
PHYSICAL REVIEW RESEARCH 1, 023010 (2019)

Origami lattices and folding-induced lattice transformations

Hongbin Fang ,1,2,* Suyi Li,3 Manoj Thota,2 and K. W. Wang2

1Institute of AI and Robotics, Fudan University, Shanghai 200433, China
2Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
3Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, USA

(Received 20 January 2019; published 9 September 2019)

Lattices and their underlying symmetries play a central role in determining the physical properties and
applications of many natural and engineered materials. This research offers a comprehensive solution to a
long-standing challenge regarding the lattice-based materials: how to systematically construct a lattice and
transform it among different symmetric configurations in a predictable, scalable, and reversible way. By bridging
the lattice geometry and rigid-folding kinematics of a group of origamis consisting of generic degree-4 vertices,
we successfully construct all types of two- and three-dimensional Bravais lattices, and demonstrate that they
can undergo all diffusionless phase transformations via rigid folding (i.e., dilation, extension, contraction, shear,
and shuffle). Such folding-induced lattice transformations can trigger fundamental lattice-symmetry switches,
which can either maintain or reconstruct the nearest-neighbor relationships according to a continuous symmetry
measure. This study can foster the next generation of transformable lattice structures and materials with
on-demand property tuning capabilities.
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I. INTRODUCTION

Lattices and their underlying symmetries play a central
role in determining physical properties—such as band struc-
ture, compressibility, and elastic modulus—of many natural
[1,2] and engineered materials [3,4]. Such a lattice-property
relationship is particularly evident in metamaterials [5–7].
Therefore, purposefully designing and adjusting lattice topol-
ogy can significantly expand the achievable material property
range [8–10]. However, due to the lack of a flexible and
versatile platform, constructing lattice structures from the
ground up is challenging, and once the material is synthesized,
its constituent lattice typically cannot be modified. Several
studies have been proposed for tuning the underlying lattice
structures of metamaterials; however, they mainly stay at
a case study level, and the range and freedom of lattice
adjustment are limited [11–13]. Therefore, there is a lack of
an integrated and scalable approach for reconfiguring lattice
structures on demand, let alone transforming their symme-
try properties. Here we offer a solution to fill this gap by
exploring and exploiting origami folding. The research will
answer the long-standing question of how to systematically
construct a lattice and transform it among different symmetric
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configurations in a predictable, scalable, and reversible way.
Due to the broad importance of lattice structure and its
transformations, answers to this question will be extremely
valuable in many fields including lattice and symmetry theory,
metamaterials, adaptive materials and structures, and origami
science itself.

Origami has become a popular subject among mathemati-
cians, educators, physicists, and engineers owing to the seem-
ingly infinite possibilities of transforming two-dimensional
(2D) sheets into three-dimensional (3D) shapes via folding
[14–18]. Historically, such folding-induced shape transfor-
mations have been examined based on the spatial positions
and orientations of its facet surfaces and crease lines [19,20].
For example, many origami-based mechanical metamaterials
are analyzed by considering the folding as coordinated facet
rotations with respect to the hingelike creases—essentially a
linkage mechanism [21,22]. In this study, we examine the
origami folding through a different lens by asking how folding
can spatially arrange and rearrange the characteristic entities
in the origami. These characteristic entities can be the vertices
where crease lines intersect, or the center points of crease
lines and facets. By treating these entities as the elements of
a lattice (aka lattice points), we uncover that origami offers
a remarkably comprehensive framework to construct all 2D
and 3D Bravais lattices, induce all types of diffusionless
lattice transformations (aka dilation, extension, contraction,
shear, and shuffle), switch the lattice structure among dif-
ferent symmetric configurations, and even reconstruct the
nearest-neighbor relationships based on a continuous symme-
try measure. Therefore, this result can fundamentally advance
our capability to engineer high-performance material systems
by incorporating the rich design and kinematics of origami
folding.
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FIG. 1. Construction of origami lattices of inclusions. As exam-
ples, 2D lattices of (a) facet inclusions (square lattice), (b) vertex
inclusions (non-Bravais lattice), and (c) rods (hexagonal lattice) are
generated based on Miura-ori sheets; 3D lattices of (d) facet inclu-
sions (primitive orthorhombic lattice) and (e) vertex inclusions (non-
Bravais lattice) are generated based on stacked Miura-ori structures.
Unit cells of these lattices are highlighted.

II. RESULTS

A. Origami lattice constructions

Origami structures are versatile scaffolds for constructing
2D and 3D lattices. Here we selectively assign lattice points
either at the facet centers [Figs. 1(a) and 1(d)] or vertices
[Figs. 1(b) and 1(e)]. These lattice points can be occupied
by inclusions of the same type [Figs. 1(a), 1(c), and 1(d)] or
different types [Figs. 1(b) and 1(e)]. The inclusions can be
selected according to targeted applications, such as conduct-
ing element [23] and sonic barrier rods [24,25]. Assembly
of multiple origami sheets can further enrich the 3D design
space [Figs. 1(c)–1(e)]. By establishing correlations between
the origami geometry and the lattice configuration (see details
in Appendix A for 2D Bravais lattices, and Appendix B for 3D
Bravais lattices), we discover that all five types of 2D and 14
types of 3D Bravais lattices—a well-established description
of the lattice configuration according to symmetry—can be
constructed on a group of simple and rigid-foldable origamis
consisting of generic degree-4 vertices [26,27]. The mapping
between origami geometry and lattice configuration is not
one-to-one in that multiple origami designs and lattice-point
assignments can satisfy the reflection and rotational symmetry
requirements of one specific Bravais lattice. Such a property
is beneficial to lattice construction in that it provides abun-
dant candidate origami patterns as well as enough flexibility
to arrange lattice points. For a specific Bravais lattice, the
symmetry requirements, as well as the constraints on axial
distances and axial angles (Appendixes A and B), could be
used as guidelines for origami design and lattice-point as-
signment. Once they are prescribed, the corresponding lattice
at any intermediate state during folding could be uniquely
determined.
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FIG. 2. Diffusionless phase transformations in origami lattices.
Folding of origami structures and the corresponding lattice transfor-
mations for (a) 2D dilation, (b) 2D contraction and extension, (c)
2D shear component, (d) 2D shuffle component, (e) 3D dilation,
(f) 3D contraction and extension, (g) 3D shear component, and
(h) 3D shuffle component. Folding is represented as the change of
certain geometric angle. Detailed geometries and kinematics of these
origami structures can be found in Appendix C.

