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Only numerical relativity simulations can capture the full complexities of binary black hole mergers. These
simulations, however, are prohibitively expensive for direct data analysis applications such as parameter
estimation. We present two fast and accurate surrogate models for the outputs of these simulations: the first
model, NRSur7dq4, predicts the gravitational waveform and the second model, NRSur7dq4Remnant, predicts
the properties of the remnant black hole. These models extend previous seven-dimensional, noneccentric
precessing models to higher mass ratios and have been trained against 1528 simulations with mass ratios
q � 4 and spin magnitudes χ1, χ2 � 0.8, with generic spin directions. The waveform model, NRSur7dq4,
which begins about 20 orbits before merger, includes all � � 4 spin-weighted spherical harmonic modes, as
well as the precession frame dynamics and spin evolution of the black holes. The final black hole model,
NRSur7dq4Remnant, models the mass, spin, and recoil kick velocity of the remnant black hole. In their training
parameter range, both models are shown to be more accurate than existing models by at least an order of
magnitude, with errors comparable to the estimated errors in the numerical relativity simulations. We also show
that the surrogate models work well even when extrapolated outside their training parameter space range, up to
mass ratios q = 6.

DOI: 10.1103/PhysRevResearch.1.033015

I. INTRODUCTION

As the LIGO [1] and Virgo [2] detectors reach their de-
sign sensitivity, gravitational wave (GW) detections [3–9] are
becoming routine [10,11]. To maximize the science output of
the data collected by the network of detectors, it is crucial
to accurately model the source of the GWs. Among the most
important sources for these detectors are binary black hole
(BBH) systems, in which two black holes (BHs) lose energy
through GWs, causing them to inspiral and eventually merge.

Numerical relativity (NR) simulations are necessary to
accurately model the late inspiral and merger stages of the
BBH evolution. These simulations accurately solve Einstein’s
equations to predict the evolution of the BBH spacetime. The
most important outputs of NR simulations are the gravita-
tional waveform and the mass, spin, and recoil kick velocity
of the remnant BH left after the merger.
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For interpreting detected signals, model waveforms are
used in comparison with detector data so we can infer the
properties of the source [12–14]. The mass and spin of
the remnant determine the black hole ringdown frequencies,
which are used in testing general relativity [15–17]. In ad-
dition, the recoil kick is astrophysically important because it
can cause the remnant BH to be ejected from its host galaxy
[18–20].

Unfortunately, NR simulations are too expensive to be di-
rectly used in data analysis applications and incorporated into
astrophysical models. As a result, several approximate models
that are much faster to evaluate have been developed for both
waveforms [21–31] and remnant properties [18,19,32–50].
These models typically assume an underlying phenomenology
based on physical motivations and calibrate any remaining
free parameters to NR simulations.

Among BBHs, systems with BH spins that are misaligned
with respect to the orbital angular momentum are complicated
to model analytically or semianalytically. For these systems,
the spins interact with both the orbital angular momentum
and each other, causing the system to precess about the
direction of the total angular momentum [51]. This precession
is imprinted on the waveform as characteristic modulations
in the amplitude and frequency of the GWs and can be used
to extract information about the spins of the source. One
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important application of the extracted spins is to distinguish
between formation channels of BBHs [52–55].

The precessing BBH problem for quasicircular orbits
is parametrized by seven parameters: the mass ratio q =
m1/m2 � 1 and two spin vectors χ1,2, where the index 1
(2) refers to the heavier (lighter) BH. The total mass scales
out of the problem and does not constitute an additional
parameter for modeling. The surrogate models of Ref. [56]
for the gravitational waveform and Ref. [57] for the remnant
properties were the first to model the seven-dimensional space
of generically precessing BBH systems, although restricted
to mass ratios q � 2 and dimensionless spin magnitudes
χ1,2 � 0.8. Trained directly against numerical simulations,
these models do not need to introduce additional assumptions
about the underlying phenomenology of the waveform or
remnant properties that necessarily introduce some systematic
error. Through cross-validation studies, it was shown that both
these models achieve accuracies comparable to the numerical
simulations themselves [56,57], and as a result, are the most
accurate models currently available for precessing systems,
within their parameter space of validity.

In this paper, we present extensions of the above surrogate
models to larger mass ratios. Our new surrogate models are
called NRSur7dq4 and NRSur7dq4Remnant, for the gravita-
tional waveform and remnant properties, respectively. They
are trained against 1528 precessing NR simulations with mass
ratios q � 4, spin magnitudes χ1, χ2 � 0.8, and generic spin
directions. Both models are made publicly available through
the gwsurrogate [58] and surfinBH [59] PYTHON packages;
example evaluation codes are provided at Refs. [60] and [59],
respectively, for NRSur7dq4 and NRSur7dq4Remnant.

The rest of the paper is organized as follows. Section II
covers some preliminaries to set up the modeling prob-
lem for precessing BBH systems. Section III describes the
training simulations. Section IV describes the NRSur7dq4
waveform surrogate model. Section V describes the NR-
Sur7dq4Remnant remnant properties surrogate model. Sec-
tion VI compares these models against NR simulations to
assess their accuracy. Finally, Sec. VII presents some con-
cluding remarks. In Appendix A, we examine how accurate
these models are when extrapolated beyond mass ratio q = 4,
and in Appendix B, we investigate some features in the error
distribution of the NR simulations.

II. PRELIMINARIES AND NOTATION

It is convenient to combine the two polarizations of the
waveform into a single complex, dimensionless strain h =
h+ − ih× and to represent the waveform on a sphere as a sum
of spin-weighted spherical harmonic modes:

h (t, ι, ϕ0) =
∞∑

�=2

l∑
m=−l

h �m(t ) −2Y�m(ι, ϕ0). (1)

Here, −2Y�m are the spin = −2 weighted spherical harmonics,
and ι and ϕ0 are the polar and azimuthal angles on the sky in
the source frame.

For nonprecessing systems, the direction of orbital angular
momentum (L) is fixed and the ẑ direction of the source frame
is chosen to be along L̂ by convention. The gravitational

FIG. 1. The real part of the (2,2) and (2,1) modes of the grav-
itational waveform in the inertial (top), coprecessing (middle), and
coorbital (bottom) frames. In the inertial frame, the amplitude of
the (2,1) mode can be comparable to that of the (2,2) mode. In
the coprecessing frame, on the other hand, the (2,2) mode always
dominates. In addition, most effects of precession are removed by
the rotation and the waveform in the coprecessing frame resembles
that of a nonprecessing system. In the co-orbital frame, finally, the
waveform is further simplified and does not oscillate about zero.
Mass ratio and initial spins used to produce this figure are indicated
in the text within the figure.

radiation is strongest along the directions parallel and an-
tiparallel to L̂. Therefore, for nonprecessing systems, the
quadrupole modes (� = 2, m = ±2) dominate the sum in
Eq. (1), but the nonquadrupole modes can become important
at large mass ratios or ι close to π/2 [61–70].

By contrast, for precessing systems the direction of L
varies due to precession [51] and so there is not a fixed axis
along which the radiation is dominant. The standard practice
is to choose ẑ of the source frame along the direction of L (or
the total angular momentum) at a reference time or frequency.

Heuristically, one can think of a precessing system as a
nonprecessing system with time-dependent frame rotations
applied to it. In this noninertial frame, the rotation causes
mixing of power between modes of fixed �. For example, the
power of the (2,±2) modes leaks into the (2,±1) and (2,0)
modes. This means that all � = 2 modes can be dominant
in Eq. (1). While this rotating-frame picture ignores some
dynamical features such as nutation, it accounts for most of
the effects of precession in the waveform.

By the same logic, one could apply a time-dependent
rotation to a precessing system such that ẑ always lies along
L̂(t ). In this noninertial frame, referred to as the coprecessing
frame [71–73], the radiation is always strongest along ẑ, and
the (� = 2, m = ±2) modes are dominant. In fact, since most
precessional effects are accounted for by the frame rotation,
the waveform in the coprecessing frame is qualitatively
similar to that of a nonprecessing system (cf. Fig. 1). This
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observation has been exploited in the literature
[21,24,27,56,74] to simplify the modeling of precessing
systems. Here, we proceed similarly, using the coprecessing
frame described in Ref. [73] and denoting the strain in this
frame as h copr

�m .
The waveform can be made even simpler, and therefore

easier to model, by applying an additional rotation about the
z axis of the coprecessing frame by an amount equal to the
instantaneous orbital phase:

h coorb
�m (t ) = h copr

�m (t ) eimφ(t ). (2)

Here, we define the orbital phase,

φ(t ) = arg
[
h copr

2,−2(t )
] − arg

[
h copr

2,2 (t )
]

4
, (3)

using the coprecessing frame strain. The waveform h coorb
�m (t )

corresponds to a new frame, called the co-orbital frame, in
which the BHs are always on the x axis, with the heavier BH
on the positive x axis.1 More importantly, the waveform in
the co-orbital frame is nearly nonoscillatory, simplifying the
modeling problem greatly. Figure 1 shows an example of a
waveform in the inertial, coprecessing, and co-orbital frames.

III. NR SIMULATIONS

Our NR simulations are performed using the spectral
Einstein code (SpEC) [75–80] developed by the SXS [81]
Collaboration.

A. Parameter space coverage

We use 890 precessing NR simulations used in the con-
struction of the surrogate models of Refs. [56,57], which
provide coverage in the q � 2 and χ1, χ2 � 0.8 regions of the
parameter space. We also make use of 64 aligned-spin simu-
lations with q � 4 and χ1, χ2 � 0.8 used in the construction
of the surrogate model presented in Ref. [82]. Finally, we per-
formed 574 new simulations with 2 < q � 4, χ1, χ2 � 0.8,
and generic spin directions. The parameters for the first 204 of
these are chosen based on sparse grids as detailed in Appendix
A of Ref. [56]. The remaining parameters are chosen as
follows. We randomly sample 1000 points uniformly in mass
ratio, spin magnitude, and spin direction on the sphere. We
compute the distance between points a and b using the metric

ds2 =
(

qa − qb

�q

)2

+
∑

i∈{1,2}

(∣∣χa
i − χb

i

∣∣
�χ

)2

, (4)

where �q = 4 − 1 = 3 and �χ = 0.8 are the ranges of
these parameters. These normalization factors are somewhat
arbitrary, although any choice of order unity should provide a
reasonable criteria for point selection. For each sampled
parameter, we compute the minimum distance to all
previously chosen parameters. We then add the sampled
parameter maximizing this minimum distance to the set

1Here, the BH positions are defined from the waveform at fu-
ture null infinity and do not necessarily correspond to the (gauge-
dependent) coordinate BH positions in the NR simulation.

of chosen parameters. This is done iteratively for 370
additional parameters. The new simulations have identifiers
SXS:BBH:1346-1350 and SXS:BBH:1514-2082 and are
made publicly available through the SXS public catalog [83].
The parameter space covered by the 890 + 64 + 574 = 1528
NR simulations used in this work is shown in Fig. 2. Note that
not all of these are independent simulations: For 154 of these
cases, we have q = 1, with χ1 �= χ2; for each of these cases,
we effectively obtain an additional simulation by exchanging
the labels of the two BHs.

