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Probing non-Hermitian skin effect and non-Bloch phase transitions
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In non-Hermitian crystals showing the non-Hermitian skin effect, ordinary Bloch band theory and Bloch
topological invariants fail to correctly predict energy spectra, topological boundary states, and symmetry-
breaking phase transitions in systems with open boundaries. Recently, it has been shown that a correct description
requires one to extend Bloch band theory into the complex plane. A still open question is whether the
non-Hermitian skin effect and non-Bloch symmetry-breaking phase transitions can be probed by real-space wave
dynamics far from edges, which is entirely governed by ordinary Bloch bands. Here it is shown that the Lyapunov
exponent in the long-time behavior of bulk wave dynamics can generally reveal non-Bloch symmetry-breaking
phase transitions and the existence of the non-Hermitian skin effect.
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I. INTRODUCTION

Bloch band theory describes energy spectra and single
electronic bulk states in crystals with either periodic boundary
conditions (PBCs) or open boundary conditions (OBCs). Re-
markably, Bloch bulk invariants can be introduced to classify
topological bands and to predict the appearance of topological
edge states in crystals with OBCs (bulk-boundary correspon-
dence) [1–3]. Such major results are challenged when trying
to apply Bloch band theory to non-Hermitian systems. Topo-
logical characterization of non-Hermitian models is currently
a hot area of research (see [4–14] and references therein).
Among the most relevant features observed in non-Hermitian
systems, one should mention the strong sensitivity of the
energy spectra on boundary conditions [7,15–21], the non-
Hermitian skin effect (NHSE) [9,17,18,20–24], i.e., the expo-
nential localization of continuum-spectrum eigenstates to the
edges, and the failure of the bulk-boundary correspondence
based on Bloch band topological invariants [4,17,18,24–37].
Recently, several models have been suggested to restore the
bulk-boundary correspondence, such as those based on the
biorthogonal bulk-boundary correspondence [17], the non-
Bloch bulk topological invariants [18,25–29,35], the singular-
value decomposition [30], and the Green’s functions [31,32].
A major consequence of the NHSE is that the bulk bands of
the OBC system are considerably different from those of the
PBC system. While the latter are defined by ordinary Bloch
band theory, the former are non-Bloch bands that require
the quasimomentum to become complex and to vary on a
generalized Brillouin zone [18,25,26]. The usefulness of non-
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Bloch band theory in non-Hermitian systems is demonstrated
by restoration of the (non-Bloch) bulk-boundary correspon-
dence [18,25–29] and in the study of non-Hermitian wave
scattering and domain walls [35,38]. Another major conse-
quence of the NSHE is that distinct bulk symmetry-breaking
phase transitions are observed when considering Bloch and
non-Bloch bands, i.e., systems with PBCs and OBCs. For
example, for certain non-Hermitian extensions of the Su-
Schrieffer-Heeger (SSH) model [39], the bulk eigenenergies
in the case of OBCs are entirely real over a wide range of
system parameters as a consequence of pseudo-Hermiticity,
while they are complex for PBCs [4,18,20,28]. A similar
result was found in one-band systems where the NHSE arises
from an imaginary gauge field [7,22,40].

Bulk dynamics in real space, such as in quantum walk
experiments, is a powerful tool to provide useful information
about topological invariants and edge states in synthetic topo-
logical matter [41–49]. A natural question then arises: Can
NHSE and symmetry-breaking phase transitions of non-Bloch
bands be probed by looking at the bulk wave dynamics? At
first sight, one would expect such a program to fail because
the bulk motion of a wave packet, far from edges, is entirely
determined by the structure of Bloch bands. How could such
a wave packet feel boundary effects and non-Bloch band
features, given that it is the superposition of ordinary bulk
(extended) Bloch states? Contrary to such wisdom, in this
work it is shown that both non-Bloch symmetry-breaking
phase transitions and the NHSE can be probed by looking at
the time behavior of wave dynamics in the bulk. Indeed, the
long-time behavior of a wave packet in a system with PBCs is
established by the turning points of non-Bloch bands, which
can reveal both the NHSE and non-Bloch symmetry-breaking
phase transitions.

The paper is organized as follows. In Sec. II we introduce
the general two-band non-Hermitian model in real space and
Bloch space under PBCs and OBCs, with particular attention
on four non-Hermitian extensions of the SSH model. A
sufficient criterion for the existence of the NHSE, based on

2643-1564/2019/1(2)/023013(13) 023013-1 Published by the American Physical Society

https://orcid.org/0000-0002-8739-3542
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.1.023013&domain=pdf&date_stamp=2019-09-11
https://doi.org/10.1103/PhysRevResearch.1.023013
https://creativecommons.org/licenses/by/4.0/


STEFANO LONGHI PHYSICAL REVIEW RESEARCH 1, 023013 (2019)

saddle points of the band dispersion curves, is presented in
Sec. III. The interplay between the NHSE and the Lyapunov
exponent in real-space dynamics is highlighted in Sec. IV,
whereas bulk probing of non-Bloch phase transitions is
discussed in Sec. V. The main conclusions and future outlook
are given in Sec. VI.

II. TWO-BAND NON-HERMITIAN MODELS

A. Real-space Hamiltonian, Bloch Hamiltonian,
and boundary conditions

We consider a one-dimensional (or a quasi-one-
dimensional) tight-binding lattice with two sites per unit
cell. Indicating by an and bn the occupation amplitudes in the
two sublattices A and B at the nth unit cell, the real-space
dynamics is governed by the coupled equations

i
dan

dt
=

∑
l

ρn−l al +
∑

l

θn−l bl , (1)

i
dbn

dt
=

∑
l

ϕn−l al −
∑

l

ρn−l bl , (2)

where ρn (n �= 0) are the intrasublattice hopping amplitudes,
±ρ0 are the on-site potentials, and θn and ϕn are the (generally
asymmetric) intersublattice hopping amplitudes. A Hermitian
lattice corresponds to ρ−n = ρ∗

n and θ−n = ϕ∗
n . Owing to the

NHSE, the energy spectrum and corresponding eigenfunc-
tions are strongly dependent on the boundary conditions. Here
we consider either PBCs or OBCs.