B. Folding-induced diffusionless phase transformation
and discrete symmetry switches

Besides being a versatile platform for lattice construction,
origami also provides effective mechanisms to transform these
lattices via folding. By translating the folding-induced facet
and vertex rearrangement into the corresponding lattice-point
movements (Fig. 2), we discover that folding can impart
all kinds of diffusionless phase transformations via attaining
both lattice-distortive strains and shuffles. The former further
includes dilation, contraction and extension, and shear [28].
Appendix C thoroughly examines the mathematical corre-
spondence between origami folding and 2D and 3D lattice
transformations. For each type of lattice transforamtion, a
transformation matrix is formulated to quantitatively describe
the changes of lattice vectors during folding. Particularly,
correlations between origami’s kinematic properties and lat-
tice transformations are also established. For 2D lattices
of vertex inclusions, we show that origami sheets with a
negative in-plane Poisson’s ratio (e.g., Miura-ori [22]) can
induce 2D dilations [Fig. 2(a)]; those with a positive in-
plane Poisson’s ratio (e.g., eggbox pattern [29]) can bring
about 2D contractions and extensions [Fig. 2(b)]; and those
with in-plane shear deformations (e.g., single-collinear (SC)
origami [27]) can trigger 2D shear components [Fig. 2(c)].
Two-dimensional shuffle, manifested as a small movement
of a lattice point (red) within the unit cell, can also be
achieved in a Miura-ori-based lattice [Fig. 2(d)]. For 3D
lattices of vertex inclusions, 3D dilation is achievable by
exploiting the tridirectional auxeticity of a stacked general
flat-foldable (GFF) structure [27] [Fig. 2(e)]; 3D contraction
and extension is a result of the combination of positive and
negative Poisson’s ratios in a stacked Miura-ori structure [22]
[Fig. 2(f)]; 3D shear is achievable due to the out-of-plane
shear deformation in a GFF sheet [Fig. 2(g)] [27]; and 3D
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shuffle is evident when the lattice point locating at the center
vertex of the Miura-ori cell translates within the 3D unit lattice
cell during folding [Fig. 2(h)]. It is worth noting that the shear
or shuffle components do not occur alone, and they are always
accompanied by dilation or contraction and extension. These
rich connections between origami kinematics and lattice-point
movements can enable us to program a broad range of lattice
transformations—according to the Cohen’s classification, for
example [30]—by purposefully designing the crease patterns
and their folding motions.

More importantly, these folding-induced diffusionless
transformations can fundamentally switch the lattices’ under-
lying symmetry groups. For instance, the 2D contraction and
extension could add an additional reflection symmetry to the
rectangular lattice based on Miura-ori and switch it into a
square lattice [i.e., the symmetry group switches from D2 to
D4, Fig. 2(b)]. The 2D shuffle, on the other hand, could break
down a reflection symmetry of a centered rectangular lattice
and evolve it into a non-Bravais lattice [D2 to D1, Fig. 2(d)].
Remarkably, with a carefully designed crease pattern, origami
folding can switch the corresponding lattice among more than
two Bravais types, which could appear either alternatively
or repeatedly. Taking the Miura-ori pattern as an example,
by prescribing the crease design parameters (a, c, and γ ),
the corresponding 2D lattices of rod inclusions could reach
four types of 2D Bravais lattice: rectangular (R), centered
rectangular (CR), square (S), and hexagonal (H) lattices [24].
For instance, if c/a = 1 and γ = 60◦, the Miura-ori-based
lattice of rod inclusions will undergo a series of discrete
switches: from being a hexagonal lattice (θ = 0◦) to a square
lattice (θ = 54.7◦), to a hexagonal lattice again (θ = 70.5◦),
and finally to a rectangular lattice (θ → 90◦) [Fig. 3(a)].
Note that between these switches, the origami lattices are
non-Bravais, which are not denoted in Fig. 3(a). Detailed
parametric analysis and another example of discrete symmetry
switches can be found in the Supplemental Material, S1 [31].

C. Folding-induced continuous symmetry evolutions
in origami lattices

So far, we have been focusing on discrete folding con-
figurations where the corresponding lattices are strictly sym-
metric. However, folding is a continuous process; when the
origami is folded slightly away from these strictly symmetric
configurations, the corresponding lattice no longer possesses
certain symmetry in a strict sense but is still very close.
Therefore, it is necessary to derive a quantitative method to
analyze the folding-induced and continuous changes in the
lattice symmetry. Here we adopt the concept of continuous
symmetry measure (CSM), which was first proposed in the
field of structural chemistry [32,33]. Given a shape and a sym-
metry group G (such as D2 and D4), the continuous symmetry
measure, S(G), quantifies the minimal displacement that the
points of the object have to undergo in order to be transformed
into a shape with G symmetry. Hence, an object features a
zero S(G) when it is strictly G symmetric; if this object has
to undergo larger displacements to acquire G symmetry, its
S(G) value increases accordingly. In other words, rather than
a “black and white” discrete approach to describe symmetry
(that is, either symmetric or asymmetric), the CSM offers a
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FIG. 3. Discrete and continuous symmetry measures as well
as the reconstruction of the nearest-neighbor relationship of the
origami lattices. Based on a Miura-ori sheet with c/a = 1, γ = 60◦,
(a) demonstrates the discrete switches of the lattice from a hexagonal,
to a square, to another hexagonal, and finally to a rectangular type.
Correspondingly, the symmetry switches from D6, to D4, to D6,
and finally to D2. Based on the same design, (b) displays the CSM
values of the two unit cells (i) and (ii) with respect to symmetry
groups D6, D4, and D2, where the arrows denote the folding angles
when reconstructions of the nearest-neighbor relationship happen.
For clear illustration, lattices at specific folding configurations are
provided in (c). The unit cell (i) deforms via weak transformations
when θ < 54.7◦; as the folding reaches and passes θ = 54.7◦, a
reconstructive transformation occurs and a new unit cell (i′) with
reconstructed nearest lattice-point neighbors is generated. Similar
reconstructive transformation happens on unit cell (ii) when the
folding reaches and passes θ = 70.5◦, with a new unit cell (ii′)
being generated. In examining the overall lattice, we observe another
type of reconstructive transformation. When reaching and passing
θ = 44.4◦, the nearest neighbors change from those lattice points
constituting the unit (i) to those constituting the unit cell (ii); the
lattice mainly represents D6 and D4 symmetry before and after θ =
44.4◦, respectively. Similar reconstructions also occur at θ = 62.4◦

