated. With enough range of hopping,
we can still reduce the band gap in the lattice model to be
proportional to M at the M → 0 limit. This means that the
lattice model with enough range of hopping has a hidden
nonlocal C2T symmetry. If one can keep all these nonlocal
terms in the lattice model, one can still get the correct result
of Dirac crossings between the valence and conduction bands.
However, the purpose of a lattice model is to do a useful
approximation. Such a lattice model with a nonlocal C2T
symmetry (see, e.g., Ref. [60]) is dangerous because it is not
clear how to do approximate calculations that maintain this
symmetry. (Similarly, if one does not insist on a local repre-
sentation of the U(1)valley symmetry, a lattice model is also
possible in the M → 0 limit, as explicitly done in Ref. [12]).
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FIG. 4. The C2T breaking term in the lattice model t ′ and the
band gap � with M. As M → 0, the lattice model does not have
obvious C2T symmetry.

Thus a useful lattice model that keeps just the states from the
active bands is possible only for the large-M regime, i.e., when
h-BN is aligned.

APPENDIX C: FERROMAGNETIC INSULATOR AT ν = 1
2

At ν = 1
2 , there is exactly one hole at each honeycomb

lattice site. Therefore a strong-coupling approach for U �
t, t ′ with an intersite Hund’s term favors a simple insulator
which puts a spin-valley polarized hole at each site [59,60].
Either τz or τx valley polarization is selected, depending on
the competition between the interaction and the kinetic term
[59]. However, this phase leaves both the conduction and
valence band of one flavor empty, which costs kinetic energy.
Therefore, for the experimentally relevant U ∼ W regime, the
strong-coupling approach is also not appropriate at ν = 1

2 .
For U ∼ W , a more natural ferromagnetic (FM) order

is one where only the conduction bands of two flavors are
pushed up while the other two conduction bands are fully
filled. This is described by the order parameter c†τaσbc, where
c is the electron destruction operator for the conduction band
(we suppressed the spin-valley index). τ a are Pauli matrices
in valley space, and σ a are spin Pauli matrices.

We consider only FM order without momentum depen-
dence (i.e., the particle-hole pair that forms the order pa-
rameter has zero internal momentum). There are 15 such
order parameters corresponding to τ a, σ a, τ aσ b. Our system
has an approximate symmetry U(2)+ × U(2)−[8,12] gener-
ated by �σ , τz �σ , τz and the total charge. For any particle-
hole order ψ†Aψ with A a 4 × 4 matrix, another order is
degenerate from the spin-valley rotation: A → UAU † where
U ∈ U(2)+ × U(2)−. It is then easy to verify that the 15 FM
orders can be grouped to three classes: (1) τz; (2)τz �σ , �σ ; and
(3) τx,y, τx,y �σ . We can try to decide which of these distinct
FM orders is selected by the anisotropies in the Hamilto-
nian based on a simple Hartree-Fock calculation. For fully
polarized states with τ z or τ z �σ ordering, the Hartree-Fock
energies are readily seen to be the same. Thus it suffices to
compare τ z and τ x,y ordering. As argued in previous papers
[8,12], within such a Hartree-Fock calculation, either τ z or
τ x,y ordering wins depending on the bandwidth. The flat-band
limit prefers τ z, while for wider bands it is possible to stabilize

τ x,y. A further selection within each group of orders related
by U(2)+ × U(2)− occurs through a weak intervalley Hund’s
interaction that locks spins in the two valleys together.

We therefore proceed phenomenologically and ask which
such order is consistent with results from experiments [6] at
ν = 1

2 . First, τz can be ruled out because of the absence of the
anomalous Hall effect at this filling. Next we discuss the spin
polarization σz order. For a spin-polarized insulator, we expect
that the Landau fan degeneracy from it is one-half of the one at
neutrality. Therefore the Landau fan expected should be ν =
1, 2, . . . . Besides, the quantum Hall sequence at ν = 1 should
have a charge gap ∝ to � [64]. However, in the experiment
the degeneracy of the first Landau fan observed is 2 instead of
1. This implies that a simple σz order may not work.