Lattice with PBCs. For an infinitely extended lattice or for
a lattice with a finite number of unit cells and with PBCs, one
can set (

an

bn

)
=

(
A
B

)
exp(ikn − iEt ), (3)

where k is the Bloch wave number and E = E (k) is the
dispersion curve of the Bloch band. The wave number k varies
in the first Brillouin zone −π � k < π and eventually it is
quantized owing to the PBCs. Substitution of Eq. (3) into
Eqs. (1) and (2) yields

E

(
A
B

)
= H (k)

(
A
B

)
, (4)

where H (k) is the 2 × 2 Bloch Hamiltonian in momentum
space

H (k) =
(

dz(k) dx(k) − idy(k)
dx(k) + idy(k) −dz(k)

)
= σxdx(k) + σydy(k) + σzdz(k), (5)

σx,y,z are the Pauli matrices, and we have set

dx(k) ≡ 1

2

∑
n

(θn + ϕn) exp(−ikn), (6)

dy(k) ≡ 1

2i

∑
n

(ϕn − θn) exp(−ikn), (7)

dz(k) ≡
∑

n

ρn exp(−ikn). (8)

Since in systems with PBCs k spans the first Brillouin zone,
β ≡ exp(ik) varies on the unit circle Cβ in the complex plane,

i.e., |β| = 1. The energy spectrum shows chiral symmetry
with the dispersion curves of the two bands given by

EPBC = E±(k) = ±
√

Q(β ), (9)

where

Q(k) ≡ d2
x (k) + d2

y (k) + d2
z (k). (10)

We assume that the two bands are separable, i.e., Q(β ) �= 0 as
β = exp(ik) varies on the unit circle Cβ , corresponding to the
absence of exceptional points (EPs). Generally, Q(β ) is given
by a sum of powers of β, i.e.,

Q(β ) =
∑

n

σnβ
n =

∑
n

σn exp(ikn), (11)

where the number of terms in the sum is finite for limited long-
range interactions. This readily follows from Eqs. (6)–(8)
and (10), with the Fourier coefficients σn of Q(k) determined
from those of dx(k), dy(k), and dz(k). Assuming (as it is
physically reasonable) that the long-range hopping amplitudes
vanish as |l − n| is large, one can assume σn = 0 for large
enough |n|.

Finally, it is worth mentioning that the properties of the
two-band Hamiltonian H (k) in momentum space can be re-
trieved from the one of a single-band system with Hamiltonian
Q(k). In fact, from the eigenvalue equation (4) one has

E2

(
A
B

)
= H2(k)

(
A
B

)
, (12)

with H2(k) diagonal and given by

H2(k) =
(

Q(k) 0
0 Q(k)

)
. (13)

Here Q(k) can be viewed as the Bloch Hamiltonian of a
one-dimensional lattice with one site per unit cell and with
hopping amplitudes σn, according to Eq. (11).

Lattice with OBCs. For a lattice comprising N unit cells
with OBCs, let us set ψA = (a1, a2, . . . , aN )T and ψB =
(b1, b2, . . . , bN )T . The coupled equations (1) and (2) can be
cast in the compact form

i
d

dt

(
ψA

ψB

)
=

(A B1

B2 −A

)(
ψA

ψB

)
, (14)

where the elements of the N × N matrices A, B1, and B2 are
given by

An,l = ρn−l , (B1)n,l = θn−l , (B2)n,l = ϕn−l . (15)

After setting ψA = a exp(−iEt ) and ψB = b exp(−iEt ),
the energy spectrum E for the system with OBCs is obtained
from the eigenvalue problem

E

(
a
b

)
= H

(
a
b

)
, (16)

where we have set

H ≡
(A B1

B2 −A

)
. (17)

As shown in several recent works, the bulk OBC spectrum
EOBC, i.e., the spectrum of the matrix H in the large-N limit
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(disregarding possible isolated eigenvalues related to bound-
ary states), can be obtained from Eq. (9) provided β varies on
a generalized Brillouin zone C̃β which deviates from the unit
circle Cβ [26,27]. The generalized Brillouin zone is basically
defined by the locus of β such that on C̃β one can always find
two points β1 and β2 with |β1| = |β2| and Q(β1) = Q(β2)
(for a more precise definition of the generalized Brillouin
zone see [26,27]; see also [21]). To study the bulk energy
spectrum with OBCs, i.e., to determine the extended Brillouin
zone C̃β , let us consider the large-N limit. In this limit,
one can assume AB1,2 � B1,2A and B1B2 � B2B1. This is
because the elements of the commutator matrices [A,B1,2]
and [B1,B2] are nonvanishing just near the edges and thus
they do not influence the asymptotic behavior (a, b) ∝ βn of
bulk states, which determines C̃β . From Eq. (16) one then
obtains

E2

(
a
b

)
= H2

(
a
b

)
, (18)

with

H2 �
(A2 + B1B2 0

0 A2 + B1B2

)
. (19)

The bulk energy spectrum of the system with OBCs is thus
given by E± = ±√

	, where 	 are the eigenvalues of the N ×
N matrix H0 defined by

H0 ≡ A2 + B1B2. (20)

Note that H0 can be viewed as the Hamiltonian in real space
of a finite lattice with OBCs and with a single site per unit cell.
Note also that H0 is a Toeplitz matrix, i.e., a matrix in which
each descending diagonal from left to right is constant. It can
be readily shown that the bulk energy dispersion curve (Bloch
Hamiltonian) associated with H0 is precisely Q(β ) given by
Eq. (10), and the bulk energy spectrum EOBC is obtained from
Eq. (10) as β varies in C̃β .

B. Some specific models

Non-Hermitian extensions of the SSH model, considered
in several recent works [4,6,17,18,20,21,26,27,29–33,50–56],
provide paradigmatic examples of non-Hermitian topologi-
cal two-band systems. They are obtained from Eq. (5) for
a specific form of dx,y,z(k). These models, originally intro-
duced mostly as theoretical models, are nowadays experimen-
tally accessible with synthetic topological matter using pho-
tonic structures and topolectrical circuits [37,51,53,54,57,58].
Other platforms, such as mechanical, acoustic, or other meta-
material settings, are also promising laboratory tools to phys-
ically implement non-Hermitian SSH models. In particular,
the first experimental observation of the bulk boundary corre-
spondence breakdown owing to the NHSE in one-dimensional
lattices was very recently reported in nonreciprocal topolec-
trical circuits [37] and in non-Hermitian photonic quantum
walk experiments [58]. Such experimental advances motivate
us to focus our analysis on four non-Hermitian SSH models.
Such models, already introduced in the recent literature, are
schematically shown in Figs. 1(a) and 1(b) and capture most
of the properties of non-Hermitian two-band systems, such
as the presence (in models II–IV) or absence (in model I) of

the NHSE, the existence of non-Bloch phase transitions (in
models II and III), and the appearance of Bloch points (in
model IV). For the sake of completeness, the main properties
of such SSH models are reviewed in Appendix A.

III. NON-HERMITIAN SKIN EFFECT AND
SADDLE-POINT CRITERION

The bulk energy spectra EOBC and EPBC, corresponding
to OBCs and PBCs, are distinct for systems displaying the
NHSE, and a transition between them was recently investi-
gated in Ref. [21]. In this section we wish to establish a rather
general criterion that relates saddle points of Q(β ) and the
NHSE.