The start time of these simulations varies between 4693M
and 5234M before the peak of the waveform amplitude, where
M = m1 + m2 is the total Christodoulou mass measured close
to the beginning of the simulation at the “relaxation time”
[84]. The initial orbital parameters are chosen through an
iterative procedure [85] such that the orbits are quasicircular;
the largest eccentricity for these simulations is 9.8 × 10−4,
while the median value is 3.8 × 10−4.

B. Data extracted from simulations

We make use of the following quantities extracted from
the NR simulations: the waveform modes h �m(t ), component
spins χ(t ), mass ratio q, remnant mass m f , spin χ f , and kick
velocity v f .

The waveform is extracted at several extraction spheres at
varying finite radii from the origin and then extrapolated to
future null infinity [84,86]. Then, the extrapolated waveforms
are corrected to account for the initial drift of the center
of mass [87,88]. The time steps during the simulations are
chosen nonuniformly using an adaptive time stepper [84].
Using cubic splines, we interpolate the real and imaginary
parts of the waveform modes to a uniform time step of 0.1M;
this is dense enough to capture all frequencies of interest,
including near merger. The interpolated waveform at future
null infinity, scaled to unit mass and unit distance, is denoted
as h �m(t ) in this paper.

The component spins χ1,2(t ) and masses m1,2 are evaluated
on the apparent horizons [77] of the BHs. The masses at the
relaxation time [84] are used to define the mass ratio q =
m1/m2. Unless otherwise specified, all masses in this paper
are given in units of the total mass M = m1 + m2 at relaxation.
The spins are interpolated onto the same time array2 as used
for the waveform, using cubic splines.

The remnant mass m f and spin χ f are determined from
the common apparent horizon long after ringdown, as detailed
in Ref. [84]. The remnant kick velocity is derived from con-
servation of momentum, v f = −Prad/m f [90]. The radiated
momentum flux Prad is integrated [91] from the strain h �m.

2The waveforms at future null infinity use a time coordinate t that is
different from the simulation time t̃ at which the spins are measured
in the near zone [84]. In this paper, we identify t with t̃ . While
this identification is gauge dependent, the spin directions are already
gauge dependent. We, however, note that the spin and orbital angular
momentum vectors in the damped harmonic gauge used by SpEC
agree quite well with the corresponding vectors in post-Newtonian
(PN) theory [89].
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FIG. 2. Parameters of the 1528 NR simulations used in the construction of the surrogate models in this paper. We show the distribution of
mass ratio q and the spin components in standard spherical polar coordinates (χ , θ , φ) at −4300M from the waveform amplitude peak. The
index 1 (2) refers to the heavier (lighter) BH.

C. Postprocessing the output of NR simulations

After extracting the strain and spins from the simulations,
we apply the following postprocessing steps before building
the surrogate models.

First, we shift the time arrays of all waveforms such that
t = 0 occurs at the peak (see Ref. [56] for how the peak is
determined) of the total waveform amplitude, defined as

A(t ) =
√∑

�m

|h �m(t )|2. (5)

Then we rotate the waveform modes such that at a ref-
erence time t0 = −4300M, the inertial frame coincides with
the co-orbital frame. This means that the ẑ direction of the
inertial frame is along the principal eigenvector of the angular
momentum operator [73] at the reference time. In addition,
the x̂ direction of the inertial frame is along the line of
separation from the lighter BH to the heavier BH (in other
words, the orbital phase is zero). The spin vectors χ1,2(t ) are
also transformed into the same inertial frame.

We then truncate the waveform and spin time series by
dropping all times t < −4300M to exclude the initial tran-
sients known as “junk radiation.” After the truncation, the
reference time t = −4300M is also the start time of the
data.

For t > −100M, the spin measurements from the apparent
horizons start to become unreliable as the horizons become
highly distorted. Following Ref. [56], starting at t = −100M,
we extend the spins to later times using PN spin evolution
equations. This evolution is done even past the merger stage,
into the ringdown. We stress that the extended spins are
unphysical but are a useful parametrization to construct fits
at late times.

Finally, we apply a smoothing filter (see Eq. (6) of
Ref. [56]) on the spin time series to remove fast oscillations
taking place on the orbital time scale. This smoothing helps
improve the numerical stability of the ordinary differential
equation (ODE) integrations described in Sec. IV B. Note that
we use the filtered spins for the waveform surrogate (Sec. IV)
but not for the remnant surrogate (Sec. V), for which we just
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FIG. 3. The top panel shows the real part of the (2,2) and (2, −2)
modes of the waveform in the co-orbital frame. Notice that the orbital
timescale oscillations of these two modes have opposite signs. The
bottom panel shows the real parts of h +

2,2 and h −
2,2 [cf. Eq. (6)], we

take advantage of the above fact to move most of the oscillations
from the larger to the smaller data piece.

use the unfiltered spins since there are no ODE integrations
involved.

IV. WAVEFORM SURROGATE

To construct the waveform surrogate, we closely follow the
model of Ref. [56], with some modifications to adapt it to
higher mass ratios. We refer to the new waveform model as
NRSur7dq4.

A. Co-orbital frame surrogate

We find that the surrogate accuracy improves when work-
ing with slowly varying functions, rather than oscillatory ones.
Therefore, we first decompose the strain into several “data
pieces,” each of which is a slowly varying function of time,
and build a surrogate for each of them. At evaluation time,
we combine the various data pieces to reconstruct the inertial
frame strain. To reduce the cost of these transformations, we
first downsample the inertial frame strain onto a set of 2000
time values t coorb

i that are approximately uniformly spaced in
the orbital phase (using the method described in Appendix B
of Ref. [56]).

As described in Sec. II, the waveform is simpler in the
co-orbital frame. A further simplification is possible by con-
sidering combinations of m > 0 and m < 0 counterparts of a
fixed � mode:

h ±
�m = h coorb

�,m ± h coorb
�,−m

∗

2
. (6)

Figure 3 shows an example of the simplification obtained with
this combination. For all m �= 0 modes, we model the real
and imaginary parts of h ±

�m. For m = 0 modes, we directly
model the real and imaginary parts of the co-orbital frame

strain h coorb
�,m . We construct an independent surrogate model

for each of these data pieces and refer to the combination of
these models as the co-orbital frame surrogate.

As described in Ref. [56], for each waveform data piece,
we construct a linear basis using singular value decomposition
with an rms tolerance of 3 × 10−4. We then construct an
empirical time interpolant with the same number of empirical
time nodes as basis functions for that data piece [92–94].
The empirical time nodes are chosen as a subset of the 2000
co-orbital time values (t coorb

i ) and are specific to each data
piece. Finally, for each empirical time node, we construct
a parametric fit for the waveform data piece. The fits are
parametrized as functions of the mass ratio and the spins in the
co-orbital frame at that time. We describe our fitting procedure
in Sec. IV C. At evaluation time, the co-orbital frame spins at
any time are obtained using the dynamics surrogate described
in Sec. IV B.

B. Dynamics surrogate

The surrogate described in Sec. IV A only models the strain
in the co-orbital frame. We also need to model the following
quantities:

(1) the orbital phase in the coprecessing frame, which is
required to transform the strain from the co-orbital frame to
the coprecessing frame [cf. Eq. (2)];

(2) the quaternions describing the coprecessing frame,
which are required to transform the strain from the coprecess-
ing frame to the inertial frame;

(3) the spins as a function of time, which are used in the
evaluation of the parametric fits described in Sec. IV C.

We refer to the model for these quantities as the dynamics
surrogate. Using the fitting method of Sec. IV C, we first
construct parametric fits for ω(t ), �coorb

x,y (t ), and χ̇coorb
1,2 (t ) at

selected time nodes referred to as the dynamical time nodes
tdyn
i . Here, χ̇coorb

1,2 (t ) are the time derivatives of the coprecess-
ing frame spins transformed to the co-orbital frame, ω(t ) is
dφ/dt [cf. Eq. (3)], and �coorb

x,y (t ) is the angular velocity of
the coprecessing frame, transformed to the co-orbital frame.
These quantities are described in more detail in Sec. III of
Ref. [56]. Note that �coorb

z (t ) ∼ 0. For the dynamical time
nodes tdyn

i , we chose 238 time values such that there are
approximately 10 nodes per orbit (see Appendix B of Ref. [56]
for details).

We use a fourth-order Adams-Bashforth scheme to inte-
grate ω(tdyn

i ), �coorb
x,y (tdyn

i ), and χ̇coorb
1,2 (tdyn

i ) over the set of

dynamical time nodes tdyn
i providing the time evolution of

the orbital phase φ(tdyn
i ), the coprecessing frame quaternions

Q̂(tdyn
i ), and the component spins in the co-orbital frame

χcoorb
1,2 (tdyn

i ). This involves solving a coupled ODE as described
in Sec. V of Ref. [56]. At each step of the ODE integration,
the co-orbital frame spins at the current node tdyn

i are first
obtained. These are then used to evaluate the parametric fits
for the derivative quantities mentioned above. Note that the
spins used in the dynamics surrogate are the filtered spins
mentioned in Sec. III C; this improves the accuracy of the
ODE integration by making the spin time derivatives easier
to model.
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C. Parametric fits

For the co-orbital frame surrogate of Sec. IV A, we need
to construct parametric fits at various empirical time nodes
for the different data pieces. Similarly, for the dynamics
surrogate of Sec. IV B, we need to construct fits for various
time derivatives at the dynamical time nodes tdyn

i . We use the
same procedure for each of these fits. Let us refer to the data
to be fitted as y(�), where � is a seven-dimensional set of
parameters.