and 78.4◦. At each folding configuration, the lattice with the nearest
neighbors is denoted by a shaded polygon with solid lattice points.

more continuous “gray” scale to characterize the strength of
a particular type of symmetry group. Detailed mathematical
description of this concept and its application in quantifying
origami lattice can be found in the Supplemental Material, S2
[31], and in [32,34]. By adopting this measure, we are able to
describe how much the origami lattice possesses certain sym-
metry and understand its nearest symmetric correspondence at
a certain folding configuration.
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As an example, we revisit the case in Fig. 3(a) by evaluat-
ing the CSM of the origami lattice with respect to symmetry
groups D6, D4, and D2, which correspond to the hexagonal,
square, and rectangular (or centered rectangular) lattices, re-
spectively. We select a hexagon unit cell (i) and a parallel-
ogram unit cell (ii) of the lattice and calculate their CSM
values with respect to different symmetry groups throughout
the folding range from θ = 0◦ (fully flat) to θ = 90◦ (fully
folded) (Fig. 3(b) (see detailed calculation procedures in the
Supplemental Material, S2 [31]). At θ = 0◦, Si(D6) = 0 for
cell (i), meaning that the lattice is of hexagonal type and
strictly exhibits D6 symmetry. As θ increases, Si(D6) grad-
ually increases, indicating a loss of D4 symmetry; however,
Sii (D4) decreases for cell (ii), which is a signal of strengthen-
ing D6 symmetry. At θ = 54.7◦, Si(D6) reaches a local maxi-
mum whereas Sii(D4) = 0; this suggests that the lattice is far
away from D6 symmetry but fully acquires the D4 symmetry
(aka square lattice). As θ further increases, Si(D6) starts to
decrease but Sii(D4) increases. At θ = 70.5◦, Si(D6) returns
to zero while Sii(D4) reaches a local maximum, implying that
the lattice fully regains D6 and loses D4 symmetry. At the
final stage of folding, Sii(D2) converges to zero while Sii (D4)
climbs quickly, indicating the emergence of a rectangular
lattice with D2 symmetry when θ approaches 90◦.

D. Breaking and reconstructing of the nearest-neighbor
relationship in origami lattices

To understand the physics underpinning the folding-
induced discrete symmetry switches and CSM evolutions, we
carefully examine the lattice-point movements during these
transformations. Around those configurations with strict sym-
metry, even with a relatively small range of folding, the lattice-
point movements can be sufficient to switch the symmetry
group but not break the nearest-neighbor relationships. For
example, the contraction and extension shown in Fig. 2(b)
can switch the symmetry group from D2 to D4 by slightly
moving the four lattice points in the unit cell such that the
corresponding rectangle changes to a square, but the unit cell
always consists of the same four lattice points during this
process. Such a transformation mechanism that maintains the
nearest-neighbor relationship is defined as weak, which is
manifested as smooth variations of the CSM value in Fig. 3(b).
However, near some critical folding configurations, the lattice
points within the unit cell move in a way that they are no
longer the nearest neighbors, so that a new unit cell of the
same type is generated by incorporating a different set of
lattice points. Such a mechanism involving breaking and re-
constructing of nearest-neighbor relationships is defined as re-
constructive.1 For example, in Fig. 3(c), the hexagonal shape
formed by the lattice points of unit cell (i) first undergoes a
weak transformation, from θ = 0◦ to near 54.7°, as it becomes
a houselike shape. When θ reaches and passes 54.7°, the
original nearest-neighbor relationship cannot be maintained.

1It is worth noting that here “reconstructive” does not mean “dif-
fusional” but rather denotes the breaking and regeneration of the
nearest-neighbor relationship; all transformations discussed in this
paper are diffusionless.

Specifically, one of the lattice points in unit cell (i) is replaced
by a new lattice point such that a new unit cell (i′) with the
nearest lattice-point neighbors is reconstructed. In the CSM
plot, such reconstructive transformation is manifested as the
nonsmooth maxima corresponding to this particular unit cell
(e.g., the maxima at θ = 54.7◦ for unit cell (i) and the maxima
at θ = 70.5◦ for unit cell (ii)).

The reconstructive mechanisms discussed so far are de-
fined on a particular type of unit cell, and we can extend
its definition by considering different types of unit cells in
the origami lattice simultaneously. At any folding config-
urations, the unit cell with a relatively lower value of the
CSM better represents the prominent symmetry of the overall
lattice. Therefore, among different types of unit cell, when
there is a change in terms of the smallest CSM, the nearest-
neighbor relationship of the lattice can be also considered to
experience a reconstruction. The difference here is that such
a reconstruction occurs between unit cells of different types.
In the example shown in Fig. 3, Si(D6) is lower than Sii(D4)
before θ reaches 44.4°, indicating that the lattice points in
the unit cell (i) constitutes the nearest-neighbor relationship
of the overall lattice, and the overall lattice mainly represents
D6 symmetry; however, Si(D6) outstrips Sii(D4) as θ passes
44.4°, suggesting that the lattice points in the unit cell (ii)
become the nearest neighbors, and the overall lattice mainly
exhibits D4 symmetry. Based on this generalized definition of
the reconstructive mechanism, it is evident from Fig. 3 that
folding can trigger multiple and successive reconstructions
of the nearest-neighbor relationships (e.g., at θ = 44.4◦, θ =
62.4◦, and θ = 78.4◦).