As β varies on the unit circle Cβ , the energy spectrum
EPBC = ±√

Q(β ) describes a path in the complex energy
plane that can be either a set of open arcs or one or more
closed loops enclosing a nonvanishing area [solid curves in
Figs. 1(c) and 1(d)]. Empirically, it is found that in the former
case (the energy spectrum EPBC is formed by a set of open
arcs) the system does not show the NHSE and the bulk energy
spectrum EOBC for OBCs does coincide with EPBC (model I
in Fig. 1); eventually, besides bulk states, the energy spec-
trum for OBCs may include isolated points, corresponding to
topological edge states. In the latter case (the energy spectrum
EPBC is composed of one or more closed loops enclosing a
nonvanishing area) the system shows the NHSE and the bulk
energy spectrum EOBC largely deviates from EPBC, showing
distinct symmetry-breaking phase transitions (models II–IV
in Fig. 1). In the presence of the NHSE, the energy spectrum
EOBC comprises a set of open arcs, which are located in the
interior of their PBC loci [21] (see, e.g., models II–IV in
Fig. 1). The bulk OBC spectrum is obtained from Eq. (9)
with β varying on the generalized Brillouin zone C̃β . In the
presence of the NHSE, the spectra EPBC and EOBC do not
intersect or can intersect at isolated points, corresponding to
so-called Bloch points [27] separating bulk modes localized at
either the left (|β| < 1) or right (|β| > 1) edges of the system
(see, for example, model IV in Fig. 1).

A rather interesting property, which can be directly proven
in the specific examples of Fig. 1 and which we conjecture to
be valid in rather general two-band systems (see Appendix B),
is that the turning points of the open arcs forming the energy
spectrum EOBC are attained at the values of β on the general-
ized Brillouin zone C̃β that are the saddle points of Q(β ), i.e.,
where dQ/dβ = 0. This means that the following criterion
can be stated.

Saddle-point criterion. If there exists at least one saddle
point of E2 = Q(β ) that does not lie on the unit circle Cβ , then
the non-Hermitian Hamiltonian (5) shows the NHSE, and thus
violates the Bloch bulk-boundary correspondence.

The saddle-point criterion gives a very simple sufficient
condition for a non-Hermitian system to show the NHSE,
however it is not strictly necessary; an example of a non-
Hermitian system with all saddle points on the unit circle that
nevertheless shows the NHSE is presented in Appendix C.
However, such cases are exceptional and occur under special
singularity conditions, where the EPBC energy spectrum shows
cusp singularities.
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FIG. 1. (a) and (b) Four examples of non-Hermitian SSH lattices, where non-Hermiticity is introduced by either on-site complex (gain
or loss) energy (models I and III) or asymmetric hopping amplitudes (models II and IV). All models, with the exception of model I, show
the NHSE. (c) and (d) Energy spectra for systems with PBCs (solid curves) and OBCs (solid circles), showing the behavior of both (c) E 2

and (d) E . The parameter values are, for model I, t = 1, t ′ = 1.5, and δ = 1; model II, t = 0.6, t ′ = 1, and δ = 1; model III, t = 0.6, t ′ = 1,
and δ = 0.3; and model IV, t1 = 1, t2 = 1.5, t3 = 0.2, and δ = 0.35. In model I the PBC and OBC bulk energy spectra exactly overlap.
(e) Numerically computed behavior of the Lyapunov exponent λ versus the drift velocity v. The largest value of the Lyapunov exponent is
attained at v = 0 in model I solely.

IV. REAL-SPACE WAVE-PACKET DYNAMICS AND
LYAPUNOV EXPONENT

Let us consider the temporal dynamics in real space of an
arbitrary wave packet far from the edges of a two-band non-
Hermitian lattice. Our aim is to show that from the long-time
behavior of the wave-packet dynamics on the lattice one can
(i) predict the existence of the NHSE and failure of Bloch
bulk-boundary correspondence and (ii) reveal the appearance
of symmetry-breaking phase transitions in the bulk OBC
energy spectrum (i.e., non-Bloch phase transitions). To this
aim, let

(
A
B

)
±

= 1√
2E±(k)[E±(k) − dz(k)]

(
dx(k) − idy(k)
E±(k) − dz(k)

)
(21)

be the (right) eigenvectors of H (k) corresponding to the
two lattice bands E±(k) = ±√

Q(k). In real space, the most
general solution to the Schrödinger equation is given by a
superposition of (extended) Bloch eigenfunctions and reads

(
an(t )
bn(t )

)
=

∑
l=±

∫ π

−π

dk Fl (k)

(
A
B

)
l

exp(ikn − iElt ), (22)

where the spectral amplitudes F±(k) are determined by the
initial excitation values an(0) and bn(0) on the lattice. We are
interested in investigating the long-time behavior of the ampli-
tude ψ (t ) = an=vt (t ) [or similarly ψ (t ) = bn=vt (t )] along the
space-time path n = vt , where v is the drift velocity [59,60].
The following properties can be proven.

(i) The Lyapunov exponent

λ(v) = lim
t→∞

log |ψ (t )|
t

(23)

is bounded from above, namely, λ(v) � λm, where λm =
Im(Em) and Em is the energy of the PBC spectrum E±(k)
with the largest imaginary part, taken at some value k = k0

on Cβ . Moreover, λ(v) = λm for a drift velocity given by
v = vm = [d Re(E±)/dk]k0 .

(ii) For a given drift velocity v, indicating by ks the
(dominant) saddle point, satisfying the equation(

dE±
dk

)
ks

= v, (24)

the Lyapunov exponent reads

λ(v) = Im[E±(ks)] − v Im(ks). (25)
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(iii) If vm �= 0, i.e., if the Lyapunov exponent λ(v) does not
exhibit its largest value at zero drift velocity, then the non-
Hermitian model shows the NHSE.

The last property states that a Lyapunov exponent ex-
hibiting its largest value at a nonvanishing drift velocity is
a clear signature of the existence of the NHSE, and thus of
the breakdown of the Bloch bulk-boundary correspondence.
A simple physical explanation of this result can be gained
by considering the typical situation where the NHSE effect
is observed, i.e., in the presence of an asymmetric hopping
rate in the effective lattice described by the dispersion curve
Q(β ).1 As discussed in previous works [15,18,38,61], in a
lattice with OBC asymmetric hopping rates squeeze all bulk
states towards one of the two edges [15,18], while in a lattice
with PBCs a wave packet moving on the lattice is amplified
or attenuated depending on its group velocity [61], with the
largest growth rate observed for a nonvanishing group velocity
and the largest attenuation rate at the opposite group velocity.
This means that, owing to the asymmetry of hopping ampli-
tudes, the largest growth rate of an arbitrary initial excitation
on the bulk of the lattice is observed along the space-time line
n = vt at the drift velocity v that matches the group velocity
with the largest growth rate.