For each of these fits, the seven parameters � must
contain information on mass ratio q and co-orbital frame
spins χcoorb

1,2 (ti ) at the time corresponding to the fit. Following
Ref. [57], we parametrize the fits using

� = [
log(q), χ coorb

1x , χ coorb
1y , χ̂ coorb, χ coorb

2x , χ coorb
2y , χ coorb

a

]
,

(7)

where χ̂ coorb is the spin parameter entering the GW phase at
leading order [12,26,95,96] in the PN expansion

χ̂ coorb = χ coorb
eff − 38η

(
χ coorb

1z + χ coorb
2z

)
/113

1 − 76η/113
, (8)

χ coorb
eff = qχ coorb

1z + χ coorb
2z

1 + q
, (9)

η = q

(1 + q)2
, (10)

and χ coorb
a is the “antisymmetric spin”

χ coorb
a = 1

2

(
χ coorb

1z − χ coorb
2z

)
. (11)

We empirically found this parametrization to perform
more accurately than the more intuitive choice �ref56 =
[q, χ coorb

1x , χ coorb
1y , χ coorb

1z , χ coorb
2x , χ coorb

2y , χ coorb
2z ] used in

Ref. [56].
Fits are constructed using the forward-stepwise greedy

fitting method described in Appendix A of Ref. [74]. We
choose the basis functions to be a tensor product of one-
dimensional (1D) monomials in the components of �. The
components of � are first affine mapped to the interval [−1, 1]
before constructing the tensor product. We consider up to
cubic powers in log(q) and up to quadratic powers in the
spin parameters. We find that going to higher powers does
not significantly improve the fit accuracy within the training
region, but the mass ratio extrapolation errors estimated in
Appendix A become much larger.

It is always possible to improve the accuracy of a fit by
adding more basis functions. However, this can lead to overfit-
ting when the data contain some noise. Our source of noise is
mostly due to NR truncation error, but also systematic errors
such as waveform extrapolation and residual eccentricity. In
order to safeguard against overfitting, we perform 10 trial fits,
leaving a random 10% of the dataset out as validation points
in each trial, to determine the set of basis functions used in
constructing the final fit. We allow a maximum of 100 basis
functions for each fit. See Appendix A of Ref. [74] for more
details.

D. Surrogate evaluation

To evaluate the surrogate, we begin with a user-specified
mass ratio q and spins χcoorb

1,2 at the initial time t = −4300M.

Note that at this time, the inertial frame coincides with
the co-orbital frame. These values are used to initialize the
dynamics surrogate described in Sec. IV B, which predicts
the coprecessing frame quaternions Q̂(tdyn

i ), the orbital phase
φ(tdyn

i ) in the coprecessing frame, and the coorbital frame
spins χcoorb

1,2 (tdyn
i ) at the dynamic time nodes tdyn

i . We then
use cubic splines to interpolate these quantities on to the
time array for the co-orbital frame surrogate t coorb

i , giving us
Q̂(t coorb

i ), φ(t coorb
i ), and χcoorb

1,2 (t coorb
i ).

The co-orbital frame surrogate described in Sec. IV A is
used to predict the strain in the co-orbital frame. This involves
evaluating the fits at the empirical time nodes for this surro-
gate using χcoorb

1,2 (t coorb
i ) and q. Then, the orbital phase φ(t coorb

i )
is used to transform the strain from the co-orbital frame to
the coprecessing frame [cf. Eq. (2)]. Finally, the coprecessing
frame quaternions Q̂(t coorb

i ) are used to transform the strain
from the coprecessing frame to the inertial frame (this in-
volves Wigner matrices; see Appendix A of Ref. [73]). This
gives us h �m(t coorb

i ), which is interpolated onto any required
time array t using cubic splines to get h �m(t ).

V. REMNANT SURROGATE

To construct the remnant properties surrogate, we closely
follow the model of Ref. [57]. We refer to the new model
presented here as NRSur7dq4Remnant.

We model the remnant mass m f , spin χ f , and kick velocity
v f . Before constructing the fits, χ f and v f are transformed
into the co-orbital frame at t = −100M. We model each com-
ponent of the vectors independently. The fits are parametrized
by the same � of Eq. (7), but using the component spins at
t = −100M. Unlike the waveform surrogate case, we do not
filter out orbital-timescale oscillations. The filtered spins were
found to be necessary for the accuracy of the time integration
in Sec. IV B, which is not necessary here because the remnant
properties can evaluated from the BBH parameters at a single
time t = −100M.

All fits are performed using Gaussian process regres-
sion (GPR), as described in the supplementary materials of
Ref. [57]. We find that GPR fitting is, in most cases, more
accurate but also significantly more expensive than the poly-
nomial fitting method described in Sec. IV C. GPR becomes
impractical to use for the waveform surrogate as there are
hundreds of fits that need to be evaluated to generate the
waveform. For the remnant fits, however, the additional cost
of GPR is acceptable because one is only fitting seven quan-
tities (m,χ f , v f ). In addition, GPR naturally provides error
estimates which can be useful in data analysis applications.
The efficacy of the GPR error estimate in reproducing the
underlying error of the surrogate models was investigated
thoroughly in the supplementary materials of Ref. [57].

Although NRSur7dq4Remnant is parameterized internally
by input spins specified in the co-orbital frame at t = −100M,
we allow the user to specify input spins at earlier times and
in the inertial frame; this case is handled by two additional
levels of spin evolution. Given the inertial-frame input spins
at an initial orbital frequency f0, we first evolve the spins using
a post-Newtonian (PN) approximant—3.5PN SpinTaylorT4
[89,97,98]—until we reach the domain of validity of the
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(a) Flat noise mismatches (b) LIGO noise mismatches

FIG. 4. Mismatches for NRSur7dq4 and SEOBNRv3 models, when compared against precessing NR simulations using all � � 5 modes
with mass ratios q � 4 and spin magnitudes χ1, χ2 � 0.8. The NRSur7dq4 errors shown are out-of-sample errors. Also shown are the NR
resolution errors. Mismatches are computed at several sky locations using all available modes for each model: � � 4 for NRSur7dq4, and � = 2
for SEOBNRv3. The NR error is computed using all � � 5 modes from the two highest available resolutions. Left panel: Mismatches computed
using a flat noise curve. The square (triangle) markers at the top indicate the median (95th percentile) values. Right panel: Mismatches
computed using the Advanced LIGO design sensitivity noise curve, as a function of total mass. The dashed (solid) lines indicate the median
(95th percentile) values over different NR simulations and points in the sky.

more accurate NRSur7dq4 (t = −4300M from the peak). We
then use the dynamics surrogate of NRSur7dq4 to evolve the
spins until t = −100M. These spins are then transformed to
the co-orbital frame and used to evaluate the remnant fits.
Thus, spins can be specified at any given orbital frequency
and are evolved consistently before estimating the final BH
properties. Note that NRSur7dq4 uses the filtered spins, while
NRSur7dq4Remnant expects unfiltered spins at t = −100M,
but we find that the errors introduced by this discrepancy are
negligible compared to the errors due to PN spin evolution.

VI. RESULTS

We evaluate the accuracy of our surrogate models by
comparing them against the waveform and remnant properties
from the NR simulations used in this work. For this, we
perform a 20-fold cross-validation study to compute “out-of-
sample” errors as follows. We first randomly divide the 1528
training simulations into 20 groups of ≈76 simulations each.
For each group, we build a trial surrogate using the ≈1452
remaining training simulations and test against these ≈76
validation ones, which may include points on the boundary
of the training set.

A. Waveform surrogate errors

To estimate the difference between two waveforms, h 1 and
h 2, we use the mismatch

MM = 1 − 〈h 1, h 2〉√
〈h 1, h 1〉〈h 2, h 2〉

, (12)

〈h 1, h 2〉 = 4Re
∫ fmax

fmin

h̃ 1( f )h̃
∗
2( f )

Sn( f )
df , (13)

where h̃ ( f ) indicates the Fourier transform of the complex
strain h (t ), ∗ indicates a complex conjugation, Re indicates

the real part, and Sn( f ) is the one-sided power spectral density
of a GW detector. We taper the time domain waveform using
a Planck window [99] and then zero pad to the nearest power
of 2. We further zero pad the waveform to increase the length
by a factor of 8 before performing the Fourier transform. The
tapering at the start of the waveform is done over 1.5 cycles
of the (2,2) mode. The tapering at the end is done over the last
30M. Note that our model contains times up to 100M after the
peak of the waveform amplitude, and the signal has essentially
died down by the last 30M. We take fmin to be twice the
waveform angular velocity (as defined by Ref. [100]) at the
end of the initial tapering window, and fmax is chosen to
be four times the waveform angular velocity at t = 0; the
extra factor of 4 is chosen to resolve up to m = 4 spherical-
harmonic modes, with an extra margin of a factor of 2.
We compute mismatches with a flat noise curve (Sn = 1)
as well as with the advanced-LIGO design sensitivity noise
curve [101]. Mismatches are computed following the pro-
cedure described in Appendix D of Ref. [74]. In partic-
ular, we optimize over shifts in time, polarization angle,
and initial orbital phase. Both plus and cross polarizations
are treated on an equal footing by using a two-detector
setup where one detector sees only the plus and the other
only the cross polarization. We compute the mismatches at
37 points uniformly distributed on the sky in the source
frame, and we use all available modes of a given waveform
model.

Figure 4 summarizes the out-of-sample mismatches for
NRSur7dq4 against the NR waveforms. In Fig. 4(a), we show
mismatches computed using a flat noise curve. We compare
this with the truncation error in the NR waveforms them-
selves, estimated by computing the mismatch between the
two highest available resolutions of each NR simulation. The
errors in the surrogate model are well within the estimated
truncation errors of the NR simulations. In addition, we also
show the errors for the waveform model SEOBNRv3 [24,31],
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FIG. 5. The plus polarization of the waveforms for the cases that result in the largest mismatch for NRSur7dq4 (top) and SEOBNRv3
(bottom) in Fig. 4(a). We also show the corresponding NR waveforms. Each waveform is projected using all available modes for that model,
along the direction that results in the largest mismatch for NRSur7dq4 (SEOBNRv3) in the top (bottom) panel. Note that NRSur7dq4 is
evaluated using trial surrogates that are not trained using these cases. The binary parameters and the direction in the source frame are indicated
in the figure text. All waveforms are time shifted such that the peak of the total amplitude occurs at t = 0 [using all available modes, according
to Eq. (5)]. The waveform modes are then rotated to have their orbital angular momentum aligned with the z axis and such that the orbital
phase is equal to zero at t = −4300M.

which also includes spin precession effects.3 The surrogate
errors are at least an order of magnitude lower than those of
SEOBNRv3.

Apart from SEOBNRv3, another model commonly used
in data analysis applications is IMRPhemomPv2 [27]. IM-
RPhemomPv2 was shown to be comparable in accuracy to
SEOBNRv3 in Ref. [56], at least in order of magnitude.
Therefore, for simplicity, we do not show comparisons of
IMRPhemomPv2 to NR here. Note that updated versions of
both SEOBNRv3 (based on Ref. [22]) and IMRPhemomPv2
(see Ref. [21]) are under development but are not currently
available publicly. We note that these models are calibrated
only against aligned-spin NR simulations, using a much
smaller set of simulations than our model. Both these factors
contribute to the accuracy of these models. On the other hand,
these models are expected to be valid for larger mass ratios
and spin magnitudes than our model, although their accuracy
in that region is unknown due to lack of sufficient number of
simulations.