Three-dimensional Bravais lattices constructed on the
generic four-vertex origami can also exhibit symmetry
switches and evolutions by folding. We find that lattices
of the same centering type (primitive, body-centered, base-
centered, and face-centered lattices) possess the potential to
evolve among different crystal families, which need further
exploration. It is also worth highlighting that unlike certain
martensitic transformations that are irreversible [1,2], the
above origami folding-induced transformations are always
reversible even after multiple reconstructions of the nearest-
neighbor relationship.

III. SUMMARY AND DISCUSSIONS

This study uncovers and elucidates the comprehensiveness
of the capability to construct and reconfigure lattice structures
by uniquely exploring origami folding. All five types of 2D
and 14 types of 3D Bravais lattices can be constructed by
exploiting the origami design space and by carefully select-
ing its characteristic points for lattice-point assignment. All
2D and 3D diffusionless lattice transformations—including
dilation, extension and contraction, shear, and shuffle—can
be achieved in such origami lattices via rigid folding. More
importantly, we discover that folding can induce continuous
and reversible evolutions of the lattice symmetry, and these
symmetry evolutions can either maintain or reconstruct the
nearest-neighbor relationship in a predictable manner.

Since the lattice structure and its symmetry properties
directly govern many physical properties, the origami lattice
construction and transformation offers us great freedom to

023010-4



ORIGAMI LATTICES AND FOLDING-INDUCED LATTICE … PHYSICAL REVIEW RESEARCH 1, 023010 (2019)

architect programmable and adaptive metamaterials. Here the
lattice points can be occupied by any components used for
metamaterials, including geometric entities [9,35], mechani-
cal units [36], acoustic modules [37], electromagnetic devices
[7,23], and photonic elements [7,38], etc. Attaching these
components to the origami scaffold gives us metamaterials
and metastructures (from nanometer-scale DNA origami [39]
to meter-scale origami space structure [16]) whose mechan-
ical, thermal, acoustic, optical, or electromagnetic proper-
ties can be effectively tailored by folding on demand. For
example, our previous research demonstrated how embed-
ding cylindrical rods to a Miura-ori sheet can result in a
transformable lattice [24,25,40]. Folding, in this case, can
effectively tune the lattice symmetry and the lattice axial
lengths and significantly change the sound wave propagation
behavior in terms of band gaps (see a detailed example in
the Supplemental Material, S3 [31]). Such an origami lattice
of rod inclusions could be used as sonic barriers for noise
mitigation. Moreover, in addition to the global lattice transfor-
mation via folding, perturbing the positions of specific lattice
points can introduce local defects (e.g., pop-through defects
[41]) into the origami lattice, which may impart additional
property programmability to the lattice-based metamaterials
or metastructures.

Finally, it is worth emphasizing that, unlike the application
case studies in [24,25], this research is unique and signif-
icant in that it uncovers a fundamental and comprehensive
theoretical framework on the correlations between origami
geometries and lattice configurations. By establishing origami
as a versatile scaffold to construct and transform lattices with
continuous symmetry evolutions, this theoretical framework
can open the door to engineering metamaterials and metas-
tructures that can alter their underlying lattice structures on
demand. The results of this research can serve as design

guidelines and analytical tools for future studies on the en-
gineering of lattice control via origami scaffolds of different
size scales, for many other applications.
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APPENDIX A: CONSTRUCTIONS OF 2D BRAVAIS
LATTICES WITH DEGREE-4 VERTEX ORIGAMIS

There are five types of 2D Bravais lattices: oblique, rectan-
gular, centered rectangular, square, and hexagonal lattices. For
simplicity, they are hereafter referred to as O, R, CR, S, and H,
respectively. In this Appendix section, we show how they can
be constructed based on degree-4 vertex (4-vertex) origamis
by providing the detailed correlations between origami ge-
ometries and lattice configurations. Note that there are mul-
tiple origami designs and multiple characteristic entity as-
signments that can be used to create one specific type of 2D
Bravais lattice. Thus, the constructions given here serve as
examples to elucidate the underlying geometric correlations.

To obtain an oblique lattice, a single-collinear (SC) origami
pattern is used. Figure 4(a) shows the geometry of an SC
origami unit at both the flat and a partially folded state. An
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SC unit can be characterized by three crease lengths (a, b,
and c) and two sector angles (γ1 and γ2) [left, Fig. 4(a)].
Folding of the SC unit can be described by the folding
angle θ (θ ∈ [0, 90◦]), which is defined as the dihedral angle
between the facet 1-2-0-8 (or facet 0-6-7-8) and the reference
x-o-y plane. Vertices 1, 2, 3, 5, 6, and 7 are all coplanar in the
x-o-y plane. The outer dimensions of the SC unit are given by
[27]

ξ = arccos
cos γ1√

1 − sin2γ1sin2θ
,

η = arccos
cos γ2√

1 − sin2γ1sin2θ
,

ϕS = ξ + arccos
a2 + L2 − b2

2aL
,

L =
√

a2 + b2 − 2ab cos(ξ + η),

W = 2c
√

1 − sin2γ1sin2θ,

H = c sin γ1 sin θ. (A1)

where H , W , and L are the height, width, and length of a
folded SC unit, respectively [middle, Fig. 4(a)]. By projecting
the folded SC unit onto the reference x-o-y plane, we obtain
a polygon, whose shape is described by angles ξ , η, and ϕS

[middle and right, Fig. 4(a)].