Let us now demonstrate the properties (i)–(iii) stated
above. To this aim, let us consider the temporal evolution
of the amplitude ψ (t ) = an=vt (t ), along the space-time path
n = vt , which is obtained from Eq. (22) after setting n = vt
and reads explicitly

ψ (t ) =
∑
l=±

∫ π

−π

dk Gl (k) exp{i[kv − El (k)]t}

= −i
∑
l=±

∫
Cβ

dβ βv−1Gl (β ) exp{−iEl (β )t}, (26)

where we have set Gl (k) = Fl (k)Al (k) and β = exp(ik). Note
that the temporal evolution of the amplitude ψ (t ) is fully
determined by the interference of ordinary (extended) Bloch
functions of the EPBC spectrum, while non-Bloch bulk states
and the EOBC spectrum seemingly do not play any role. To
establish an upper bound for the Lyapunov exponent λ(v), let
us assume that the largest imaginary part of E±(k), as k spans
the Brillouin zone −π � k < π , is attained at some value k0

and let us indicate by Em the corresponding value of the most
unstable band, either E±(k), at k = k0. Then one has

|ψ (t )| �
∑
l=±

∫ π

−π

dk|Gl (k) exp{i[kv − El (k)]t}|

� exp[Im(Em)t]
∑
l=±

∫ π

−π

dk|Gl (k)| (27)

and thus

log |ψ (t )|
t

� Im(Em) + 1

t
log

{∑
l=±

∫ π

−π

dk|Gl (k)|
}

, (28)

1Effective asymmetric hopping rates are found in models II–IV
by looking at the Fourier coefficients of Q(β ), given by Eqs. (A4)
and (A14) of Appendix A.

which yields, in the t → ∞ limit, the following upper bound
for λ(v):

λ(v) � Im(Em). (29)

The long-time asymptotic behavior of ψ (t ) can be determined
generally by the steepest-descent method [62]. This entails
analytic continuation of the functions E±(k) in the complex
k plane and, using the Cauchy theorem, the deformation
of the path of the integral along a suitable contour which
crosses the (dominant) saddle point ks of either E+(k) − kv or
E−(k) − kv in the complex plane, along the direction of the
steepest descent [62]. The dominant saddle point is the one
with the largest imaginary part of E±(k) − kv, corresponding
to the largest growth of ψ (t ) at long times. For a given drift
velocity v, ks is obtained as one of the roots of the equation(

dE±
dk

)
ks

= v. (30)

Assuming that there is one dominant saddle point of order n �
2 at k = ks, belonging, for instance, to the band E+, the long-
time asymptotic behavior of ψ (t ), as obtained by the steepest-
descent method, reads [62]

ψ (t ) ∼ G+(ks)∣∣t( dnE+
dkn

)
ks

∣∣1/n �

(
1

n

)

× exp[±iπ (n/2) + itvks − itE+(ks)], (31)

where � is the Gamma function. From Eq. (31) it readily
follows that

λ(v) = lim
t→∞

log |ψ (t )|
t

= Im[E+(ks)] − v Im(ks), (32)

which proves property (ii) stated above. We note that this
result holds even if there are two (or more) dominant sad-
dle points with the same growth rate, as it happens in
systems with the symmetries E ↔ −E and E ↔ E∗ of
the energy spectrum. Let us now assume a drift velocity
v = Re{(dE+/dk)k0} ≡ vm. Then it can be readily shown
that E+(k) − vmk has a saddle point at k = ks = k0, i.e.,
(dE+/dk)k0 = vm, k0 being the (real) Bloch wave number
where Im[E+(k)] on the PBC curve takes its largest value. For
such a drift velocity, taking into account that Im(k0) = 0 and
setting Em = E+(k0), from Eq. (32) one has λ(vm) = Im(Em).
Such a result, together with Eq. (29), shows that the largest
Lyapunov exponent is attained at the drift velocity v = vm and
demonstrates property (i) stated above.

The value v = vm of the drift velocity at which the Lya-
punov exponent λ(v) reaches its maximum value provides
a clear signature of the existence (or not) of the NHSE for
systems with OBCs: Apart from exceptional conditions, the
NHSE arises whenever vm �= 0, as stated by property (iii). In
fact, let us consider the value λ(0) of the Lyapunov exponent
at the zero drift velocity v = 0. According to Eq. (30), the
energy E+(ks) of the dominant saddle point belongs to the
OBC bulk spectrum, because βs = exp(iks) is a saddle point
of Q(β ) and any saddle point of Q belongs to the bulk OBC
energy spectrum (see Sec. III). If the system with OBCs
shows the NHSE, the energy E (ks) does not generally belong
to the PBC energy spectrum, i.e., ks �= k0, unless the very
exceptional case where there is a Bloch point which is also
a saddle point (see Appendix C for more details). Hence,
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FIG. 2. Numerically computed behavior of the temporal evolution of L(t ) ≡ log |ψ (t )|, with ψ (t ) = an=vt (t ), for the non-Hermitian SSH
model II and for a few values of the drift velocity v: (a) v = 2, (b) v = 1, (c) v = 0, (d) v = −1, and (e) v = −2. The other parameter values
are as in Fig. 1 (t = 0.6, t ′ = 1, and δ = 1). Initial excitation of the lattice is at an(0) = bn(0) = δn,0.

from Eq. (32), with v = 0 one has λ(0) = Im[E+(ks)] <

Im[E+(k0)] = λm, i.e., at the zero drift velocity v = 0 the
Lyapunov exponent does not reach its largest value. On the
other hand, if the system with OBCs does not show the NHSE,
the bulk OBC and PBC energy spectra do coincide, and at
k = k0 (real) the Bloch energy E+(k) has its dominant saddle
point with Re{(dE+/dk)k0} = 0. Hence in this case the largest
value of the Lyapunov exponent is reached at the zero drift
velocity. This proves property (iii) stated above.

The Lyapunov exponent in the long-time wave dynamics
can be numerically computed by solving the coupled equa-
tions (1) and (2) with some given initial conditions, the result
being insensitive to the specific initial condition. Typically,
we initially prepare the lattice with excitation confined in
one unit cell, namely, an(0) = bn(0) = δn,0, and assume a
sufficiently long chain (comprising 150–500 unit cells) so that
edge effects are avoided up to the maximum observation time
tm (a propagation time tm ∼ 10 is usually sufficient to compute
λ with good accuracy). The equations have been solved using
an accurate variable-step fourth-order Runge-Kutta method.
Some examples of temporal wave dynamics, showing the be-
havior of L(t ) ≡ log |ψ (t )| versus time for the non-Hermitian
SSH model II, are shown in Fig. 2. The Lyapunov exponent
λ is obtained from the slope of the linear fit interpolation
of the curves. We checked that the obtained value of λ is
rather insensitive to the initial excitation condition; note that a
propagation time of ∼5–10 is enough to estimate the linear fit
with good accuracy. Numerical results of Lyapunov exponent
calculations for all other SSH models are summarized in
Fig. 1(e), clearly showing that the NHSE is associated with
a nonvanishing value of vm.

