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Engineering fragile topology in photonic crystals: Topological quantum chemistry of light
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In recent years, there have been rapid advances in the parallel fields of electronic and photonic topological
crystals. Topological photonic crystals in particular show promise for coherent transport of light and quantum
information at macroscopic scales. In this work, we apply for the first time the recently developed theory of
“topological quantum chemistry” to the study of band structures in photonic crystals. This method allows us
to design and diagnose topological photonic band structures using only group theory and linear algebra. As
an example, we focus on a family of crystals formed by elliptical rods in a triangular lattice. We show that
the symmetry of Bloch states in the Brillouin zone can determine the position of the localized photonic wave
packets describing groups of bands. By modifying the crystal structure and inverting bands, we show how the
centers of these wave packets can be moved between different positions in the unit cell. Finally, we show
that for shapes of dielectric rods, there exist isolated topological bands which do not admit a well-localized
description, representing the first physical instance of “fragile” topology in a truly noninteracting system. Our
work demonstrates how photonic crystals are the natural platform for the future experimental investigation of
fragile topological bands.
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Introduction. In recent years, there have been tremendous
parallel advances in the fields of both topological electronic
materials and engineered photonic crystals. On the one hand,
topologically nontrivial band insulators have been discovered
[1–6] which feature protected, gapless surface, edge, and
hinge [7–13] states, as well as anomalous bulk response
functions [14–16]. The interplay between topology and crystal
symmetry in these phases has reinvigorated the study of band
theory, and resulted in new connections between topology
in momentum space and the real-space orbital structure of
electronic solids [17–21]. Following Haldane and Raghu’s
seminal ideas [22,23], many of these concepts have also
been simultaneously explored in the propagation of photons
in periodic dielectric structures (photonic crystals). For in-
stance, photonic analogs of the quantum Hall effect [24,25],
quantum spin-Hall effect [26–28], quantum valley-Hall effect
[29], Floquet topological insulators [30–33], mirror-Chern,
and quadrupole insulating [34–42] systems have been recently
discovered.

Because photons in linear dielectrics are truly noninter-
acting, and since they can be cheaply and easily engineered
with almost any desirable lattice structure, two-dimensional
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photonic crystals are an ideal playground for studying topo-
logical band theory. Pioneering work in this field has primarily
focused on recreating strong Z2 topological insulators in
bosonic systems protected by crystal symmetries as a proxy
for fermionic time-reversal symmetry [43,44]. Most prior
work has focused on producing chiral or helical edge modes in
photonic systems. However, there exist also “fragile” topolog-
ical phases, which do not have protected edge states [45–50].
This fragile topology is a property of a fixed number of
bands, and can be diagnosed by a bulk invariant defined in the
Hilbert space spanned by those bands. A nonzero invariant
reflects the inability to define exponentially localized and
symmetric orbitals—Wannier functions—in real space using
only the basis of states in the topological bands. With the
possible exception of twisted bilayer graphene [51,52] and
TMD heterostructures [53], a material realization of fragile
topology without interactions has remained elusive. Systems
with fragile topological bands are predicted to host tunable
corner modes and defect states [13,54], which could be func-
tionalized in a photonic crystal device. Additionally, photonic
fragile topological bands can serve as the building blocks for
three-dimensional photonic crystals with higher-order topol-
ogy [47].

In this work, we design a photonic crystal the first
known example of noninteracting fragile topology. Inspired
by Ref. [43], we consider a family of photonic crystal struc-
tures with a distorted honeycomb lattice of dielectric rods.
We show that by changing the shape of the dielectric rods,
several different photonic band structures can be realized.
To analyze these band structures, we apply the theory of
topological quantum chemistry (TQC) [18] to the study of
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FIG. 1. (a) Schematic showing the real-space unit cell of the structures studied in this work. a1 and a2 are the real-space lattice vectors.
The centers of the ellipses are fixed at a distance b = a0

3 from the center of the unit cell, a0 being the lattice constant. d1 and d2 are the
lengths of the principal axes of the ellipses. Higher dielectric constant is shown in blue. When tiling this pattern we use the convention that
the dielectric function in any blue region is the same, including when ellipses overlap. (b)–(d) Photonic band structures of three representative
examples studied in this work, with little group representations labeled at the high-symmetry points. (b) Topologically trivial structure, with
d1 = 0.52a0 and d2 = 0.31a0. (c) Band structure of a structure representative of the “obstructed atomic limit” (OAL) phase, with d1 = 0.4a0

and d2 = 0.61a0. (d) Topologically fragile structure, with d1 = 0.4a0 and d2 = 0.13a0.