We note that the NR truncation mismatch distribution in
Fig. 4(a) has a tail extending to MM ∼ 0.1. We find that
these cases occur when the spins of the two highest resolutions
of the simulation are inconsistent with each other because of
unresolved effects during junk-radiation emission, meaning
that the two resolutions represent different physical systems.
This means that comparing the resolutions for these cases
gives us an error estimate that is too conservative and does
not reflect the actual truncation error of the simulations. We

3Note that SEOBNRv3 spins are specified at a reference frequency,
rather than a time before merger. We choose the reference frequency
such that the waveform begins at t = −4300M before the waveform
amplitude peak [as defined in Eq. (5)].

expect the actual truncation error to be closer to the errors
reproduced by the surrogate model (which is trained on the
high-resolution data set) in Fig. 4(a). Evidence for these
claims is provided in Appendix B.

Figure 4(b) shows mismatches computed using the Ad-
vanced LIGO design sensitivity noise curve [101]. In this
case, results depend on the total mass M of the system.
Consequently, we show the median and 95th percentile values
at different M, rather than full histograms. Once again, the
surrogate errors are comparable to those of the NR simulations
and are at least an order of magnitude lower than that of
SEOBNRv3. Over the mass range 50–200M
, mismatches
for NRSur7dq4 are always � 8 × 10−3 at the 95 percentile
level.

Figure 5 shows a comparison of waveforms computed via
NRSur7dq4, SEOBNRv3, and NR for the cases that lead to
the largest error for NRSur7dq4 and SEOBNRv3 in Fig. 4(a).
The surrogate shows reasonable agreement with NR, even for
its worst case, while SEOBNRv3 shows a noticeably larger
deviation in both cases.

In Figs. 4 and 5, we use all available modes for NR-
Sur7dq4 and SEOBNRv3. NRSur7dq4 models all modes � �
4, while SEOBNRv3 models only the � = 2 modes. For the
NR waveforms in Figs. 4 and 5, we include all modes � �
5 to account for the error due to neglecting � > 4 modes
in NRSur7dq4. To better understand what fraction of the
SEOBNRv3 error comes from neglecting modes with � > 2,
we repeat the calculations leading to the SEOBNRv3 his-
togram in Fig. 4(a) in Fig. 6, while restricting all waveforms
to � = 2. While there is a noticeable move toward lower
mismatches when restricted to � = 2, the median and 95th
percentile values change only marginally, suggesting that
the main error source for SEOBNRv3 are the � = 2 modes
themselves.

033015-8



SURROGATE MODELS FOR PRECESSING BINARY BLACK … PHYSICAL REVIEW RESEARCH 1, 033015 (2019)

FIG. 6. Same as Fig. 4(a) but using only � = 2 modes for NR
when compared to SEOBNRv3. The blue histogram from Fig. 4(a),
where SEOBNRv3 is compared to NR with all � � 5 modes, is
reproduced here for comparison. The square (triangle) markers at the
top indicate the median (95th percentile) values.

B. Remnant surrogate errors

We evaluate the accuracy of the remnant surrogate NR-
Sur7dq4Remnant by comparing against the NR simulations
through a cross-validation study as in Sec. VI A. Out-of-
sample errors for the remnant properties predicted by NR-
Sur7dq4Remnant are shown in Fig. 7. The 95th percentile
errors are ≈5 × 10−4M for mass, ≈2 × 10−3 for spin mag-
nitude, ≈4−3 radians for spin direction, ≈4 × 10−4 c for kick
magnitude, and ≈0.2 rad for kick direction. Our errors are
at the same level as the NR resolution error, estimated by
comparing the two highest NR resolutions. The largest errors
in the kick direction can be of order ≈1 rad. The bottom-right
panel of Fig. 7 shows the joint distribution of kick magnitude
and kick direction error for NRSur7dq4Remnant, showing
that direction errors are larger at low kick magnitudes. Our
error in kick direction is below ≈0.2 rad whenever v f �
2 × 10−3c.

We also compare the performance of our fits against several
existing fitting formulas for remnant mass, spin, and kick
which we denote as follows: HBMR ([32,33] with nM = nJ =
3), UIB [34], HL [35], HLZ [36], and CLZM ([37–41] as sum-
marized in Ref. [42]). To partially account for spin precession,
these fits are corrected as described in Ref. [102] and used
in current LIGO-Virgo analyses [6,103]: Spins are evolved
using PN from relaxation to the Schwarzschild innermost
stable circular orbit, and final UIB and HL spins are postpro-
cessed by adding the sum of the in-plane spins in quadrature.
Figure 7 shows that our procedure to predict remnant mass,
spin magnitude, and kick magnitude for precessing systems is
more accurate than these existing fits by at least an order of
magnitude.

Our fits appear to outperform the NR simulations when
estimating the spin direction. Once again, this is due to the
post-junk-radiation initial spins of the two highest resolutions
being inconsistent with each other for some of our simula-
tions, so that different resolutions represent different physical
systems (cf. Appendix B). Therefore, the errors estimated by
comparing the two highest resolutions is a poor estimate of the
actual truncation error for these cases. The actual truncation

error is likely to be close to the errors reproduced by the
surrogate.

The NRSur7dq4Remnant fits in Fig. 7 are evaluated using
the NR spins at t = −100M as inputs. In typical applications,
one may have access to the spins only at the start of the wave-
form, rather than at t = −100M. For this case, as described in
Sec. V, we use a combination of PN and NRSur7dq4 to evolve
the spins from any given starting frequency to t = −100M.
These spins are then used to evaluate the NRSur7dq4Remnant
fits. Thus, spins can be specified at any given orbital frequency
and are evolved consistently before estimating the final BH
properties. This is a crucial improvement (introduced by
Ref. [57]) over previous results, which, being calibrated solely
to nonprecessing systems, suffer from ambiguities regarding
the time and frequency at which spins are defined.

Figure 8 shows the errors in NRSur7dq4Remnant when
the spins are specified at an orbital frequency f0 =10 Hz.
These errors are computed by comparing against 23 long NR
(3 × 104M to 105M in length) simulations [84] with mass
ratios q � 4 and generically oriented spins with magnitudes
χ1, χ2 ∼ 0.5. None of these simulations were used to train the
fits. Longer PN evolutions are needed at lower total masses,
and the errors are therefore larger. These errors will decrease
with an improved spin evolution procedure. Note, however,
that our predictions are still more accurate than those of
existing fitting formulas (cf. Fig. 7).

VII. CONCLUSION

We present NR surrogate models for precessing BBH
systems with generic spins and unequal masses. In particular,
we model the two most-used outputs of NR simulations:
the gravitational waveform and the properties (mass, spin,
and recoil kick) of the final BH formed after the merger.
Trained against 1528 NR simulations with mass ratios q � 4,
spin magnitudes χ1,2 � 0.8, and generic spin directions, both
these models are shown to reproduce the NR simulations with
accuracies comparable to those of the simulations themselves.

The waveform model, NRSur7dq4, includes all spin-
weighted spherical harmonic modes up to � = 4. The preces-
sion frame dynamics and spin evolution of the BHs are also
modeled as by-products. Through a cross-validation study,
we show that the mismatches for NRSur7dq4 against NR
computed with the Advanced LIGO design sensitivity noise
curve are always � 8 × 10−3 at the 95 percentile level over the
mass range 50–200M
. This is at least an order of magnitude
improvement over existing waveform models. NRSur7dq4 is
made publicly available through the gwsurrogate [58] PYTHON

package, with example evaluation code at Ref. [60].
For the final BH model, NRSur7dq4Remnant, the 95th

percentile errors are ≈5 × 10−4M for mass, ≈2 × 10−3 for
spin magnitude, and ≈4 × 10−4 c for kick magnitude. Once
again, these are lower than that of existing models by at least
an order of magnitude. In addition, we also model the spin
and kick directions. Moreover, the GPR methods employed
here naturally provide error estimates along with the fitted
values. These uncertainty estimates can be incorporated into
data analysis applications to marginalize over systematic un-
certainties. NRSur7dq4Remnant is made publicly available
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FIG. 7. Error histograms for NRSur7dq4Remnant for the remnant mass, spin magnitude, spin direction, kick magnitude, and kick direction
for precessing BBH with mass ratios q � 4 and spin magnitudes χ1, χ2 � 0.8. The direction error is the angle between the predicted vector
and a fiducial vector, taken to be the high-resolution NR case and indicated by 
. Square (triangle) markers indicate median (95th percentile)
values. Also shown are the NR resolution errors and errors for different existing fitting formulas. In the bottom-right panel, we show the joint
distribution of kick magnitude and kick-direction error.

through the surfinBH [59] PYTHON package, which includes
an example evaluation code.

A. Future work

In Appendix A, we test the performance of these surrogate
models when extrapolated outside their training range to q =
6. We find that our models become worse at these mass
ratios but are still comparable or better than existing models.
Unfortunately, suitable precessing simulations are currently
not available for testing at intermediate mass ratios 4 < q < 6.
In general, we advise caution with extrapolation. A natural
improvement of both NRSur7dq4 and NRSur7dq4Remnant is
to extend their range of validity with new training simulations
at higher mass ratios and spin magnitudes. We note, however,
that both these regimes are increasingly expensive to model
in NR.

Another important limitation of these models is that they
are restricted to the same length as the NR simulations (start-
ing time of ≈4300M before the peak or about 20 orbits).
For LIGO, assuming a starting GW frequency of 20 Hz, the
(2, 2) mode of the surrogate is valid for total masses M �
66M
. This number, however, depends on the mass ratio.
Figure 9 shows the mass range of validity of NRSur7dq4 as
a function of mass ratio. We compare this with the param-
eters of the 10 BBH detections seen by LIGO and Virgo
in the first two observing runs [9]. NRSur7dq4 sufficiently
covers the posterior spread of most but not all of these detec-
tions, the main limitation being the number of orbits covered
by the model. However, see Ref. [104] for an example of NR
surrogates used in data analysis with GW signals.

A promising avenue to extend the length of the waveforms
is to “hybridize” the simulations using PN waveforms in
the early inspiral. This approach already was found to be
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FIG. 8. Errors for NRSur7dq4Remnant in predicting remnant
properties when spins are specified at an orbital frequency of f0 =
10 Hz. For four different total masses, we compute the differences
between the surrogate prediction of various remnant properties with
the value obtained in the NR simulation. For each mass, these differ-
ences are shown as a vertical histogram. Note that the distributions
in these plots are normalized to have a fixed height, not fixed area.

successful for the case of aligned-spin BBH [82] but still
needs to be generalized to precessing spins. Furthermore, it
is not clear if the current length of the NR simulations is
sufficient to guarantee good attachment of the PN and NR
waveforms for precessing BBH.