For models I–III we compared the numerical results of
λ(v) with the theoretical predictions based on Eq. (32). The
results, shown in Fig. 3, indicate excellent agreement between
the theoretical analysis and numerical simulations. For model
I, the saddle points ks, satisfying Eq. (24) for a given drift
velocity v, are given by βs = exp(iks), where βs is a root of
the fourth-order algebraic equation

β4 + c1β
3 + c2β

2 + c3β + c4 = 0, (33)

with coefficients

c1 = c3 = 4v2/tt ′,

c2 = −2 + 4v2 t2 + t ′2 − δ2

t2t ′2 ,

c4 = 1.

The algebraic equation can be solved numerically, and the
dominant saddle point, corresponding to the largest value
of Im[E (ks)] − v Im(ks), is used in Eq. (32) to compute
the Lyapunov exponent. Likewise, for models II and III the
saddle points ks are given by βs = exp(iks), where βs is a root
of the fourth-order algebraic equation (33) with coefficients

c1 = 4v2,

c2 = −2t ′(t + δ) + 4v2 t2 + t ′2 − δ2

t ′(t − δ)
,

c3 = 4v2 t + δ

t − δ
,

c4 = t ′(t + δ)2

t − δ
.

As a final comment, it should be noted that property (iii) above
provides a sufficient condition for the existence of the NHSE,
however it is satisfied in most cases of systems exhibiting
the NHSE. Only in very special cases, corresponding to cusp
singularities in the EPBC energy spectrum, can one observe
vm = 0 in a system showing the NHSE, as discussed in
Appendix C.

V. PROBING NON-BLOCH SYMMETRY-BREAKING
PHASE TRANSITIONS

The spectra EPBC and EOBC can undergo different
symmetry-breaking phase transitions as a non-Hermitian

FIG. 3. Behavior of the Lyapunov exponent λ versus drift veloc-
ity v for the non-Hermitian SHH models (a) I, (b) II, and (c) III
for the same parameter values as in Fig. 1. Solid curves refer to
the numerical results obtained from the wave-packet dynamics in
real space, whereas dotted curves are the predictions of the steepest-
descent method.
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parameter in the system is varied. For example, let us consider
model III shown in Fig. 1, introduced by Lee in Ref. [4].
The Hamiltonian H (k) has chiral (S) and parity-time (PT )
symmetries, namely, SH (k) = −H (k)S and PT H (k) =
H (−k)PT , where chiral, parity, and time-reversal operators
are defined by S = σy, P = σx, and T = K (K is the el-
ementwise complex conjugation). Note that the same sym-
metries can be introduced for the system with OBCs. For
a system with PBCs, the PT symmetry is always in the
broken phase for a nonvanishing value of the non-Hermitian
(gain or loss) parameter δ, while three different topologi-
cal phases can be introduced, depending on the number of
EPs that are encircled by the closed loop described by the
gap vector (Re[dx(k)], Re[dz(k)]) (see, for example, [9] and
Appendix A). Conversely, for a system with OBCs the PT
phase remains unbroken for |δ| < t [4,18,20,28], i.e., the non-
Bloch bulk energy spectrum EOBC undergoes a symmetry-
breaking phase transition which is not observed in the Bloch
energy spectrum EPBC. Our main result here is that the non-
Bloch symmetry-breaking phase transition can be revealed
from the wave-packet dynamics on the lattice in real space
far from any edge of the system. To this aim, let us calculate
the Lyapunov exponent λ in the long-time dynamics for a
drift velocity v = 0. Since any saddle point (dE±/dk)ks = 0
belongs to the OBC energy spectrum, in the unbroken PT
symmetry all saddle points are real and thus one has λ = 0. On
the other hand, in the broken PT phase the dominant saddle
point corresponds to a positive imaginary part of the energy,
leading to a nonvanishing value of the Lyapunov exponent.
The saddle points ks and corresponding energies Es = E±(ks)
for model III can be calculated in a closed form, and for
|δ| > t they read explicitly

ks = −iψ ± π/2, (34)

Es = ±i(t ± it ′ sinh ψ )
√

(δ/t )2 − 1, (35)

where ψ is given by tanhψ = t/δ. From Eq. (25) with v = 0
and Eq. (35), the steepest-descent method thus predicts the
following value of the Lyapunov exponent:

λ =
{

0, |δ| < t√
δ2 − t2, |δ| > t .

(36)

Therefore, measuring the Lyapunov exponent from the real-
space wave-packet dynamics far from any edge can reveal the
non-Bloch symmetry-breaking phase transition of a system
with OBCs. This is clearly shown in Fig. 4, which depicts the
numerically computed Lyapunov exponent λ versus δ in the
temporal dynamics of a wave packet corresponding to initial
unit cell excitation of the lattice [an(0) = bn(0) = δn,0]. The
numerically computed value of the Lyapunov exponent turns
out to be in very good agreement with the prediction (36)
based on the steepest-descent method.

VI. CONCLUSION AND OUTLOOK

A central principle in topological matter is that topological
invariants of Bloch bands, detected by bulk dynamics in real
space, can predict edge effects owing to the bulk-boundary
correspondence. However, this main result can be violated in

FIG. 4. Behavior of the Lyapunov exponent λ at zero drift ve-
locity versus the non-Hermitian parameter δ for the SSH model III,
revealing the PT -symmetry-breaking phase transition of the OBC
(non-Bloch) energy spectrum at δ = t . The parameter values are
t = 0.6 and t ′ = 1. The solid curve refers to the theoretical value of λ

predicted by the steepest-descent method [Eq. (36)], while the closed
circles correspond to the Lyapunov exponent numerically computed
from the wave-packet dynamics in real space far from edges.

non-Hermitian systems. In such systems the bulk-boundary
correspondence, formulated in terms of ordinary Bloch band
invariants, can fail and the bulk energy spectrum for open
boundaries can largely deviate from Bloch bands, showing
distinct (non-Bloch) symmetry-breaking phase transitions.
The very distinct behavior of non-Hermitian systems under
periodic and open boundary conditions, revealed by the non-
Hermitian skin effect, calls into question the usefulness of
bulk dynamics to predict edge effects. In this work we have
shown that, even though the bulk dynamics in non-Hermitian
systems is entirely described by Bloch band theory, the Lya-
punov exponent in the long-time dynamics is determined
by the turning points of non-Bloch bands, which can reveal
both non-Bloch symmetry-breaking phase transitions and the
existence of the non-Hermitian skin effect. This means that,
contrary to physical intuition, real-space wave-packet dynam-
ics, governed by Bloch band theory, can reveal non-Bloch
band features. Our results are expected to stimulate further
theoretical studies in a rapidly growing area of research and
could provide insights into experimental observation of non-
Bloch phase transitions in photonic systems and topolectrical
circuits, where non-Hermitian topological SSH models like
the ones considered in this work can be physically real-
ized [37,51,53,54,57]. There are still some open questions.
For example, is the saddle-point method useful to predict
non-Bloch band features in higher-dimensional models or in
topological systems with synthetic dimensions? Since non-
Bloch band features are basically determined by the saddle
points of polynomials, can the non-Hermitian skin effect
and violation of the Bloch bulk-boundary correspondence
be linked to general properties of polynomials and number
theory?