photonic band structures. In particular, we use the symmetry
of the wave functions in our photonic crystals to identify the
set of Wannier functions—known as a band representation–
associated to each group of bands [19,55–59]. While photonic
Wannier functions and band representations have been intro-
duced previously [60–68], we here explore their topological
implications for the first time. We show that there exists a
class of structures where the photonic bands cannot support
exponentially localized symmetric Wannier functions, and by
computing the bulk invariant we verify that these bands have
nontrivial fragile topology. In doing so, we also demonstrate
the utility of TQC and “symmetry indicator” methods [21,52]
for the efficient computation of photonic topological invari-
ants. Finally, we comment on potential applications of TQC
and fragile topology to photonic systems.

Model. As a starting point for our design, we chose a
two-dimensional triangular lattice of lattice constant a0 with a
unit cell of six circular silicon rods (ε = 11.7) of diameter d
arranged in a hexagonal pattern. This nonprimitive (enlarged)
unit cell is necessary, because we next distort the rods into
ellipses. These ellipses have their principal axes of length d1

and d2, with d1 oriented in the direction of the lattice vectors
[i.e., pointing towards the center of the unit cell, see Fig. 1(a)].
The symmetry group of this crystal is the space group p6mm1′
(No. 183) [69], generated by the lattice translations, sixfold
rotational symmetry, mirror reflection about the x axis, and
time-reversal symmetry.

We then computed the band structure for the transverse
magnetic (TM) modes in this crystal using the MIT photonic
bands package (MPB) [70], given by the spectrum of the
magnetic wave equation

∇ ×
(

1

ε(r)
× H(r)

)
=

(
ω

c

)2

H(r), (1)

for waves with no propagation in the z direction. Here, ε(r)
is the position dependent permittivity, H(r) is the in-plane
magnetic field vector, ω is the frequency and c is the speed
of light. We show representative band structures for three dif-
ferent cases in Fig. 1. In Fig. 2, we summarize our results as a

function of the axis lengths d1 and d2. As we will show below,
there exists a parameter regime where the second and third
bands (counting up from zero energy) are isolated from the
rest of the states in the spectrum and exhibit fragile topology.

Photonic band representations. As a first step in assessing
the topological properties of bands in our photonic crystal, we
will apply the theory of TQC to photonic energy bands. First,
we examine the transformation properties of the Bloch eigen-
states of our photonic crystal at each of the high-symmetry
points k∗ (�, K, and M) in the Brillouin zone. The group of
symmetry operations Gk∗ that leaves k∗ invariant is known as
the little group of k∗; degenerate multiplets of states at each
k∗ transform under irreducible representations (irreps) of the

FIG. 2. Phase diagram for the photonic band topology. We show
the topological properties of the second and third bands as a function
of the length of principal axes of the elliptical rods. Light blue
indicates that the bands form the trivial band representation, dark
blue indicates the “obstructed atomic limit” (OAL), and purple
indicates the fragile topological phase. Finally, magenta indicates an
intervening gapless phase with fine-tuned degeneracy.

032005-2



ENGINEERING FRAGILE TOPOLOGY IN PHOTONIC … PHYSICAL REVIEW RESEARCH 1, 032005(R) (2019)

TABLE I. Little group irreps for the three gapped phases of our
model. Irreps at each k point are ordered from lowest to highest
energy. Note that while the OAL and fragile bands contain the same
irreps in the lowest three bands, they differ by a band inversion at K
and M.

� K M

Trivial A1, E1 A1, E A1, B1, B2

OAL A1, E2 E , A1 B1, A1, B2

Fragile A1, E2 A1, E A1, B1, B2

group Gk∗ [71]. Using the little group representations given in
the Bilbao Crystallographic Server (BCS) [72–74] along with
the GTPACK package [75,76], we compute the representation
labels at each high-symmetry point in our photonic band
structure [77]. Using these assignments, we identify three
distinct phases of our model by looking at the irreps of the
lowest three bands (see Table I and also Ref. [77]).