The other four types of 2D Bravais lattices can be con-
structed by using Miura-ori patterns. Figure 4(b) shows the
geometry of a Miura-ori unit. A Miura-ori unit can be charac-
terized by two crease lengths (a and c) and one sector angle
(γ ) [left, Fig. 4(b)]. Folding of the Miura-ori unit can also
be described by the folding angle θ (θ ∈ [0, 90◦]), defined as
the dihedral angle between one of its facets and the reference
x-o-y plane. Vertices 1, 2, 3, 5, 6, and 7 are coplanar in the
x-o-y plane. The outer dimensions of the Miura-ori unit are
given by [22]

H = c sin γ sin θ, W = 2c
√

1 − sin2γ sin2θ,

(A2)

L = 2a
cos θ sin γ√

1 − sin2γ sin2θ
, J = a√

1 + tan2γ cos2θ
,

where H , W , L are the height, width, and length of a folded
Miura-ori unit, respectively [middle, Fig. 4(b)]. Projecting the
folded unit onto the x-o-y plane, a polygon is also obtained.

By treating the coplanar vertices 1, 2, 3, 5, 6, and 7 as
lattice points and placing inclusions on them, we can construct
2D origami lattices of vertex inclusions. Figure 5 shows the
polygons that are projected from a partially folded origami
unit and the corresponding 2D Bravais lattices. For each 2D
Bravais lattice, the detailed correlations between the origami
geometries and lattice geometries are given in Table I.

TABLE I. Geometry correlations for constructing 2D Bravais lattices based on 4-vertex origamis.

2D Bravais Point groups Axial distances Origami Correlations between origami
lattices (symmetries) and axial angles patterns geometries and lattice geometries

a =
√

l1
2 + l2

2 − 2l1l2 cos ϕ,

b =
√

l1
2 + l2

2 + 2l1l2 cos ϕ,

Oblique (O) C2 l1 �= l2, ϕ �= 90◦ SC W = l2, L = 2l1,

ξ = arcsin(l1 sin ϕ/a),
η = arcsin(l1 sin ϕ/b)

Rectangular (R) l1 �= l2, ϕ = 90◦ a =
√

l1
2 + l2

2, J = W = l2, L = 2l1

l1 �= l2, ϕ = 90◦ a = l3, W = 2l3 sin(φ/2),
Centered rectangular (CR) D2 (l3 �= l4, φ �= 90◦) Miura-ori J = W/2, L = 2l3 cos(φ/2)
Square (S) D4 l1 = l2, ϕ = 90◦ a = √

2l1, J = W = l1, L = 2l1

Hexagonal (H) D6 l1 = l2, ϕ = 120◦ a = l1, W = √
3l1, J = W/2, L = l1
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FIG. 6. Geometries of 3D origami structures. (a) A stacked SC structure (bulged out), (b) a stacked Miura-ori structure (bulged out), and
(c) a partially folded DC unit and the corresponding DC stacked structure. For each case, the constituent units’ crease patterns (left) and the
stacked origami structure at a partially folded state (right) are given. In the crease patterns, the mountain and valley creases are denoted by
solid and dashed lines, respectively. In the DC unit, the folded and unfolded creases are highlighted.

APPENDIX B: CONSTRUCTIONS OF 3D BRAVAIS
LATTICES WITH DEGREE-4 VERTEX ORIGAMIS

Three-dimensional Bravais lattices can be categorized into
seven systems. In each system, the lattice points in a unit
cell can follow four different centering types. Specifically,
the seven systems are triclinic, monoclinic, orthorhombic,
tetragonal, rhombohedral, hexagonal, and cubic [42]. The four
centering types are primitive, base-centered, body-centered,
and face-centered. However, some combinations of lattice
systems and centering types create the same lattice. After
considering such redundancy, there are 14 unique types of 3D
Bravais lattices.

We use three types of origami structures to construct
3D Bravais lattices. They are a stacked SC structure in the
bulged-out configuration, a stacked Miura-ori structure in the
bulged-out configuration, and a stacked double-collinear (DC)
structure. In what follows, we formulate the geometries of
the three stacked origami structures, and then detail the cor-

relations between the origami geometries and the 3D lattice
configurations.

The stacked SC structure consists of two SC units
[Fig. 6(a)]. Each SC unit is characterized by crease lengths ax,
bx, and cx, and sector angles γx1 and γx2. Here the subscript x
takes the values of A or B and represents the bottom unit A
or the top unit B, respectively. Without loss of generality, we
assume γx1 < γx2. The following geometry constraints have to
be satisfied to ensure the kinematic compatibility between the
two SC units during the whole rigid-folding process [27]:

aA = aB = a, bA = bB = b,
cos γA1

cos γB1
= cos γA2

cos γB2
= cB

cA
.

(B1)

Folding of the stacked SC structure is still a single-degree-
of-freedom mechanism. It can be described by a folding angle
θA (or θB), which is defined as the dihedral angle between a
facet of the bottom (or top) unit and the reference x-o-y plane

023010-7



FANG, LI, THOTA, AND WANG PHYSICAL REVIEW RESEARCH 1, 023010 (2019)

[Fig. 6(a)]. θA and θB are not independent of each other but
satisfy the following relationship:

cos θA

cos θB
= tan γB1

tan γA1
. (B2)

In the bulged-out configuration −90◦ � θA � 0, and in the
nested-in configuration 0 < θA � 90◦. The outer dimensions
of the SC stacked structure in the bulged-out configuration are

HA = cA sin γA1 sin |θA|, HB = cB sin γB1 sin θB,

H = HA + HB, ξ = arccos
cos γA1√

1 − sin2γA1sin2θA

,

η = arccos
cos γA2√

1 − sin2γA1sin2θA

,

W = 2cA

√
1 − sin2γA1sin2θA,

L =
√

aA
2 + bA

2 − 2aAbA cos(ξ + η),

ϕS = ξ + arccos
aA

2 + L2 − bA
2

2aAL
. (B3)

The stacked SC structure is used to construct the triclinic and
the monoclinic lattices. To characterize the triclinic lattice,
two additional angles ϕ1 and ϕ2 [Fig. 7(a)] are defined:

ϕ1 = arccos

(
−W cos ϕS

2aA

)
,

ϕ2 = π − arcsin

[√
cA

2 − (W/2)2

cA

]
. (B4)