APPENDIX A: NON-HERMITIAN SSH MODELS

Examples of non-Hermitian two-band systems include sev-
eral extensions of the celebrated SSH model, which have
been considered in several recent works (for a comprehensive
review see [9]). Four models were schematically shown in
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FIG. 5. Behavior of energy spectra EPBC (solid curves) and EOBC (solid circles) in non-Hermitian SSH models II and III for parameter values
t = 0.6, t ′ = 1, and (a) δ = 2, (b) δ = 0.9, (c) δ = 0.5, and (d) δ = 0.2. While in systems with PBCs there are three different topological phases
(upper row) and the energy spectrum is always complex for δ �= 0, in systems with OBCs there are two distinct bulk phases (lower row) and a
non-Bloch T /PT -symmetry-breaking phase transition occurs at |δ| = t .

Figs. 1(a) and 1(b) and are briefly reviewed here for the sake
of completeness.

Model I. The first example of a non-Hermitian SSH model,
introduced in Ref. [50], is obtained by assuming

dx = t + t ′ cos k, dy = t ′ sin k, dz = iδ, (A1)

where t and t ′ are the intra- and interdimer hopping am-
plitudes, respectively, and δ is the complex on-site energy
(alternating balanced gain and loss) [see Fig. 1(a)]. For this
model one has

Q(β ) = t2 + t ′2 − δ2 + tt ′
(

β + 1

β

)
. (A2)

As β spans the unit circle Cβ , Q describes a segment on the
real axis with extrema Q− = (t − t ′)2 − δ2 and Q+ = (t +
t ′)2 − δ2. The two turning points of the segment are attained at
β = ±1, which are the saddle points of Q(β ). This model does
not show the NHSE; the bulk energy spectrum of the lattice
with OBCs does coincide with the one with PBCs and is given
by E± = ±√

Q. Additionally, for t ′ > t , in the OBC system
two topological edge states, at energies ±iδ and localized at
the left and right edges, are found.

Model II. The second example, introduced in Ref. [18],
deviates from the Hermitian SSH model because of asym-
metric intradimer hopping amplitudes. Such a model has
been experimentally realized very recently in topolectrical
circuits [37]. The model is obtained by assuming

dx = t + t ′ cos k, dy = t ′ sin k − iδ, dz = 0, (A3)

where t ± δ are the asymmetric intradimer hopping ampli-
tudes whereas t ′ is the (Hermitian) interdimer hopping am-
plitude [see Fig. 1(a)]. Like for the Hermitian SSH model,
the Bloch Hamiltonian H (k) has two important symmetries:
chiral symmetry S = σz and time-reversal symmetry T = K,
i.e., σzH (k) = −H (k)σz and KH (−k) = H (k)K, where K
denotes the elementwise complex conjugation. This means
that the energy spectrum is invariant under the transformations
E ↔ −E and E ↔ E∗. For this model one has

Q(β ) = t2 + t ′2 − δ2 + t ′(t + δ)

β
+ t ′(t − δ)β. (A4)

The energy spectrum E2 for PBCs is obtained by setting β =
exp(ik) (−π � k < π ) in Eq. (A4); it describes a closed loop
(an ellipse) in the complex E2 plane, as shown in Fig. 1(c).
The square root generates the two bands E±(k) = ±√

Q.
Depending on how many EPs of H (k), defined by Q = 0, lie
inside the contour described by (Re(dx ), Re(dy)), one obtains
three different topological phases [1]: |δ| > |t + t ′| (no EP
is enclosed in the contour), |t − t ′| < |δ| < |t + t ′| (one EP
in enclosed in the contour), and |δ| < |t − t ′| (two EPs are
enclosed in the contour). The corresponding PBC energy
spectra are shown in Fig. 5.

The bulk energy spectrum of the system with OBCs
strongly differs from the Bloch bands owing to the NHSE. To
calculate the spectrum for OBCs, let notice that, for |δ| < t ,
one can write

Q(β ) = t2 + t ′2 − δ2 + t ′√t2 − δ2

(
exp(−ψ )β + exp(ψ )

β

)
,

(A5)

with tanhψ = δ/t , while for |δ| > t , one can write

Q(β ) = t2 + t ′2 − δ2 + t ′√δ2 − t2

×
(

− exp(−ψ )β + exp(ψ )

β

)
, (A6)

with tanhψ = t/δ. Clearly, the condition Q(β1) = Q(β2) with
|β1| = |β2| can be satisfied by setting β = exp(ψ + iθ ), with
θ real and varying in the range (−π, π ). This means that the
generalized Brillouin zone C̃β is a circle of radius exp(ψ ),
while the energy spectrum for OBC reads explicitly

E2 = t2 + t ′2 − δ2 + 2t ′√t2 − δ2 cos θ (A7)

for |δ| < t and

E2 = t2 + t ′2 − δ2 − 2it ′√δ2 − t2 sin θ (A8)

for |δ| > t , with −π � θ < π . Equations (A7) and (A8)
indicate that the OBC bulk spectrum remains real for |δ| < t ,
while it becomes complex for |δ| > t , corresponding to a
T -symmetry-breaking phase transition (see Fig. 5). At |δ| =
t , corresponding to unidirectional intradimer hopping, one
obtains two high-order EPs for the matrix H in real space
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[Eq. (17)], with all bulk energies collapsing at the two EP
energies E = ±t ′. It can be readily shown by direct calcula-
tion that, for both |δ| < t and |δ| > t , the turning points of the
OBC bulk energy spectrum are the saddle points of Q(β ). The
parameter range for the existence of topological edge states
is derived in Ref. [18], where a non-Bloch bulk-boundary
correspondence is established. Finally, from Fig. 5 it follows
that the symmetry-breaking phase transition of the non-Bloch
energy spectrum for a system with OBCs is unrelated to the
three topological phases of a system with PBCs.