In contrast, τx,y or τx,y �σ order is consistent with the twofold
Landau fan degeneracy because there is still spin. In the next
section we discuss the IVC order using the lattice Haldane
model. Before we proceed, we need to first decide which one
among τx and τx �σ is selected by the intervalley Hund’s term.
In the lattice model, the dominant intervalley Hund’s term can
be written as an on-site four-fermion interaction [59]:

HJ = g
∑

i

∑
σ1,σ2=↑,↓

c†
+σ1

(i)c†
−σ2

(i)c+σ2 (i)c−σ1 (i). (C1)

Note that g > 0 corresponds to intervalley Hund’s while
g < 0 corresponds to anti-Hund’s. We only need to compare
the expectation value of HJ for τx and τxσz order. Using Wick’s
theorem,

HJ = −g
∑

i

∑
σ1,σ2=↑,↓

〈c†
+σ1

(i)c+σ2 (i)〉〈c†
−σ2

(i)c−σ1 (i)〉

+ g
∑

i

∑
σ1,σ2=↑,↓

〈c†
+σ1

(i)c−σ1 (i)〉〈c†
−σ2

(i)c+σ2 (i)〉. (C2)

It is easier to work in the τx basis instead of τz. We
label S and A as the valley polarization corresponding to
1 and −1 of τx. We have c±,σ (i) = 1√

2
[cSσ (i) ± cAσ (i)].

Under time reversal, cS → cS while cA → −cA. Thus
for a time-reversal invariant ansatz, 〈c†

Sσ (i)cAσ (i)〉 =
0. This leads to 〈c†

+σ (i)c+σ (i)〉 = 〈c†
−σ (i)c−σ (i)〉 =

1
2 (〈c†

Sσ (i)cSσ (i)〉 + 〈c†
Aσ (i)cAσ (i)〉) and 〈c†

+σ (i)c−σ (i)〉 =
〈c†

−σ (i)c+σ (i)〉 = 1
2 (〈c†

Sσ (i)cSσ (i)〉 − 〈c†
Aσ (i)cAσ (i)〉).

We label np,σ (i) = 1
2 〈c†

Sσ (i)cSσ (i) + c†
Aσ cAσ (i)〉 and

nm,σ (i) = 1
2 〈c†

Sσ (i)cSσ (i) − c†
Aσ (i)cAσ (i)〉. Because both τx

and τxσz commute with σz, we know that 〈c†
+σ1

(i)c+σ2 (i)〉 is
nonzero only for σ1 = σ2. Therefore,

〈HJ〉 = −g
∑

σ

∑
i

〈c†
+σ (i)c+σ (i)〉〈c†

−σ (i)c−σ (i)〉

+ g
∑
σ1σ2

∑
i

〈c†
+σ1

(i)c−σ1 (i)〉〈c†
−σ2

(i)c+σ2 (i)〉

= −g
∑

σ

∑
i

npσ (i)npσ (i) + g
∑
σ1σ2

∑
i

nmσ1 (i)nmσ2 (i)

= −g
∑

σ

∑
i

npσ (i)npσ (i) + g
∑

i

nm(i)nm(i), (C3)

where nm(k) = nm↑(k) + nm↓(k) is the difference between
the occupation number of the S band and the A band.
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FIG. 5. Band structures for IVC order with (a) M = 0 and (b) M = 0.3. We use t = 1, t ′ = 0.3i, and � = 2. Dashed line labels the half
filling of the conduction band.

For τx and τxσz order, the first term is the same because
npσ (i) is basically the density for the spin σ , which is fixed
by the total density. To minimize the second term, we need to
minimize nm(i). For τx order, nm↑(i) = nm↓(i), while for τxσz

order we have nm↑(i) = −nm↓(i). Therefore we conclude that
τx �σ is selected by the intervalley Hund’s term g > 0.

In the following part we discuss the property of the IVC
order τx. For simplicity, we only keep the following tight-
binding parameters: m0 = M, t and t ′

A = t ′∗
B = t ′. Note this

choice is just the standard Haldane model for which t ′
A = t ′∗

B .
In this simple model, the M = 0 limit has inversion symmetry.

In momentum space, we have

h+(k) =
(

M − 2t ′[ cos(ky + ϕ) + 2 cos
(√

3
2 kx

)
cos

(
1
2 ky − ϕ

)] −t
(
ei kx√

3 + 2e−i kx
2
√

3 cos ky

2

)
−t

(
e−i kx√

3 + 2ei kx
2
√

3 cos ky

2

) −M − 2t ′[ cos(ky − ϕ) + 2 cos
(√

3
2 kx

)
cos

(
1
2 ky + ϕ

)]
)