The stacked Miura-ori structure consists of two Miura-ori
units [Fig. 6(b)]. Each Miura-ori unit is characterized by two
crease lengths ax and bx, and one sector angle γx, where the
subscript x also takes the values of A or B, denoting the bottom
unit A or the top unit B, respectively. The following geometry
constraints have to be satisfied to ensure the kinematic com-
patibility between the two units during rigid folding [22]:

aA = aB = a,
cos γA

cos γB
= cB

cA
. (B5)

Similarly, folding of the stacked Miura-ori structure is a
single-degree-of-freedom mechanism. It can be described by a
folding angle θA (or θB), which is defined as the dihedral angle
between a facet of the bottom (or top) unit and the reference
x-o-y plane [Fig. 6(b)]. θA and θB are not independent of each
other but satisfy the following relationship:

cos θA

cos θB
= tan γB

tan γA
. (B6)

In the bulged-out configuration −90◦ � θA � 0, and in the
nested-in configuration 0 < θA � 90◦. The outer dimensions
of the Miura-ori stacked structure in the bulged-out configu-
ration are

HA = cA sin γA sin |θA|, HB = cB sin γB sin θB,

H = HA + HB, L = 2aA
cos θA sin γA√

1 − sin2γAsin2θA

,

J = aA√
1 + tan2γAcos2θA

, W = 2cA

√
1 − sin2γAsin2θA.

(B7)

The stacked Miura-ori structure is used to construct the
orthorhombic, the tetragonal, the hexagonal, and the cubic
lattices.

The stacked DC structure is obtained by stacking two
identical DC units [Fig. 6(c)]. Each DC unit has two pairs
of creases that are collinear, and it can be characterized by
two crease lengths a, c and one sector angle γ . Folding of a
DC unit can be described by the dihedral angle ρ between its
facets. Hence, the outer dimensions of a folded DC unit are

H = c cos(ρ/2), W = 2c sin(ρ/2). (B8)

The stacked DC structure is used to construct a specific
rhombohedral lattice with axial angles equaling 60◦. To obtain
this lattice, two collinear creases have to remain unfolded.

Based on these three types of stacked origami structures,
the 14 types of 3D Bravais lattices can be constructed ac-
cording to Fig. 7. For each 3D Bravais lattice, a unit cell is
shown on the corresponding origami structure. The detailed
correlations between the origami geometries and the lattice
geometries are listed in Table II.

APPENDIX C: ACHIEVING DIFFUSIONLESS PHASE
TRANSFORMATIONS THROUGH ORIGAMI FOLDING

Diffusionless phase transformations can be distinguished
between transformations dominated by lattice-distortive
strains and those where shuffles play a significant role.
Lattice-distortive strains can transform the lattice from one
Bravais type to another, and the shuffle refers to small
movements of a lattice point within the lattice unit cell. In
this section, we thoroughly examine the examples given in
Fig. 2 (detailed parameters of these examples are provided in
Table III). We show that based on different origami patterns,
all types of 2D and 3D diffusionless transformations can be
achieved by rigid folding. For each type of transformation, a
lattice transformation matrix is formulated, which is further
correlated to the kinematic properties of 2D and 3D origami
structues. Such correlations are summarized in Table S4 in the
Supplemental Material [31].

1. 2D Dilation

Two-dimensional dilation is observed in a lattice of vertex
inclusions based on a Miura-ori, which is an example of 2D
Bravais lattice shown in Figs. 2(a) and 8(a). Folding of a
Miura-ori unit can be described by the dihedral folding angle
θ (θ ∈ [0, 90◦]) between its facet and the reference x-o-y plane
[Fig. 4(b)]. Hence, the lattice vectors corresponding to two
different configurations (with folding angles θ and θ ′) can be
formulated as

lθ1 =
(

L|θ
0

)
, lθ2 =

(
0

W |θ
)

; lθ
′

1 =
(

L|θ ′

0

)
, lθ

′
2 =

(
0

W |θ ′

)
.

(C1)

Here, the length L and the width W of the Miura-ori unit are
defined in Eq. (A2). Since there is no diffusion involved, we
can formulate a transformation matrix U2D-D to quantitatively
describe the lattice transformation due to folding from angle
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FIG. 7. The 14 types of 3D Bravais lattices and the layout of a lattice unit cell on the corresponding origami structure. (a) The triclinic lattice
(primitive), (b) the monoclinic lattices (primitive and base-centered), and (c) the orthorhombic lattices (primitive, base-centered, body-centered,
and face-centered), (d) the tetragonal lattices (primitive and base-centered), (e) the rhombohedral lattice (primitive), (f) the hexagonal lattice
(primitive), and (g) the cubic lattices (primitive, base-centered, and face-centered).

θ to θ ′ such that (
lθ

′
1 lθ

′
2

)T = U2D-D
(
lθ1 lθ2

)T
. (C2)

U2D-D describes the lattice-distortive strains that transform the
lattice (also called the Bain matrix), in which the subscript
“2D” indicates that this transformation is two dimensional,
and “D” means dilation. Substituting the expressions of L and
W into Eqs. (C1) and (C2), the transformation matrix can be

written as

U2D-D =
(

s cos θ ′/ cos θ 0

0 1/s

)
,

where s =
√

1 − sin2γ sin2θ√
1 − sin2γ sin2θ ′

. (C3)
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FIG. 7. (Continued.).

U2D-D is a diagonal matrix. When θ ′ < θ , the two diagonal
elements of U2D-D are always larger than 1, suggesting that
the lattice dilates along both lattice vectors.

Note that the Miura-ori unit exhibits a negative Poisson’s
ratio in the L and W directions during folding [22]:

vW L = −εW

εL
= −dW/W

dL/L
= −cos2θ tan2γ < 0. (C4)

When the length L increases (or decreases) due to folding,
the width W increases (or decrease) accordingly. Therefore,
the negative Poisson’s ratio is the kinematic origin of the 2D
dilation.