Model III. The third example of a non-Hermitian SSH
model, introduced in Ref. [4] and considered in several sub-
sequent papers (see, e.g., [17,20]), is obtained by assuming

dx = t + t ′ cos k, dy = 0, dz = t ′ sin k − iδ. (A9)

The real-space realization of this model is shown in Fig. 1(a).
Clearly, this model yields the same form for Q(β ) [Eq. (A4)]
as model II. In fact, models II and III are basically equivalent
and are obtained by exchanging dy and dz; in real space the
corresponding coupled equations (1) and (2) are obtained after
a unitary transformation (rotation) of the amplitudes an and
bn. The Hamiltonian H (k) has chiral (sublattice) and parity-
time symmetries, i.e., SH (k) = −H (k)S and PT H (k) =
H (−k)PT with chiral, parity, and time-reversal operators
defined by S = σy, P = σx, and T = K (K is the elementwise
complex conjugation). Note that the same symmetries can be
introduced for the system with OBCs, i.e., for the Hamiltonian
H. In fact, the explicit form of H is given by Eq. (17) with

A =

⎛
⎜⎜⎜⎜⎜⎝

−iδ −it ′/2 0 · · · 0 0 0
it ′/2 −iδ −it ′/2 · · · 0 0 0

0 it ′/2 −iδ · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · it ′/2 −iδ −it ′/2
0 0 0 · · · 0 it ′/2 −iδ

⎞
⎟⎟⎟⎟⎟⎠

(A10)

and

B1 = B2 =

⎛
⎜⎜⎜⎜⎜⎝

t t ′/2 0 · · · 0 0 0
t ′/2 t t ′/2 · · · 0 0 0

0 t ′/2 t · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · t ′/2 t t ′/2
0 0 0 · · · 0 t ′/2 t

⎞
⎟⎟⎟⎟⎟⎠.

(A11)

It then readily follows that H has chiral (S) and parity-time
(PT ) symmetries, i.e., SH = −HS and PT H = HPT , with
chiral, parity, and time-reversal operators defined by

S ≡ i

(
0 −I
I 0

)
, P ≡

(
0 I
I 0

)
, T = K (A12)

where I is the N × N identity matrix.
The system is Hermitian in the limit δ = 0. As |δ| is

increased above zero, like for model II, one can distinguish
three different topological phases of the PBC energy spec-
trum, depending on the number of EPs that are enclosed in
the loop described by (Re(dx ), Re(dz )) [9]. The PT sym-
metry is immediately broken in systems with PBCs, while

it remains unbroken in systems with OBCs until |δ| reaches
the symmetry-breaking threshold |δ| = t . This result indicates
that, like for model II, the symmetry-breaking phase transition
observed in systems with OBCs is unrelated to the phases of
systems with PBCs.

Model IV. The last example of a non-Hermitian SSH model,
introduced in Ref. [27], corresponds to the choice

dx(k) = t1 + (t2 + t3) cos k + iδ sin k,

dy(k) = (t2 − t3) sin k + iδ cos k, (A13)

dz(k) = 0.

The function Q(β ) for this model reads explicitly

Q(β ) = (t2β2 + t1β + t3 − δ)[(t3 + δ)β2 + t1β + t2]

β2
.

(A14)

Note that there are four saddle points of Q(β ), because the
equation dQ/dβ = 0 is a quartic equation in β. The Hamil-
tonian H (k) has chiral (S = σz) and time-reversal (T = K)
symmetries. The system shows the NHSE, and the OBC bulk
spectrum deviates from the PBC spectrum [see Figs. 1(c)
and 1(d)]. As the non-Hermitian parameter |δ| is increased
above zero, the OBC energy spectrum shows a finite-threshold
T -symmetry-breaking phase transition. On the other hand,
the PBC energy spectrum is always in the broken T phase
for a nonvanishing value of δ. Interestingly, the generalized
Brillouin zone C̃β can intersect the unit circle Cβ in two points,
corresponding to so-called Bloch points [27] and crossing of
EPBC and EOBC spectral curves. The Bloch points are indicated
by the arrows in Figs. 1(c) and 1(d). At these points, the bulk
modes for OBCs are extended, rather than being squeezed at
the left or right edges [27].

APPENDIX B: BULK ENERGY SPECTRUM AND SADDLE
POINTS IN SYSTEMS WITH OBC

The bulk energy spectra EOBC and EPBC, corresponding
to OBCs and PBCs, are distinct for systems displaying the
NHSE. Empirically, it appears that the EPBC spectrum de-
scribes one or more closed loops in the complex energy plane,
while EOBC comprises one or more open arcs internal to the
PBC loops [see, e.g., Figs. 1(c) and 1(d)]. The transition from
PBC to OBC energy spectra, based on an imaginary flux
threading argument and showing the trajectories of PBC-OBC
spectral flows, has been investigated in Ref. [21]. Here we
disclose a connection between the turning points of the OBC
spectral arcs and saddle points of Q(β ), which is essential to
establish non-Bloch band features from bulk probing of the
wave dynamics in real space.

The first simple property is that any turning point of
the open arcs, describing the OBC spectrum, is a saddle
point of Q(β ). In fact, let β be a point on the generalized
Brillouin zone C̃β around βs �= 0 such that Q(βs) = E2

V and
EV is a turning point of the OBC spectrum. Since Q is an
analytic function of β at around βs, for β ∼ βs one can write
Q(β ) � E2

V + (dQ/dβ )βs (β − βs) + · · · . The condition that
EV is a turning point clearly implies that (dQ/dβ )βs = 0,
i.e., βs is a saddle point of Q(β ). On the other hand, any
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FIG. 6. Loci in complex plane (closed circles) of the vectors
Xl = 1 + ε exp[i(φ + 2lπ )/n] (l = 0, 1, 2, . . . , n − 1) for the two
values of the phase (a) φ = 0 and (b) φ = π .

saddle point of Q(β ) belongs to C̃β . After writing Q(β ) =
(q0β

M + q1β
M−1 + · · · + qM )/βN , with q0,M �= 0 and N, M

non-negative integers, the number of saddle points of Q(β ) is
M. For models I, II, III, and IV described in Appendix A and
shown in Fig. 1, one has M = 2, 2, 2, and 4, respectively. The
number of turning points of E2

OBC in the four models is 2, 2, 2,
and 4 [see Fig. 1(c)], and any saddle point βs of Q belongs
to the generalized Brillouin zone C̃β . A non-Bloch phase
transition, i.e., a phase transition of the bulk spectrum EOBC,
corresponds to the coalescence of saddle points. For example,
in model III discussed in Appendix A the function Q(β )
[Eq. (A4)] has two saddle points at βs = ±√

(t + δ)/(t − δ);
the PT -symmetry-breaking phase transition observed at |δ| =
t corresponds to the coalescence of the two saddle points. We
conjecture that such properties, checked for the four specific
models, are rather general ones; in particular any saddle
point βs of Q(β ) belongs to C̃β . Although we are not able
to provide a rigorous mathematical proof that the spectrum
EOBC is composed of open arcs and this remains an empirical
result [21], we can show that at any saddle point βs of Q the
energy E (βs) belongs to EOBC. In fact, let β = βs be a saddle
point of Q(β ), with βs �= 0. Since Q(β ) is analytic at around
βs, for β close to βs one can write