(C4)

for valley +, and

h−(k) =
(

M − 2t ′[ cos(−ky+ϕ)+2 cos
(√

3
2 kx

)
cos

(− 1
2 ky−ϕ

)] −t
(
ei kx√

3 + 2e−i kx
2
√

3 cos ky

2

)
−t

(
e−i kx√

3 + 2ei kx
2
√

3 cos ky

2

) −M − 2t ′[ cos(−ky − ϕ)+2 cos
(√

3
2 kx

)
cos

(− 1
2 ky+ϕ

)]
)

(C5)

for valley −.
Next we add IVC order. First let us add τx order to avoid

the complexity from spin. Generalization to τxσz order is
straightforward. The mean-field ansatz we add is simply

HIVC = �
∑

σ

∑
i

c†
+σ (i)c−σ (i) + c†

−σ (i)c+σ (i). (C6)

In Fig. 5 we show the band structures after adding IVC for
m0 = 0 and m0 �= 0 cases separately. For M = 0 we find there
is Dirac crossing at half filling. This is just a manifestation
of existence of nodes of IVC orders in momentum space for
± Chern bands, as pointed out by Ref. [66]. Basically, if we
project the IVC order parameter in Eq. (C6) to the conduc-
tion band, the corresponding IVC order in momentum space
�̃(k) = �μ∗

+(k)μ−(k) inherits the winding of Bloch wave
functions. Because μ+(k) has a 2π winding while μ−(k) has
a −2π winding in the MBZ, �̃(k) inherits a −4π winding in
the MBZ. This means there are two vortices associated with
the complex field �̃(k). In terms of conduction band, we have

the mean-field ansatz

HM (k) = Ax(k)τx + Ay(k)τy + Az(k)τz, (C7)

because Ax(k) = Re�̃(k) and Ay(k) = Im�̃(k). τμ are Pauli
matrices in the valley space, and Ax and Ay are from IVC
orders. We conclude that the vector (Ax, Ay) has two vortices
in the MBZ. Because of the time-reversal symmetry and C3

rotation symmetry, these two vortices are pinned at the K and
K ′ point. Close to the K point, we have (Ax, Ay) = υF (kx, ky).
When M = 0, there is still inversion symmetry within each
valley. Therefore Az(k) = 0 and we have two Dirac crossings.
In the real TG-hBN problems, there is, of course, no inversion
symmetry within each valley. So at each momentum the two
valleys have different energies and generically Az(k) �= 0.
Therefore one gets a gap as shown in Fig. 5.

Because of time-reversal symmetry, there is degeneracy
between K and K ′. Naively, we expect fourfold degener-
acy in Landau levels from the IVC insulator. However, as
pointed out in Ref. [64], C3 breaking will reduce the mini
valley degeneracy. In the TBG samples, scanning tunneling
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microscopy experiments show quite significant C3 breaking.
Therefore the IVC order is consistent with the twofold Landau
fan degeneracy in the experiment [6].

In the experiment [6], the resistance for the correlated insu-
lator at half filling increases under the out-of-plane magnetic
field Bz. Next we show that this positive magnetoresistance is
also consistent with IVC order. As shown in Fig. 5, the charge
gap is mainly decided by the band gap at K and K ′ in the
MBZ. Therefore we can write down a low-energy mean-field
model close to the K and K ′ points by assuming IVC order:

hK (k) = υF kxτx + υF kyτy + [
M + A

(
k2

x + k2
y

)]
τz, (C8)

where τx, τy terms are from IVC order.
By time-reversal symmetry τx, the low-energy model at K ′

is fixed to be

hK ′ (k) = −υF kxτx − υF kyτy − [
M + A

(
k2

x + k2
y

)]
τz. (C9)

Under Bz, the Landau levels of these two massive Dirac
cones can be solved exactly. The zeroth Landau levels at K
and K ′ have energies

EK
0 (Bz ) = M + 2ABz, EK ′

0 (Bz ) = −M − 2ABz. (C10)

Therefore the charge gap for the ν = 1/2 correlated insulator
is

�c(Bz ) = 2M + 4ABz. (C11)

If A > 0, there is a positive magnetoresistance. Micro-
scopically, [M + A(k2

x + k2
y )]τz is just the energy difference

between the two valleys. A nonzero A can be generated by
adding t ′

A �= t ′
B. The sign of A can be arbitrary depending

on details. The magnitude can be large if t ′
A − t ′

B is large. In
conclusion, the positive magnetoresistance is consistent with
the IVC order. In the above we use τx order, and the same
conclusion holds for τxσz order.