Despite these limitations, in their regime of validity, the
models presented in the paper are the most accurate models
currently available for precessing BBHs. As shown in this
paper, our models rival the accuracy of the NR simulations,
while being very cheap to evaluate. As more BBHs are de-
tected at higher signal-to-noise ratios, fast yet accurate models

FIG. 9. The shaded region shows the regime of validity of the
(2,2) mode of NRSur7dq4 with a starting frequency of 20 Hz. Also
shown are the parameter ranges for the 10 BBH signals seen by
LIGO and Virgo during the first two observing runs [9]. The markers
indicate the median values of the marginalized posteriors for the
detector frame total mass M and mass ratio q. The error bars indicate
the range between the 5th percentile and 95th percentile values of the
posteriors.

such as these will contribute to turning GW astronomy into
high precision science.
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APPENDIX A: EVALUATING SURROGATES
AT LARGER MASS RATIOS

In this Appendix, we assess the performance of the NR-
Sur7dq4 and NRSur7dq4Remnant models when evaluated at
mass ratio q = 6. Doing so is effectively an extrapolation
because q = 6 is outside the training range of the surrogates
(q � 4). The surrogate models are compared against 100 NR
simulations with q = 6 and generically precessing spins with
magnitudes χ1, χ2 � 0.8. These simulations have been as-
signed the identifiers SXS:BBH:2164–SXS:BBH:2263 and
are made publicly available through the SXS public catalog
[83].

Figure 10 shows the q = 6 extrapolation mismatches for
NRSur7dq4. Also shown are the mismatches for SEOB-
NRv3 when compared against the same simulations. The
mismatches are computed in the same manner as in Fig. 4(a),
which we reproduce here for comparison. The surrogate er-
rors become noticeably worse when extrapolating to q = 6,
but are still much smaller than the corresponding errors for
SEOBNRv3.

Figure 11 shows the performance of NRSur7dq4Remnant
when extrapolating to q = 6. We show the errors when the
fits are evaluated using the NR spins at t = −100M as well
as when the spins are specified at the start of the NR simu-
lations. In the latter case, we use the extrapolated dynamics
surrogate of NRSur7dq4 to evolve the spins to t = −100M
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FIG. 10. Mismatch histogram when extrapolating the NR-
Sur7dq4 waveform model to mass ratio q = 6. Also shown are mis-
matches for SEOBNRv3. The mismatches are computed using a flat
noise curve. The training range errors from Fig. 4(a) are reproduced
here for comparison. The square (triangle) markers indicate median
(95th percentile) values.

and then evaluate the fits. We reproduce the training range
errors from Fig. 7 for comparison. Also shown are the er-
rors for the existing fitting formulas described in Sec. VI B
when compared against the same simulations. We find that
NRSur7dq4Remnant performs noticeably worse when extrap-
olated to q = 6 but is still slightly better than the existing
fitting formulas, except for the final spin where the existing
fitting formulas perform slightly better.

In general, we find that the NRSur7dq4 and NR-
Sur7dq4Remnant models become worse with extrapolation to
q = 6 but are still better or comparable to existing models.
Unfortunately, we do not have enough suitable precessing
simulations with 4 < q < 6 with which to test at what mass
ratio the degradation of these surrogate models becomes sig-
nificant. We leave these tests, as well as extending the models
to larger mass ratios by adding NR simulations, to future
work.

APPENDIX B: ON THE HIGH MISMATCH TAIL
IN NR ERRORS

The histogram of NR errors in Fig. 4(a) shows a significant
tail to the right, i.e., at large mismatches. In Sec. VI A, this
tail was attributed to different resolutions of the same NR
simulation having different physical parameters, namely the
“initial” spins, which are measured at the relaxation time
[84] after the poorly resolved junk-radiation transients have
settled. In this Appendix, we provide some evidence for this
claim. Figure 12 shows the maximum mismatch (with a flat
noise curve) over points in the sky versus the difference
in the relaxation-time dimensionless spins between the two
highest resolutions. We refer to the two highest resolutions
as HiRes and MedRes, and their corresponding relaxation-
time dimensionless spins are denoted by (χHiRes

1 ,χHiRes
2 ) and

(χMedRes
1 ,χMedRes

2 ), respectively. We note that the largest mis-
match occurs when the spin difference is largest between the
two resolutions. For a significant fraction of the simulations,
the spins can be different by about 0.1; for these cases the
two resolutions essentially represent two different physical
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FIG. 11. Error histograms of the remnant mass, spin magnitude,
and kick magnitude when extrapolating NRSur7dq4Remnant to mass
ratio q = 6. The training range errors from Fig. 7 are reproduced here
for comparison. We show errors using the NR spins at t = −100M
(yellow) as well as the initial NR spins (blue) as inputs for the model.
Also shown are the errors for existing fitting formulas described in
Sec. VI B; for the final mass and spin, we only show the minimum
error among the HBMR, UIB, and HL fits. The square (triangle)
markers indicate median (95th percentile) values.

systems, so the difference in waveforms between the two
resolutions fails to be a good estimate of the truncation error
in the simulations.

Figure 12 suggests that the high NR mismatch tail of
Fig. 4(a) is artificially large, and if the two resolutions were
to correspond to the same physical system, the tail would
be shorter. We test this in Fig. 13, where we compare the
surrogate against the MedRes simulations, but use the spins
of the MedRes simulation (χMedRes

1 ,χMedRes
2 ) to evaluate the

surrogate. The surrogate mismatches against the HiRes sim-
ulations as well as the NR resolution mismatches (HiRes vs
MedRes) are reproduced from Fig. 4(a) for comparison. We
note that the surrogate mismatches when compared against the
MedRes simulations always lie below ≈10−2 and do not have
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FIG. 12. Dependence of the NR resolution error on the difference
in the relaxation-time spins of the two highest resolutions (labeled
HiRes and MedRes). The horizontal (vertical) axis shows the differ-
ence between the spin of the heavier (lighter) BH. The colors show
the largest (flat noise) mismatch between the waveforms of the two
resolutions over different points in the sky. Large mismatches occur
when the difference between the relaxation-time spins of the two
resolutions is large.

the high mismatch tail seen for the NR resolution mismatches.
In this test, we are treating the surrogate, which is trained
on the HiRes simulations, as a proxy for the HiRes dataset.
Evaluating the surrogate with the parameters of a MedRes
simulation is treated as a proxy for performing the HiRes
simulation with the same parameters. Therefore, the green
histogram in Fig. 13 can be treated as the “true” resolution
error when the parameters of the resolutions are the same.
As expected for this case, this estimate of the resolution error
agrees with the errors for the surrogate model (red histogram).

Together, Figs. 12 and 13 show that the high NR mismatch
tail in Fig. 4(a) is due to the difference in the parameters of
the different NR resolutions. We believe this difference arises
from spurious initial transients known as “junk radiation.”

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100
mismatch

NRSur7dq4 vs HiRes
NRSur7dq4 vs MedRes
NR

FIG. 13. Mismatch histograms for NRSur7dq4 when compared
against the two highest available NR simulations (referred to as
HiRes and MedRes). Also shown are mismatches between the two
resolutions (labeled NR). The “NRSur7dq4 vs HiRes” and NR
errors are the same as the red and black histograms, respectively,
in Fig. 4(a). These are flat noise mismatches, computed at several
points in the sky. The square (triangle) markers indicate median (95th
percentile) values.

FIG. 14. NR resolution mismatches for the simulation leading
to the largest NR mismatch in Fig. 4(a). The different samples in
the histogram correspond to comparisons at different angles on the
sky. The blue histogram shows the current resolution errors when
the two resolutions start with the same initial data at the start of
the simulation. All points in the blue histogram are the same as
those included in Fig. 4(a). The green histogram shows the resolution
errors for the same case when the two resolutions start with the same
initial data at ≈1000M after start, at which point the junk radiation
has left the simulation domain.

These transients result from initial data that do not precisely
represent a snapshot of a binary that has evolved from t =
−∞. The transients quickly leave the simulation domain
after about one or two binary orbits. It is computationally
expensive to resolve the high spatial and temporal frequencies
of the transients, so we typically choose not to resolve these
transients at all, and instead we simply discard the initial
part of the waveform. Because some of the transients carry
energy and angular momentum down the BHs, the masses
and spins are modified, so we measure “initial” masses and
spins at a relaxation time [84] deemed sufficiently late that
the transients have decayed away. Because we do not fully
resolve the transients, their effect on the masses and spins are
not always convergent with resolution.

This issue should ideally be resolved with improved, junk-
free initial data (see Ref. [105] for steps in this direction). In
the meantime, we propose a change in how SpEC performs
different resolutions for the same simulation. Currently, initial
data are constructed by solving the Einstein constraint equa-
tions [77,106]. The same constraint-satisfying initial data are
then interpolated onto several grids of different resolution, and
Einstein’s equations are evolved on each grid independently.
Our proposal is to first evolve the initial data using the
high resolution grid until the transients leave the simulation
domain, then interpolate the data at that time onto grids of
lower resolution, and evolve Einstein’s equations on these
lower resolution grids independently. This way all resolutions
start with the same initial data at a time after transients
have decayed away instead of at the start of the simula-
tion, and the masses and spins of the black holes should be
convergent.

This proposal is tested in Fig. 14 for the case leading to the
largest NR mismatch in Fig. 4(a). We perform the resolution
branching at t ∼ 1000M after the start of the high-resolution
simulation. The outer boundary is at ≈600M and this is
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sufficient time for junk radiation to leave the simulation
domain. We find that the mismatches decrease significantly

when the resolution branching is done postjunk, as the resolu-
tions now correspond to the same physical system.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Class. Quantum Grav. 32, 074001 (2015).

[2] F. Acernese et al. (Virgo Collaboration), Advanced Virgo: A
second-generation interferometric gravitational wave detector,
Class. Quantum Grav. 32, 024001 (2015).

[3] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Observation of Gravitational Waves from a Binary Black Hole
Merger, Phys. Rev. Lett. 116, 061102 (2016).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Observation of Gravitational Waves from
a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101
(2017).

[5] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW151226: Observation of Gravitational Waves from a 22-
Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett.
116, 241103 (2016).

[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2, Phys. Rev. Lett. 118,
221101 (2017); 121, 129901(E) (2018).

[7] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW170608: Observation of a 19-solar-mass binary black hole
coalescence, Astrophys. J. 851, L35 (2017).

[8] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GW170814: A Three-Detector Observation of Gravitational
Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.
119, 141101 (2017).

[9] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
GWTC-1: A Gravitational-Wave Transient Catalog of Com-
pact Binary Mergers Observed by LIGO and Virgo during the
First and Second Observing Runs, Phys. Rev. X 9, 031040
(2019).