Q(β ) � Q(βs) + α(β − βs)n, (B1)

where α �= 0 and n � 2 is an integer. Equation (B1) can be
solved for β, yielding n distinct branches

β = βs

{
1 +

(
Q − Qs

αβn
s

)1/n
}

, (B2)

where we have set Qs = Q(βs). Let us now vary Q around Qs

by setting

Q = Qs + εnαβn
s exp(iφ), (B3)

where ε � 0 is a real parameter and φ a real phase, to be
determined. Substitution of the ansatz (B3) into Eq. (B2)
yields the n branches for β = βl ,

βl = βs

[
1 + ε exp

(
i
φ + 2lπ

n

)]
≡ βsXl (B4)

(l = 0, 1, 2, . . . , n − 1), which correspond to the same value
of Q given by Eq. (B3). Clearly, by setting either φ = 0 or
φ = π , it readily follows from Eq. (B4) that one can find
couples of values of β on the distinct branches, say, βl1 and
βl2 , such that |βl1 | = |βl2 | (see the geometric construction of
Fig. 6). This means that we can always find two distinct values
of β, βl1 , and βl2 , parametrized by ε, such that |βl1 | = |βl2 |

FIG. 7. Behavior of the energy spectra [Q = E 2 (upper panels)
and E (lower panels)] for the non-Hermitian SSH model IV cor-
responding to PBCs (solid lines) and OBCs (closed circles). The
parameter values are (a) t1 = 1, t2 = 0.5, t3 = 0.2, and δ = 0.5 and
(b) t1 = 1, t2 = −0.5, t3 = 0.2, and δ = 0.05. The arrows indicate a
cusp in the E 2

PBC and EPBC curves, corresponding to a saddle point of
Q(β ) on the unit circle [(a) β = −1 and (b) β = 1]. The cusp is also
a Bloch point, where the loci of EPBC and EOBC touch. The inset in
the upper panel of (b) shows an enlargement of the energy curves at
the top right region. Note that E 2

PBC and E 2
OBC do not touch in such a

region.

and Q(βl1 ) = Q(βl2 ). Hence βl1 and βl2 are likely to belong
to C̃β . Interestingly, as the saddle (turning) point energy Qs is
approached by letting ε → 0, one has βl1 → βl2 → βs, i.e., at
the saddle point the two complex β parameters coalesce. The
above argument, however, does not prove that near the saddle
point βs the curve E2

OBC describes an open arc with a turning
point at Qs; for that, one should exclude that Qs is a cusp.
While saddle points at cusp singularities can be observed for
E2

PBC (an example is discussed below and in Appendix C), in
the models we considered and as in Refs. [18,21] we could
not find saddle-point cusps in E2

OBC spectra.
In models showing the NHSE, the saddle points βs of Q(β )

do not generally belong to Cβ ; however, in some special cases
it might happen that a saddle point βs is also a Bloch point, i.e.,
|βs| = 1. An example of such an exception occurs in model IV.
For the special choice of the parameters t2 = ±t1/2, the PBC
energy spectrum shows a cusp at β = ∓1, which is a Bloch
point and a saddle point of second order for Q(β ) (Fig. 7).
Another example of a system showing the NHSE, where all
saddle points are also Bloch points and cusp singularities for
EPBC, is presented in Appendix C.

APPENDIX C: THE NHSE IN SYSTEMS WITH BLOCH
POINTS AND CUSP SINGULARITIES

In non-Hermitian models showing the NHSE and exhibit-
ing isolated Bloch points [27], it might exceptionally happen
that the dominant saddle point of Q(β ) is also a Bloch point,
or even that all saddle points of Q(β ) are Bloch points. In
such special cases, the saddle-point criterion given in Sec. III
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is not satisfied, and the largest value of Lyapunov exponent
is attained at v = vm = 0, even though the system shows the
NHSE. It should be emphasized that these are exceptional
cases, usually observed when the EPBC energy spectrum shows
cusps. A cusp singularity in the curve EPBC occurs whenever
βs is a saddle point of Q(β ) on the unit circle, i.e., |βs| = 1,
and (dQ2/dβ2)βs �= 0. Fortunately, even a small change of
parameters in the system can shift the saddle point out of
the unit circle and thus restore the validity of the saddle-point
criterion and the condition vm �= 0 for a system to exhibit the
NHSE.

To clarify the point, let us consider the two-band model
with the Bloch Hamiltonian H (k) defined by

dx = t exp(ik) + exp(−ik)√
2

, dy = 0,

dz = it exp(ik) + iδ, (C1)

which depends on the two real parameters t and δ. For this
system, one has

Q(β ) = −2tδβ3 + (
√

2t − δ2)β2 + 1/2

β2
. (C2)

There are three saddle points, which are the roots of the cubic
equation

β3 + 1

2tδ
= 0, (C3)

i.e.,

βs =
(

1

2tδ

)1/3

exp[iπ (2s + 1)/3] (C4)

(s = 0, 1, 2). For the special values of parameters 2tδ = ±1,
one has |βs| = 1, i.e., all saddle points are also Bloch points,
and the energies ±√

Q(βs) belong to both EPBC and EOBC.
Also, since (d2Q/dβ2)βs �= 0, the EPBC energy spectrum
shows cusp singularities at the energies of the Bloch points.
Typical examples of energy spectra for the special condition

FIG. 8. (a) Energy spectra EOBC for OBCs (closed circles) and
EPBC for PBC (solid lines) in the non-Hermitian model, defined
by Eq. (C1), for parameter values t = −1/2 and δ = 1. Note that
EPBC has six cusps, indicated by the arrows, which are Bloch points
and also saddle points of Q(β ). (b) Corresponding behavior of the
Lyapunov exponent λ versus drift velocity v. (c) and (d) Same as
(a) and (b) but for parameter values t = −1 and δ = 1. The inset in
(c) shows an enlargement of the energy spectrum of the lobe at the
right top, indicating that the saddle points are no longer Bloch points.

2tδ = −1 are shown in Fig. 8(a). The numerically computed
Lyapunov exponent λ(v) is shown in Fig. 8(b). Note that,
since EPBC and EOBC do not coincide, the system shows the
NHSE. However, all saddle points of Q(β ) lie on the unit
circle and, as shown in Fig. 8(b), the largest value of the
Lyapunov exponent is attained at v = vm = 0. However, as
the special condition 2tδ = ±1 is lifted, the saddle points are
no longer Bloch points and the largest value of the Lyapunov
exponent is reached at a nonvanishing drift velocity, as shown
in Figs. 8(c) and 8(d).
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