The response to the in-plane magnetic field Hx (assuming
it couples predominantly to the spin), however, depends on
whether τx or τx �σ is selected. Such a field can further split
the energy degeneracy among τx �σ . Because there is no spin
magnetization, the field energy at first order of perturbation
vanishes. For the second-order perturbation, τxσy,z order can
have a negative energy correction because τxσy,z anticom-
mutes with σx. Therefore the in-plane magnetic field favors

τxσy,z. The splitting is of order g2
sμ

2
BH2

x
�

and therefore is small.

APPENDIX D: SPINFUL COMPOSITE FERMION LIQUID

We give theoretical descriptions of several spinful CFL
phases for the filling νT = 1

2 + 1
2 of the spinful C = 1 Chern

band. As discussed in the main text, in the strict flat-band
limit, the simple ferromagnetic insulator will win. But the
states discussed in this Appendix may be competitive once
band dispersion becomes significant, i.e., for intermediate
coupling U ∼ W .

We do a slave-boson parton construction ci;σ = b fi;σ . (We
can also do a slave-fermion parton, which leads to a “quantum
Hall spin liquid” insulator mentioned briefly at the end of
this section.) b is a spinless boson which carries the physical
charge while fσ is a neutral spin-1/2 fermion. We have filling
nb = 1 and

∑
σ n f ;σ = 1. Besides, b and f need to couple to

an internal U (1) gauge field a with opposite charges.

In this parton construction we can access different phases
by putting b and f in different phases. For the fermion f ,
the most natural ansatz is just a spin-unpolarized state with a
Fermi surface for each spin component. The spinless boson at
ν = 1 of a C = 1 Chern band can be either a Pfaffian state or
itself form a composite Fermi-liquid phase. For simplicity and
because it is somewhat more familiar, here we focus on the
former case. Then the boson has a quantum Hall effect with
σ b

xy = e2

h . Such a phase has Ising anyons, and the low-energy
effective theory is denoted [U(1)4 × Ising)/Z2]. In our case
we need to further couple b to the internal gauge field a. For
the purpose of the charge response of the microscopic elec-
tron, we can ignore the non-Abelian Ising part and just write
down the response of the slave boson b to the gauge field A −
a it couples to (A is the external probe electromagnetic gauge
field). This is just a Chern-Simons term 1

4π
(A − a)d (A − a).

The low-energy theory for the microscopic electron c is

L =
∑

σ

L[ fσ , a] + 1

4π
ada − 1

2π
Ada + 1

4π
AdA + . . . .

(D1)

This action resembles that of the standard Halperin-Lee-
Read theory for the half-filled Landau level [68]. However, for
this state other terms need to be included to describe the Ising
anyon of the slave boson, though we will not explicitly write
them here. For discussing low-energy electrical transport the
action above, which describes the Fermi surfaces and the
gauge field a, is sufficient. In this sense, this CFL phase should
have essentially the same properties as the conventional CFL
phase. Close to the edge, however, a neutral Majorana mode
may be present, unlike the conventional composite Fermi
liquid. Besides, the single electron in this CFL phase is
gapped because the single-electron operator is a combination
of monopole operator and the Ising anyon. This is different
from the traditional HLR phase.

From the Ioffe-Larkin rule [63], the resistivity tensor of the
original electron is

ρc = ρ f + ρb. (D2)

Therefore we have

ρc = ρ f +
(

0 − h
e2

h
e2 0

)
. (D3)

In the clean limit, ρ f behaves like a metal and thus |ρ f | � h
e2 .

Therefore ρc
xy ≈ h

e2 � ρc
xx = ρ

f
xx. Thus this phase has a large

Hall angle, together with nonzero bulk dissipation.
Finally, we point out that the above CFL phase can go

through a continuous phase transition by pairing of the com-
posite fermions. In the simplest case we consider a spin
singlet pairing 〈 f †

↑ f †
↓ 〉 �= 0, and the resulting phase is an in-

sulator with Hall conductivity σxy = e2

h . The charge response
is actually the same as the spin-polarized Chern insulator.
However, in this insulator the spin is in a singlet phase, and
the elementary spin excitations are gapped spinons carrying
spin 1/2, just like a Z2 spin liquid. We dub this exotic
insulator as a “quantum Hall spin liquid.” It is a nontrivial
non-Abelian topological ordered phase. For example, the “vi-
son” excitation in a conventional Z2 spin liquid now carries
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1/2 charge and is an Ising anyon, though it still has π

mutual statistics with the gapped spinon. Details of this and
other “quantum Hall spin liquid” phases will be discussed
elsewhere.
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