2. 2D Contraction and extension

Two-dimensional contraction and extension is observed
when transforming an eggbox-pattern-based lattice of vertex
inclusions, which is an example of 2D Bravais lattice shown
in Figs. 2(b) and 8(b). The eggbox pattern [29] consists of four
identical parallelogram facets characterized by crease lengths
a, b and a sector angle γ ; its length L and width W are given by

W = 2a sin α, L = 2b sin β, (C5)

where α and β are two angles between the boundary creases
and a perpendicular line, used for describing the folding
motion (0 � α, β � γ ) [Fig. 8(b)]. They are not independent
of each other but follow the relationship cos α cos β = cos γ .
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TABLE II. Geometry correlations for constructing 3D Bravais lattices based on 4-vertex origami structures.

14 types of 3D Bravais lattices

Symmetry Correlations between

(Schönflies Centering Axial distances Origami Origami structures and

Lattice systems notations) types and axial angles structures lattice geometries

Triclinic C1 Primitive
l1 �= l2 �= l3,

α �= β �= γ �= 90◦ Stacked SC structure
W = l1, L = l2, cA = l3,

ϕ1 = α, ϕ2 = β, ϕS = γ

Primitive
l1 �= l3, β �= 90◦,

W = l1, H = l2,

L = l3, ϕS = β
Monoclinic C2h Stacked Miura-ori structure

Base-centered
α = γ = 90◦ W = l1, H = l2, L = l3,

ϕS = β, HA = HB = H/2

Primitive W = l1, H = l2, L = l3

Base-centered
W = l1, H = l2, L = l3,

HA = HB = H/2
Orthorhombic D2h

l1 �= l2 �= l3,

α = β = γ = 90◦ Stacked Miura-ori structure W = l1, L = l2,Body-centered
H = l3/2, J = W/2

Face-centered
W = l1, L = l2, H = l3,

J = W/2, HA = HB = H/2

Primitive W = H = l1, L = l3

Tetragonal D4h
l1 = l2 �= l3,

α = β = γ = 90◦ Stacked Miura-ori structure
Base-centered

W = H = l1, L = l3,

HA = HB = H/2

Rhombohedral D3d Primitive
l1 = l2 = l3 = l,
α = β = γ �= 90◦ Stacked DC structure

a = c = W = l,
ϕS = ϕ1 = ϕ2 = γ = 60◦

Hexagonal D6h Primitive
l1 = l2, γ = 120◦,
α = β = 90◦ Stacked Miura-ori structure cA = cB = W = l1, L = l3

Primitive W = H = L = l

Body-centered
cA = cB = L = l,

Cubic Oh
l1 = l2 = l3 = l,
α = β = γ = 90◦ Stacked Miura-ori structure J = W/2,W = √

2L

Face-centered
W = H = L = l,

J = W/2, HA = HB = H/2

Hence, the lattice vectors corresponding to two different
configurations (with angles α and α′) can be expressed as

lα1 =
(

L|α
0

)
, lα2 =

(
0

W |α
)

;

lα
′

1 =
(

L|α′

0

)
, lα

′
2 =

(
0

W |α′

)
. (C6)

Since there is no diffusion, the folding-induced lattice
transformation from angle α to α′ can be described by a
transformation matrix U2D-C/E such that(

lα
′

1 lα
′

2

)T = U2D-C/E
(
lα1 lα2

)T
. (C7)

Here U2D-C/E describes the lattice-distortive strains that
transform the lattice; the subscript “2D-C/E” stands for

TABLE III. Detailed geometries and folding angles of the origami patterns used in Fig. 2.

Origami patterns used in Fig. 2 Folding angles Transformation types

Values used

Patterns Parameters Angles in Fig. 2 2D or 3D Types

Miura-ori sheet a = c, γ = 60◦ θ 60◦ → 30◦ Dilation
Eggbox sheet a = b, γ = 60◦ α 50◦ → 45◦ 2D Contraction and extension
SC sheet a = b = c, γ1 = 36◦, γ2 = 72◦ θ 15◦ → 65◦ With shear
Miura-ori sheet c/a = 0.7, γ = 60◦ θ 39.2◦ → 50◦ With shuffle

Stacked GFF structure (bulged out)
aA = cA, γB1 = 54◦,
γA1 = 36◦, γA2 = 72◦ ρA1 10◦ → 40◦ Dilation

Stacked Miura-ori structure (bulged out) aA = cA, γA = 60◦, γB = 75◦ θA −20◦ → −60◦ 3D Contraction and extension
GFF sheet a = c, γ1 = 36◦, γ2 = 72◦ ρ1 90◦ → 30◦ With shear
Stacked Miura-ori structure (nested in) aA = cA, γA = 60◦, γB = 75◦ θA 20◦ → 60◦ With shuffle

023010-11



FANG, LI, THOTA, AND WANG PHYSICAL REVIEW RESEARCH 1, 023010 (2019)

x

y

ox

y

o

x

y

o

o' = 45o= 50o= 60 o' = 30

(a) 2D dilation based on a 
Miura-ori sheet

Folded Miura-ori unitCrease pattern

a a

c

c

L

(b)2D contraction and extension 
based on an eggbox sheet

Folded Eggbox unit

L

a

o= 15 o' = 65

Folded SC unit

o
s = 108.4

s
s'

(c) 2D shear component
based on a SC sheet

W

a
b

c

c
1

2

Crease pattern

o= 39.2 o' = 50

2D shuffle component
based on a Miura-ori sheet

S

LW
a a

c

c

(d)

Folded Miura-ori unitCrease pattern

LW

W

J

2

2
'

x

y

o

1

'
1

'
2 2

1

'
2

'
1

2

1

'
2

'
1 1

'
2

'
1

o
s = 115.8

FIG. 8. Origami geometries and 2D diffusionless phase trans-
formations. (a) 2D dilation achieved by transforming a Miura-ori-
based lattice of vertex inclusions; (b) 2D contraction and extension
achieved by transforming an eggbox-pattern-based lattice of vertex
inclusions; (c) 2D shear involved in transforming an SC-origami-
based lattice of vertex inclusions; (d) 2D shuffle involved in trans-
forming a Miura-ori-based lattice of vertex inclusions.

two-dimensional contraction and extension. Substituting the
expressions of L and W [i.e., Eq. (C5)] into Eqs. (C6) and
(C7), the transformation matrix yields

U2D-C/E =
(

sin β ′/ sin β 0
0 sin α′/ sin α

)
. (C8)

U2D-C/E is also a diagonal matrix. When α′ > α,
sin α′/ sin α > 1 but 0 < sin β ′/ sin β < 1, suggesting that
the lattice contracts along one lattice vector but expands along
the other vector, and vice versa.