To extract topological information from the representation
labels, recall [18,59,62] that for a set of isolated bands i ∈
{1, . . . , N} the symmetry properties of the Bloch-wave eigen-
states ψik(r) at every momentum k in the Brillouin zone are
determined by the transformation properties of the Wannier
functions

wiR(r) ≡
∑

k

e−ik·RUi j (k)ψ jk(r). (2)

Here, R is a lattice vector, and Ui j (k) is an N × N unitary
matrix function of k, and represents a choice of “gauge”
for the space spanned by the N bands. For a topologically
trivial set of bands, the matrix U can be chosen to make
the functions wnR exponentially localized about some center
rn + R. In this case, the Wannier functions transform in a
representation of the space group obtained by acting with all
elements on the space group on a set of functions at one of
the rn. These Wannier functions carry a band representation.
All band representations can be obtained as a sum of ele-
mentary band representations (EBRs), which are tabulated in
Refs. [78,79]. Each EBR is identified by its space group, the
Wyckoff position which labels the set rn of centers, and an
irrep of the group Grn which leaves each center invariant (see
SM). Inverting this observation, any set of bands that cannot
be expressed as a sum of EBRs does not admit exponentially
localized and symmetric Wannier functions, and is therefore
topologically nontrivial. Note that these considerations apply
equally well to both photonic and electronic crystals.

Using the irrep labels given in Table I, along with the cata-
log of EBRs in the BCS [72–74], we can identify the band rep-
resentations describing each phase of our photonic crystal (see
Table II of [77]). With d1 = 0.52a0, d2 = 0.31a0, we see that
the lowest band carries irrep labels consistent with the band
representation (A1 ↑ G)1a, consisting of photonic Wannier
functions centered at the origin with zero angular momentum
(s-like).1 Bands two and three are connected to each other, and

1The singularity near � for photonic modes [90] should not obstruct
the formation of Wannier functions for the electric field of TM modes
in 2D, since it is polarized out of plane.

are consistent with the (E1 ↑ G)1a band representation, with a
pair of Wannier functions centered at the origin and transform-
ing like a dipole (p-like). this is indicated as the “trivial” phase
in Fig. 2, as all photonic states can be expressed in terms of
modes localized near the origin. Note that there are no dielec-
tric rods at the origin, so these Wannier functions are trapped
in a symmetric arrangement of dielectrics surrounding the ori-
gin. This band structure is shown in Fig. 1(b). Next, with d1 =
0.4a0, d2 = 0.61a0 we see that the first three bands are all
interconnected; taken together, their irrep labels are consistent
with s-like photonic Wannier functions centered on a kagome
lattice (3c position), and transforming in the (A1 ↑ G)3c band
representation. Note that this phase was identified in Ref. [43]
as possessing a nontrivial topological invariant; here we show
that this invariant indicates that the photonic Wannier func-
tions are localized on a kagome rather than a triangular lattice.
In contrast to the trivial phase, the centers of these Wannier
functions lie within the dielectric rods. In analogy with sim-
ilar transitions in electronic materials, this is labeled as the
“obstructed atomic limit” (OAL) phase in Fig. 2. This band
structure is shown in Fig. 1(c). Finally, when d1 = 0.4a0, d2 =
0.1333a0 we see that while the lowest band can be described
by s-like Wannier functions at the origin of the unit cell, bands
two and three cannot be expressed as the sum of EBRs. All
three bands taken together, however, contain the same repre-
sentations as the (A1 ↑ G)3c band representation in the OAL
phase. This band structure is shown in Fig. 1(d). In the fol-
lowing section, we will show that bands two and three in this
crystal realize fragile topology [45,46], as labeled in Fig. 2.

To support these conclusions, for each isolated set of bands
we compute the eigenvalues of the Wilson loop

W = Pei
∮

A·dk, (3)

where A is the Berry connection, P denotes path ordering, and
the path of integration goes along a primitive reciprocal lattice
vector. As shown in Ref. [77], EBRs from each of the different
Wyckoff positions in this space group have qualitatively dif-
ferent Wilson loop spectra. Furthermore, the bands in the Wil-
son loop spectrum for topologically trivial bands do not cover
the entire range [0, 2π ] of possible angles, i.e., they do not
wind. We see in Fig. 3(a) the Wilson loop phase for the lowest
band in the fragile topological phase. The phase is pinned at
φ = 0, consistent with a Wannier function centered at the 1a
position. In contrast, the Wilson loop spectrum for the second
and third bands, shown in Fig. 3(b), clearly possesses non-
trivial winding. The integer winding number is an indicator
of nontrivial topology. That we were able to anticipated these
results before performing detailed Wilson loop calculations
demonstrates the utility of TQC to photonic systems.