[10] B. P. Abbott et al. (KAGRA, LIGO Scientific, and
VIRGO Collaborations), Prospects for observing and lo-
calizing gravitational-wave transients with Advanced LIGO,
Advanced Virgo, and KAGRA, Living Rev. Rel. 21, 3
(2018).

[11] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Binary black hole population properties inferred from the first
and second observing runs of Advanced LIGO and Advanced
Virgo, arXiv:1811.12940 [astro-ph.HE].

[12] C. Cutler and E. E. Flanagan, Gravitational waves from merg-
ing compact binaries: How accurately can one extract the
binary’s parameters from the inspiral wave form? Phys. Rev.
D 49, 2658 (1994).

[13] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Properties of the Binary Black Hole Merger GW150914,
Phys. Rev. Lett. 116, 241102 (2016).

[14] J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, S. Vitale,
B. Aylott, K. Blackburn, N. Christensen, M. Coughlin et al.,
Parameter estimation for compact binaries with ground-based
gravitational-wave observations using the LALInference soft-
ware library, Phys. Rev. D 91, 042003 (2015).

[15] B. P. Abbott et al. (LIGO Scientific and Virgo Collaborations),
Tests of General Relativity with GW150914, Phys. Rev. Lett.
116, 221101 (2016); 121 129902(E) (2018).

[16] B. P. Abbott et al. (LIGO Scientific and Virgo Collaboration),
Tests of general relativity with the binary black hole signals
from the LIGO-Virgo Catalog GWTC-1, arXiv:1903.04467
[gr-qc].

[17] A. Ghosh, N. K. Johnson-Mcdaniel, A. Ghosh, C. K. Mishra,
P. Ajith, W. Del Pozzo, C. P. L. Berry, A. B. Nielsen,
and L. London, Testing general relativity using gravita-
tional wave signals from the inspiral, merger, and ringdown
of binary black holes, Class. Quantum Grav. 35, 014002
(2018).

[18] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt,
Maximum Gravitational Recoil, Phys. Rev. Lett. 98, 231102
(2007).

[19] J. A. Gonzalez, M. Hannam, U. Sperhake, B. Bruegmann, and
S. Husa, Supermassive Recoil Velocities for Binary Black-
Hole Mergers with Antialigned Spins, Phys. Rev. Lett. 98,
231101 (2007).

[20] D. Gerosa and A. Sesana, Missing black holes in brightest
cluster galaxies as evidence for the occurrence of superkicks
in nature, Mon. Not. Roy. Astron. Soc. 446, 38 (2015).

[21] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme, Phe-
nomenological model for the gravitational-wave signal from
precessing binary black holes with two-spin effects, Phys. Rev.
D 100, 024059 (2019).

[22] R. Cotesta, A. Buonanno, A. Bohé, A. Taracchini, I. Hinder,
and S. Ossokine, Enriching the symphony of gravitational
waves from binary black holes by tuning higher harmonics,
Phys. Rev. D 98, 084028 (2018).

[23] L. London, S. Khan, E. Fauchon-Jones, C. García, M.
Hannam, S. Husa, X. Jiménez-Forteza, C. Kalaghatgi, F.
Ohme, and F. Pannarale, First Higher-Multipole Model
of Gravitational Waves from Spinning and Coalescing
Black-Hole Binaries, Phys. Rev. Lett. 120, 161102
(2018).

[24] Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H.
Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilágyi, Inspiral-
merger-ringdown waveforms of spinning, precessing black-
hole binaries in the effective-one-body formalism, Phys. Rev.
D 89, 084006 (2014).

[25] A. Bohé et al., Improved effective-one-body model of
spinning, nonprecessing binary black holes for the era
of gravitational-wave astrophysics with advanced detectors,
Phys. Rev. D 95, 044028 (2017).

[26] S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. Jiménez
Forteza, and A. Bohé, Frequency-domain gravitational waves
from nonprecessing black-hole binaries. II. A phenomenolog-
ical model for the advanced detector era, Phys. Rev. D 93,
044007 (2016).

[27] M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa,
F. Ohme, G. Pratten, and M. Pürrer, Simple Model of

033015-14

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.1103/PhysRevLett.121.129901
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
https://doi.org/10.1007/s41114-018-0012-9
http://arxiv.org/abs/arXiv:1811.12940
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.116.221101
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
https://doi.org/10.1103/PhysRevLett.121.129902
http://arxiv.org/abs/arXiv:1903.04467
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1088/1361-6382/aa972e
https://doi.org/10.1103/PhysRevLett.98.231102
https://doi.org/10.1103/PhysRevLett.98.231102
https://doi.org/10.1103/PhysRevLett.98.231102
https://doi.org/10.1103/PhysRevLett.98.231102
https://doi.org/10.1103/PhysRevLett.98.231101
https://doi.org/10.1103/PhysRevLett.98.231101
https://doi.org/10.1103/PhysRevLett.98.231101
https://doi.org/10.1103/PhysRevLett.98.231101
https://doi.org/10.1093/mnras/stu2049
https://doi.org/10.1093/mnras/stu2049
https://doi.org/10.1093/mnras/stu2049
https://doi.org/10.1093/mnras/stu2049
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevD.93.044007


SURROGATE MODELS FOR PRECESSING BINARY BLACK … PHYSICAL REVIEW RESEARCH 1, 033015 (2019)

Complete Precessing Black-Hole-Binary Gravitational Wave-
forms, Phys. Rev. Lett. 113, 151101 (2014).

[28] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle,
D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroue,
H. P. Pfeiffer et al., Effective-one-body model for black-hole
binaries with generic mass ratios and spins, Phys. Rev. D 89,
061502(R) (2014).

[29] Y. Pan, A. Buonanno, M. Boyle, L. T. Buchman, L. E.
Kidder, H. P. Pfeiffer, and M. A. Scheel, Inspiral-merger-
ringdown multipolar waveforms of nonspinning black-hole
binaries using the effective-one-body formalism, Phys. Rev.
D 84, 124052 (2011).

[30] A. K. Mehta, C. K. Mishra, V. Varma, and P. Ajith,
Accurate inspiral-merger-ringdown gravitational waveforms
for nonspinning black-hole binaries including the ef-
fect of subdominant modes, Phys. Rev. D 96, 124010
(2017).

[31] S. Babak, A. Taracchini, and A. Buonanno, Validating the
effective-one-body model of spinning, precessing binary black
holes against numerical relativity, Phys. Rev. D 95, 024010
(2017).

[32] F. Hofmann, E. Barausse, and L. Rezzolla, The final spin from
binary black holes in quasi-circular orbits, Astrophys. J. 825,
L19 (2016).

[33] E. Barausse, V. Morozova, and L. Rezzolla, On the mass
radiated by coalescing black-hole binaries, Astrophys. J. 758,
63 (2012); 786, 76(E) (2014).

[34] X. Jiménez-Forteza, D. Keitel, S. Husa, M. Hannam, S. Khan,
and M. Pürrer, Hierarchical data-driven approach to fitting
numerical relativity data for nonprecessing binary black holes
with an application to final spin and radiated energy, Phys.
Rev. D 95, 064024 (2017).

[35] J. Healy and C. O. Lousto, Remnant of binary black-hole
mergers: New simulations and peak luminosity studies, Phys.
Rev. D 95, 024037 (2017).

[36] J. Healy, C. O. Lousto, and Y. Zlochower, Remnant mass, spin,
and recoil from spin aligned black-hole binaries, Phys. Rev. D
90, 104004 (2014).

[37] J. A. Gonzalez, U. Sperhake, B. Brügmann, M. Hannam, and
S. Husa, Total Recoil: The Maximum Kick from Nonspin-
ning Black-Hole Binary Inspiral, Phys. Rev. Lett. 98, 091101
(2007).

[38] M. Campanelli, C. O. Lousto, Y. Zlochower, and D. Merritt,
Large merger recoils and spin flips from generic black-hole
binaries, Astrophys. J. 659, L5 (2007).

[39] C. O. Lousto and Y. Zlochower, Further insight into gravita-
tional recoil, Phys. Rev. D 77, 044028 (2008).

[40] C. O. Lousto, Y. Zlochower, M. Dotti, and M. Volonteri,
Gravitational recoil from accretion-aligned black-hole bina-
ries, Phys. Rev. D 85, 084015 (2012).

[41] C. O. Lousto and Y. Zlochower, Nonlinear gravitational recoil
from the mergers of precessing black-hole binaries, Phys. Rev.
D 87, 084027 (2013).

[42] D. Gerosa and M. Kesden, PRECESSION: Dynamics of
spinning black-hole binaries with PYTHON, Phys. Rev. D 93,
124066 (2016).

[43] J. Healy and C. O. Lousto, Hangup effect in unequal mass
binary black hole mergers and further studies of their grav-
itational radiation and remnant properties, Phys. Rev. D 97,
084002 (2018).

[44] F. Herrmann, I. Hinder, D. M. Shoemaker, P. Laguna,
and R. A. Matzner, Binary black holes: Spin dynam-
ics and gravitational recoil, Phys. Rev. D 76, 084032
(2007).

[45] L. Rezzolla, E. Barausse, E. N. Dorband, D. Pollney, C.
Reisswig, J. Seiler, and S. Husa, On the final spin from the
coalescence of two black holes, Phys. Rev. D 78, 044002
(2008).

[46] L. Rezzolla, P. Diener, E. N. Dorband, D. Pollney, C.
Reisswig, E. Schnetter, and J. Seiler, The final spin from the
coalescence of aligned-spin black-hole binaries, Astrophys. J.
674, L29 (2008).

[47] M. Kesden, Can binary mergers produce maximally spinning
black holes? Phys. Rev. D 78, 084030 (2008).

[48] W. Tichy and P. Marronetti, The final mass and spin of black
hole mergers, Phys. Rev. D 78, 081501(R) (2008).

[49] E. Barausse and L. Rezzolla, Predicting the direction of the
final spin from the coalescence of two black holes, Astrophys.
J. 704, L40 (2009).

[50] Y. Zlochower and C. O. Lousto, Modeling the remnant mass,
spin, and recoil from unequal-mass, precessing black-hole
binaries: The intermediate mass ratio regime, Phys. Rev. D 92,
024022 (2015); 94, 029901(E) (2016).

[51] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne,
Spin-induced orbital precession and its modulation of the
gravitational waveforms from merging binaries, Phys. Rev. D
49, 6274 (1994).

[52] D. Gerosa, M. Kesden, E. Berti, R. O’Shaughnessy, and
U. Sperhake, Resonant-plane locking and spin alignment in
stellar-mass black-hole binaries: A diagnostic of compact-
binary formation, Phys. Rev. D 87, 104028 (2013).

[53] S. Vitale, R. Lynch, R. Sturani, and P. Graff, Use of grav-
itational waves to probe the formation channels of compact
binaries, Class. Quantum Grav. 34, 03LT01 (2017).

[54] B. Farr, D. E. Holz, and W. M. Farr, Using spin to understand
the formation of LIGO and Virgo’s black holes, Astrophys. J.
854, L9 (2018).

[55] D. Gerosa, E. Berti, R. O’Shaughnessy, K. Belczynski, M.
Kesden, D. Wysocki, and W. Gladysz, Spin orientations of
merging black holes formed from the evolution of stellar
binaries, Phys. Rev. D 98, 084036 (2018).

[56] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, C. D. Ott,
M. Boyle, L. E. Kidder, H. P. Pfeiffer, and B. Szilágyi, Nu-
merical relativity waveform surrogate model for generically
precessing binary black hole mergers, Phys. Rev. D 96, 024058
(2017).

[57] V. Varma, D. Gerosa, L. C. Stein, F. Hébert, and H. Zhang,
High-Accuracy Mass, Spin, and Recoil Predictions of Generic
Black-Hole Merger Remnants, Phys. Rev. Lett. 122, 011101
(2019).

[58] J. Blackman, S. Field, C. Galley, and V. Varma, gwsurrogate,
https://pypi.python.org/pypi/gwsurrogate/.

[59] V. Varma et al., surfinBH, pypi.org/project/surfinBH, doi:
10.5281/zenodo.1418525.

[60] Binary black-hole surrogate waveform catalog, http://www.
black-holes.org/surrogates/.

[61] V. Varma and P. Ajith, Effects of nonquadrupole modes in
the detection and parameter estimation of black hole bi-
naries with nonprecessing spins, Phys. Rev. D 96, 124024
(2017).

033015-15

https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.84.124052
https://doi.org/10.1103/PhysRevD.84.124052
https://doi.org/10.1103/PhysRevD.84.124052
https://doi.org/10.1103/PhysRevD.84.124052
https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.96.124010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.3847/2041-8205/825/2/L19
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/758/1/63
https://doi.org/10.1088/0004-637X/786/1/76
https://doi.org/10.1088/0004-637X/786/1/76
https://doi.org/10.1088/0004-637X/786/1/76
https://doi.org/10.1103/PhysRevD.95.064024
https://doi.org/10.1103/PhysRevD.95.064024
https://doi.org/10.1103/PhysRevD.95.064024
https://doi.org/10.1103/PhysRevD.95.064024
https://doi.org/10.1103/PhysRevD.95.024037
https://doi.org/10.1103/PhysRevD.95.024037
https://doi.org/10.1103/PhysRevD.95.024037
https://doi.org/10.1103/PhysRevD.95.024037
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevD.90.104004
https://doi.org/10.1103/PhysRevLett.98.091101
https://doi.org/10.1103/PhysRevLett.98.091101
https://doi.org/10.1103/PhysRevLett.98.091101
https://doi.org/10.1103/PhysRevLett.98.091101
https://doi.org/10.1086/516712
https://doi.org/10.1086/516712
https://doi.org/10.1086/516712
https://doi.org/10.1086/516712
https://doi.org/10.1103/PhysRevD.77.044028
https://doi.org/10.1103/PhysRevD.77.044028
https://doi.org/10.1103/PhysRevD.77.044028
https://doi.org/10.1103/PhysRevD.77.044028
https://doi.org/10.1103/PhysRevD.85.084015
https://doi.org/10.1103/PhysRevD.85.084015
https://doi.org/10.1103/PhysRevD.85.084015
https://doi.org/10.1103/PhysRevD.85.084015
https://doi.org/10.1103/PhysRevD.87.084027
https://doi.org/10.1103/PhysRevD.87.084027
https://doi.org/10.1103/PhysRevD.87.084027
https://doi.org/10.1103/PhysRevD.87.084027
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1103/PhysRevD.93.124066
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1103/PhysRevD.76.084032
https://doi.org/10.1103/PhysRevD.76.084032
https://doi.org/10.1103/PhysRevD.76.084032
https://doi.org/10.1103/PhysRevD.76.084032
https://doi.org/10.1103/PhysRevD.78.044002
https://doi.org/10.1103/PhysRevD.78.044002
https://doi.org/10.1103/PhysRevD.78.044002
https://doi.org/10.1103/PhysRevD.78.044002
https://doi.org/10.1086/528935
https://doi.org/10.1086/528935
https://doi.org/10.1086/528935
https://doi.org/10.1086/528935
https://doi.org/10.1103/PhysRevD.78.084030
https://doi.org/10.1103/PhysRevD.78.084030
https://doi.org/10.1103/PhysRevD.78.084030
https://doi.org/10.1103/PhysRevD.78.084030
https://doi.org/10.1103/PhysRevD.78.081501
https://doi.org/10.1103/PhysRevD.78.081501
https://doi.org/10.1103/PhysRevD.78.081501
https://doi.org/10.1103/PhysRevD.78.081501
https://doi.org/10.1088/0004-637X/704/1/L40
https://doi.org/10.1088/0004-637X/704/1/L40
https://doi.org/10.1088/0004-637X/704/1/L40
https://doi.org/10.1088/0004-637X/704/1/L40
https://doi.org/10.1103/PhysRevD.92.024022
https://doi.org/10.1103/PhysRevD.92.024022
https://doi.org/10.1103/PhysRevD.92.024022
https://doi.org/10.1103/PhysRevD.92.024022
https://doi.org/10.1103/PhysRevD.94.029901
https://doi.org/10.1103/PhysRevD.94.029901
https://doi.org/10.1103/PhysRevD.94.029901
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.1103/PhysRevD.87.104028
https://doi.org/10.1088/1361-6382/aa552e
https://doi.org/10.1088/1361-6382/aa552e
https://doi.org/10.1088/1361-6382/aa552e
https://doi.org/10.1088/1361-6382/aa552e
https://doi.org/10.3847/2041-8213/aaaa64
https://doi.org/10.3847/2041-8213/aaaa64
https://doi.org/10.3847/2041-8213/aaaa64
https://doi.org/10.3847/2041-8213/aaaa64
https://doi.org/10.1103/PhysRevD.98.084036
https://doi.org/10.1103/PhysRevD.98.084036
https://doi.org/10.1103/PhysRevD.98.084036
https://doi.org/10.1103/PhysRevD.98.084036
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevD.96.024058
https://doi.org/10.1103/PhysRevLett.122.011101
https://doi.org/10.1103/PhysRevLett.122.011101
https://doi.org/10.1103/PhysRevLett.122.011101
https://doi.org/10.1103/PhysRevLett.122.011101
https://pypi.python.org/pypi/gwsurrogate/
https://doi.org/10.5281/zenodo.1418525
http://www.black-holes.org/surrogates/
https://doi.org/10.1103/PhysRevD.96.124024
https://doi.org/10.1103/PhysRevD.96.124024
https://doi.org/10.1103/PhysRevD.96.124024
https://doi.org/10.1103/PhysRevD.96.124024


VIJAY VARMA et al. PHYSICAL REVIEW RESEARCH 1, 033015 (2019)

[62] C. Capano, Y. Pan, and A. Buonanno, Impact of higher har-
monics in searching for gravitational waves from nonspinning
binary black holes, Phys. Rev. D 89, 102003 (2014).

[63] T. B. Littenberg, J. G. Baker, A. Buonanno, and B. J. Kelly,
Systematic biases in parameter estimation of binary black-hole
mergers, Phys. Rev. D 87, 104003 (2013).

[64] J. Calderón Bustillo, P. Laguna, and D. Shoemaker, De-
tectability of gravitational waves from binary black holes:
Impact of precession and higher modes, Phys. Rev. D 95,
104038 (2017).

[65] D. A. Brown, P. Kumar, and A. H. Nitz, Template banks
to search for low-mass binary black holes in advanced
gravitational-wave detectors, Phys. Rev. D 87, 082004
(2013).

[66] V. Varma, P. Ajith, S. Husa, J. C. Bustillo, M. Hannam, and M.
Pürrer, Gravitational-wave observations of binary black holes:
Effect of nonquadrupole modes, Phys. Rev. D 90, 124004
(2014).

[67] P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing
link: Bayesian detection and measurement of intermediate-
mass black-hole binaries, Phys. Rev. D 92, 022002 (2015).

[68] I. Harry, J. Calderón Bustillo, and A. Nitz, Searching for the
full symphony of black hole binary mergers, Phys. Rev. D 97,
023004 (2018).

[69] J. Calderón Bustillo, S. Husa, A. M. Sintes, and M. Pürrer,
Impact of gravitational radiation higher order modes on sin-
gle aligned-spin gravitational wave searches for binary black
holes, Phys. Rev. D 93, 084019 (2016).

[70] L. Pekowsky, J. Healy, D. Shoemaker, and P. Laguna, Impact
of higher-order modes on the detection of binary black hole
coalescences, Phys. Rev. D 87, 084008 (2013).

[71] P. Schmidt, M. Hannam, S. Husa, and P. Ajith, Tracking the
precession of compact binaries from their gravitational-wave
signal, Phys. Rev. D 84, 024046 (2011).

[72] R. O’Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and D.
Shoemaker, Efficient asymptotic frame selection for binary
black hole spacetimes using asymptotic radiation, Phys. Rev.
D 84, 124002 (2011).

[73] M. Boyle, R. Owen, and H. P. Pfeiffer, A geometric approach
to the precession of compact binaries, Phys. Rev. D 84, 124011
(2011).

[74] J. Blackman, S. E. Field, M. A. Scheel, C. R. Galley, D. A.
Hemberger, P. Schmidt, and R. Smith, A surrogate model of
gravitational waveforms from numerical relativity simulations
of precessing binary black hole mergers, Phys. Rev. D 95,
104023 (2017).

[75] The spectral Einstein code, http://www.black-holes.org/SpEC.
html.

[76] H. P. Pfeiffer, L. E. Kidder, M. A. Scheel, and S. A. Teukolsky,
A multidomain spectral method for solving elliptic equations,
Comput. Phys. Commun. 152, 253 (2003).

[77] G. Lovelace, R. Owen, H. P. Pfeiffer, and T. Chu, Binary-
black-hole initial data with nearly-extremal spins, Phys. Rev.
D 78, 084017 (2008).

[78] L. Lindblom, M. A. Scheel, L. E. Kidder, R. Owen, and O.
Rinne, A new generalized harmonic evolution system, Class.
Quantum Grav. 23, S447 (2006).

[79] B. Szilagyi, L. Lindblom, and M. A. Scheel, Simulations of
binary black hole mergers using spectral methods, Phys. Rev.
D 80, 124010 (2009).