Fragile topology. In contrast to a conventional topological
insulator, the Wilson loop winding in the fragile topological
phase is not a consequence of time-reversal symmetry. In fact,
the crossings in the Wilson loop spectrum at k1 = 0 and k1 =
π are guaranteed by the twofold rotational symmetry C2z, only
due to the limited number of bands considered. Recall that
the C2z invariant points in the Brillouin zone are � and M ≡
M ′ ≡ M ′′. Consulting Table I, we see that the C2z eigenvalues
of bands two and three at � are (+1,+1), while at all three M
points they are (−1,−1). As was shown in Refs. [45,80], this
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FIG. 3. Wilson loops corresponding to the lowest three in the fragile topological phase. (a) shows the Wilson loop for the isolated first
band. The Wilson loop phase here is pinned to θ = 0, a consequence of the C2 eigenvalues of the band. (b) shows the Wilson loop eigenvalues
for the interconnected second and third bands. The Wilson loop spectrum consists of two bands, which wind in opposite directions from −π

to π as a function of momentum. As in Ref. [45], this winding is guaranteed by the C2 eigenvalues of the bands, and indicates their nontrivial
fragile topology. (c) shows the Wilson loop for all three bands taken together, which does not display any winding.

means that the Wilson loop at k1 = 0, which passes through
� and M, has its phases pinned to π . Similarly, the Wilson
loop at k1 = π passes through M ′ and M ′′, and so has its
phases pinned to 0. This forces the winding of the spectrum in
Fig. 3(b), and hence the nontrivial topology [77].

In fact, bands two and three realize the same fragile topo-
logical phase first discussed in a toy model in Ref. [45]. As in
that case, although the irreps at the high-symmetry point in our
photonic crystal do not match a sum of EBRs, they do match
a difference of EBRs. In particular, we can see from the above
that the irreps for bands two and three are consistent with the
formal difference

(A1 ↑ G)3c � (A1 ↑ G)1a, (4)

reflecting the fact that all three bands taken together have the
same irreps as in the OAL. This reflects the defining feature
of fragile topology—that fragile topological bands become
trivial when added to topologically trivial bands. We verify
this for our model by computing the Wilson loop for all three
bands, shown in Fig. 3(c). We see that the three-band Wilson
loop exhibits no winding, and is consistent with Wannier
functions centered at the kagome (3c) position.

Outlook. In this work, we have used the tools of TQC to
design and characterize exotic topological photonic crystals.
In particular, we have shown that the recently introduce
notion of fragile topology arises naturally in photonic crystals
with triangular lattice symmetry. Taking inspiration from
Refs. [43,44], we have designed a family of photonic crystals
with elliptical rods, which realize trivial, (fragile) topological,
and “obstructed atomic limit” bands as a function of the rod
shape.

To our knowledge, this represents the first controllable im-
plementation of fragile topology. Because photonic systems
are noninteracting, and individual states can be experimentally
addressed, this work lays the foundation for future experimen-
tal work in probing fragile topology in photonic crystals. For
instance, a variety of exotic phenomena have been predicted
for fragile topological phases, such as tunable corner states

and nontrivial defect modes, which could be used to develop
topological lasers [81–85], as well as topological quantum
optics interfaces [86–88]. Furthermore, several proposals exist
for creating hinge modes in higher order topological insulators
by manipulating fragile topology, which could be used for
lossless information transfer [89] and signal processing [27].

By introducing TQC to the photonic domain, we highlight
the importance of considering photonic Wannier functions in
determining the properties of trivial and topological photonic
systems. In particular, structures analogous to our OAL model
have been confused for topologically nontrivial systems in
previous works; here we show that instead the exotic prop-
erties of such systems stem from a change in position of their
photonic Wanier functions. In showing how TQC can be used
to design the fragile topological and obstructed atomic limit
structures in this work, we provide a proof-of-principle for
how TQC can be used to design and characterize photonic
systems with tunable topology and tunable edge states. These
tools are crucially important due to the lack of software
packages for computing Wannier functions and topological
invariants in photonic systems. We hope our work opens the
door to a systematic study of properties of photonic Wannier
functions.
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