[80] M. A. Scheel, M. Boyle, T. Chu, L. E. Kidder, K. D. Matthews,
and H. P. Pfeiffer, High-accuracy waveforms for binary black
hole inspiral, merger, and ringdown, Phys. Rev. D 79, 024003
(2009).

[81] Simulating eXtreme spacetimes, http://www.black-holes.org/.
[82] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.

Kidder, and H. P. Pfeiffer, Surrogate model of hybridized
numerical relativity binary black hole waveforms, Phys. Rev.
D 99, 064045 (2019).

[83] SXS Collaboration, The SXS Collaboration catalog of gravi-
tational waveforms, http://www.black-holes.org/waveforms.

[84] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Class. Quantum Grav. 36, 195006
(2019).

[85] A. Buonanno, L. E. Kidder, A. H. Mroue, H. P. Pfeiffer, and A.
Taracchini, Reducing orbital eccentricity of precessing black-
hole binaries, Phys. Rev. D 83, 104034 (2011).

[86] M. Boyle and A. H. Mroue, Extrapolating gravitational-wave
data from numerical simulations, Phys. Rev. D 80, 124045
(2009).

[87] M. Boyle, Transformations of asymptotic gravitational-wave
data, Phys. Rev. D 93, 084031 (2016).

[88] M. Boyle, Scri, https://github.com/moble/scri.
[89] S. Ossokine, M. Boyle, L. E. Kidder, H. P. Pfeiffer, M. A.

Scheel, and B. Szilágyi, Comparing post-Newtonian and
numerical-relativity precession dynamics, Phys. Rev. D 92,
104028 (2015).

[90] D. Gerosa, F. Hébert, and L. C. Stein, Black-hole kicks
from numerical-relativity surrogate models, Phys. Rev. D 97,
104049 (2018).

[91] M. Ruiz, R. Takahashi, M. Alcubierre, and D. Nunez, Multi-
pole expansions for energy and momenta carried by gravita-
tional waves, Gen. Rel. Grav. 40, 2467 (2008).

[92] S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, and
M. Tiglio, Fast Prediction and Evaluation of Gravitational
Waveforms Using Surrogate Models, Phys. Rev. X 4, 031006
(2014).

[93] Y. Maday, N. C. Nguyen, A. T. Patera, and S. H. Pau, A gen-
eral multipurpose interpolation procedure: The magic points,
Commun. Pure Appl. Anal. 8, 383 (2009).

[94] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduc-
tion via discrete empirical interpolation, SIAM J. Sci. Comput.
32, 2737 (2010).

[95] P. Ajith, Addressing the spin question in gravitational-wave
searches: Waveform templates for inspiralling compact bi-
naries with nonprecessing spins, Phys. Rev. D 84, 084037
(2011).

[96] E. Poisson and C. M. Will, Gravitational waves from in-
spiraling compact binaries: Parameter estimation using sec-
ond post-Newtonian wave forms, Phys. Rev. D 52, 848
(1995).

[97] A. Buonanno, Y.-b. Chen, and M. Vallisneri, Detecting grav-
itational waves from precessing binaries of spinning compact
objects: Adiabatic limit, Phys. Rev. D 67, 104025 (2003); 74,
029904(E) (2006).

[98] M. Boyle, D. A. Brown, L. E. Kidder, A. H. Mroue, H. P.
Pfeiffer, M. A. Scheel, G. B. Cook, and S. A. Teukolsky,
High-accuracy comparison of numerical relativity simulations
with post-Newtonian expansions, Phys. Rev. D 76, 124038
(2007).

033015-16

https://doi.org/10.1103/PhysRevD.89.102003
https://doi.org/10.1103/PhysRevD.89.102003
https://doi.org/10.1103/PhysRevD.89.102003
https://doi.org/10.1103/PhysRevD.89.102003
https://doi.org/10.1103/PhysRevD.87.104003
https://doi.org/10.1103/PhysRevD.87.104003
https://doi.org/10.1103/PhysRevD.87.104003
https://doi.org/10.1103/PhysRevD.87.104003
https://doi.org/10.1103/PhysRevD.95.104038
https://doi.org/10.1103/PhysRevD.95.104038
https://doi.org/10.1103/PhysRevD.95.104038
https://doi.org/10.1103/PhysRevD.95.104038
https://doi.org/10.1103/PhysRevD.87.082004
https://doi.org/10.1103/PhysRevD.87.082004
https://doi.org/10.1103/PhysRevD.87.082004
https://doi.org/10.1103/PhysRevD.87.082004
https://doi.org/10.1103/PhysRevD.90.124004
https://doi.org/10.1103/PhysRevD.90.124004
https://doi.org/10.1103/PhysRevD.90.124004
https://doi.org/10.1103/PhysRevD.90.124004
https://doi.org/10.1103/PhysRevD.92.022002
https://doi.org/10.1103/PhysRevD.92.022002
https://doi.org/10.1103/PhysRevD.92.022002
https://doi.org/10.1103/PhysRevD.92.022002
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevD.97.023004
https://doi.org/10.1103/PhysRevD.93.084019
https://doi.org/10.1103/PhysRevD.93.084019
https://doi.org/10.1103/PhysRevD.93.084019
https://doi.org/10.1103/PhysRevD.93.084019
https://doi.org/10.1103/PhysRevD.87.084008
https://doi.org/10.1103/PhysRevD.87.084008
https://doi.org/10.1103/PhysRevD.87.084008
https://doi.org/10.1103/PhysRevD.87.084008
https://doi.org/10.1103/PhysRevD.84.024046
https://doi.org/10.1103/PhysRevD.84.024046
https://doi.org/10.1103/PhysRevD.84.024046
https://doi.org/10.1103/PhysRevD.84.024046
https://doi.org/10.1103/PhysRevD.84.124002
https://doi.org/10.1103/PhysRevD.84.124002
https://doi.org/10.1103/PhysRevD.84.124002
https://doi.org/10.1103/PhysRevD.84.124002
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
https://doi.org/10.1103/PhysRevD.95.104023
http://www.black-holes.org/SpEC.html
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1016/S0010-4655(02)00847-0
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1103/PhysRevD.78.084017
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1088/0264-9381/23/16/S09
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.80.124010
https://doi.org/10.1103/PhysRevD.79.024003
https://doi.org/10.1103/PhysRevD.79.024003
https://doi.org/10.1103/PhysRevD.79.024003
https://doi.org/10.1103/PhysRevD.79.024003
http://www.black-holes.org/
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045
http://www.black-holes.org/waveforms
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1103/PhysRevD.83.104034
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.80.124045
https://doi.org/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.93.084031
https://doi.org/10.1103/PhysRevD.93.084031
https://github.com/moble/scri
https://doi.org/10.1103/PhysRevD.92.104028
https://doi.org/10.1103/PhysRevD.92.104028
https://doi.org/10.1103/PhysRevD.92.104028
https://doi.org/10.1103/PhysRevD.92.104028
https://doi.org/10.1103/PhysRevD.97.104049
https://doi.org/10.1103/PhysRevD.97.104049
https://doi.org/10.1103/PhysRevD.97.104049
https://doi.org/10.1103/PhysRevD.97.104049
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1007/s10714-008-0684-7
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.1103/PhysRevX.4.031006
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.3934/cpaa.2009.8.383
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1103/PhysRevD.84.084037
https://doi.org/10.1103/PhysRevD.84.084037
https://doi.org/10.1103/PhysRevD.84.084037
https://doi.org/10.1103/PhysRevD.84.084037
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.67.104025
https://doi.org/10.1103/PhysRevD.67.104025
https://doi.org/10.1103/PhysRevD.67.104025
https://doi.org/10.1103/PhysRevD.67.104025
https://doi.org/10.1103/PhysRevD.74.029904
https://doi.org/10.1103/PhysRevD.74.029904
https://doi.org/10.1103/PhysRevD.74.029904
https://doi.org/10.1103/PhysRevD.76.124038
https://doi.org/10.1103/PhysRevD.76.124038
https://doi.org/10.1103/PhysRevD.76.124038
https://doi.org/10.1103/PhysRevD.76.124038


SURROGATE MODELS FOR PRECESSING BINARY BLACK … PHYSICAL REVIEW RESEARCH 1, 033015 (2019)

[99] D. J. A. McKechan, C. Robinson, and B. S. Sathyaprakash,
A tapering window for time-domain templates and simulated
signals in the detection of gravitational waves from coa-
lescing compact binaries, Class. Quantum Grav. 27, 084020
(2010).

[100] M. Boyle, Angular velocity of gravitational radiation from
precessing binaries and the corotating frame, Phys. Rev. D 87,
104006 (2013).

[101] LIGO Scientific Collaboration, Updated Advanced LIGO sen-
sitivity design curve, Tech. Rep., 2018, https://dcc.ligo.org/
LIGO-T1800044/public.

[102] N. K. Johnson-McDaniel, A. Gupta, P Ajith, D. Keitel, O.
Birnholtz, F. Ohme, and S. Husa, Determining the final spin of
a binary black hole system including in-plane spins: Method
and checks of accuracy, Tech. Rep. LIGO-T1600168, 2016,
https://dcc.ligo.org/LIGO-T1600168/public.

[103] B. P. Abbott et al. (LIGO Scientific and Virgo Collaboration),
Binary Black Hole Mergers in the First Advanced LIGO
Observing Run, Phys. Rev. X 6, 041015 (2016); 8, 039903(E)
(2018).

[104] P. Kumar, J. Blackman, S. E. Field, M. Scheel, C. R. Galley,
M. Boyle, L. E. Kidder, H. P. Pfeiffer, B. Szilagyi, and S. A.
Teukolsky, Constraining the parameters of GW150914 and
GW170104 with numerical relativity surrogates, Phys. Rev. D
99, 124005 (2019).

[105] V. Varma, M. A. Scheel, and H. P. Pfeiffer, Comparison of
binary black hole initial data sets, Phys. Rev. D 98, 104011
(2018).

[106] S. Ossokine, F. Foucart, H. P. Pfeiffer, M. Boyle, and
B. Szilágyi, Improvements to the construction of binary
black hole initial data, Class. Quantum Grav. 32, 245010
(2015).

033015-17

https://doi.org/10.1088/0264-9381/27/8/084020
https://doi.org/10.1088/0264-9381/27/8/084020
https://doi.org/10.1088/0264-9381/27/8/084020
https://doi.org/10.1088/0264-9381/27/8/084020
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.87.104006
https://doi.org/10.1103/PhysRevD.87.104006
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1600168/public
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevX.8.039903
https://doi.org/10.1103/PhysRevD.99.124005
https://doi.org/10.1103/PhysRevD.99.124005
https://doi.org/10.1103/PhysRevD.99.124005
https://doi.org/10.1103/PhysRevD.99.124005
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1103/PhysRevD.98.104011
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010
https://doi.org/10.1088/0264-9381/32/24/245010