Note that the eggbox unit exhibits a positive Poisson’s ratio
in the L and W directions during folding [29]:

vW L = −εW

εL
= −dW/W

dL/L
= cos2α − cos2γ

cos2θ tan2γ
> 0. (C9)

When the length L increases due to folding, the width W
decreases instead, and vice versa. Therefore, the positive
Poisson’s ratio is the kinematic origin of the 2D contraction
and extension.

3. 2D Shear

A two-dimensional shear component is observed when we
transform a lattice of vertex inclusions based on a single
collinear (SC) origami, which is an example of 2D Bravais
lattice shown in Figs. 2(c) and 8(c). Folding of the SC unit
can be described by the dihedral angle θ (θ ∈ [0, 90◦]) defined
between the facet and the reference x-o-y plane [Fig. 4(a)]
[27], so that the lattice vectors corresponding to two different

configurations (with folding angles θ and θ ′) yield

lθ1 =
(

L|θ
0

)
, lθ2 =

[
(W cos ϕS )|θ
(W sin ϕS )|θ

]
;

lθ
′

1 =
(

L|θ ′

0

)
, lθ

′
2 =

[
(W cos ϕS )|θ ′

(W sin ϕS )|θ ′

]
. (C10)

The length L, width W , and the angle ϕS of the SC unit
are defined in Eq. (A1). Since there is no diffusion, the
folding-induced lattice transformation from angle θ to θ ′ can
be described by a transformation matrix U2D-S such that(

lθ
′

1 lθ
′

2

)T = U2D-S
(
lθ1 lθ2

)T
. (C11)

Here U2D-S describes the lattice-distortive strains that trans-
form the lattice; the subscript “2D-S” means two-dimensional
shear. U2D-S can be formulated as

U2D-S =
(

L|θ ′/L|θ 0
W |θ ′ (cos ϕS |θ ′−sin ϕS |θ ′ / tan ϕS |θ )

L|θ
(W sin ϕS )|θ ′
(W sin ϕS )|θ

)
.

(C12)

U2D-S is not a diagonal matrix. In addition to the nontrivial
diagonal elements that describes the contraction and (or)
extension along the lattice vectors, there is also a nonzero
off-diagonal element describing the distortion induced by
shearing. By substituting the expressions of L, W , and ϕS [i.e.,
Eq. (A1)] into Eq. (C12), correlations between the transfor-
mation matrix U2D-S and the rigid-folding kinematics can be
established.

Note that the SC origami is characterized by its ability
in achieving in-plane shearing deformation during folding,
which manifests as the changes of the angle ϕS . For example,
by folding the SC unit (a = b = c, γ1 = 36◦, γ2 = 72◦) from
θ = 15◦ to θ = 65◦, the angle ϕS changes from 108.4◦ to
115.8◦. As a result, the in-plane shearing deformation mech-
anism is the root cause of the 2D shear component in lattice
transformations.

4. 2D Shuffle

Two-dimensional shuffle plays a significant role in trans-
forming a particular type of Miura-ori-based lattice of vertex
inclusions shown in Figs. 2(d) and 8(d). Generally, this lattice
as a whole is not a Bravais type due to the additional lattice
point within the unit cell. As a result, the two lattice vectors
used in the previous three cases are no longer sufficient to
describe this lattice, because the lattice point inside the unit
cell cannot be obtained by translating the two vectors. This
kind of lattice is essentially a collection of two congruent
Bravais lattices that are shifted from one another. Mathemati-
cally, such multilattice [43] can be characterized by a group of
lattice vectors li and a shift vector p. That is, li describes the
constituent Bravais lattice, and p describes the offset between
the two congruent lattices. Here, folding of the Miura-ori unit
is still described by the dihedral angle θ (θ ∈ [0, 90◦]) between
its facet and the reference x-o-y plane [Fig. 4(a)] [27], so
that the vectors corresponding to two different configurations
(with folding angles θ and θ ′) can be expressed as

lθ1 =
(

L|θ
0

)
, lθ2 =

(
0

W |θ
)

, pθ =
(

L|θ /2
J|θ

)
;

lθ
′

1 =
(

L|θ ′

0

)
, lθ

′
2 =

(
0

W |θ ′

)
, pθ ′ =

(
L|θ ′/2

J|θ ′

)
. (C13)
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The dimensions L, W , and J of the Miura-ori unit are defined
in Eq. (A2). Since there is no diffusion, we can then describe
the folding-induced lattice transformation from angle θ to θ ′
as a combination of deformation and shift. Therefore, we can
formulate the transformation matrix T2D-SH such that(

lθ
′

1 lθ
′

2 pθ ′)T = T2D-SH
(
lθ1 lθ2 pθ

)T
. (C14)

Here the subscript “2D-SH” means two-dimensional shuffle,
and T2D-SH can be written as

T2D-SH =
⎛
⎝ U2D-D

0
0

μ1 μ2 λ

⎞
⎠. (C15)

T2D-SH is not a diagonal matrix, and it reflects how the lattice-
distortive strain and the shuffle component coexist in the
transformation. U2D-D is the submatrix corresponding to 2D
dilation, which describes the lattice-distortive strains of the
constituent 2D Bravias lattice. It can be replaced by other
transformation matrices (i.e., U2D-D, U2D-C/E, or U2D-S) if
different origami structures are employed. Other elements in
the third row of T2D-SH quantify the 2D shuffle component,
which satisfy the following relationship:

(pθ ′
)T = (μ1 μ2 λ)

(
lθ1 lθ2 pθ

)T
. (C16)

Substituting the expressions of L, W , and J [i.e., Eq. (A2)] into
Eqs. (C13)–(C15), correlations between the matrix T2D-SH and
the rigid-folding kinematics can be established.

Note that changes in the relative positions among vertices
(or other characteristic entities) are ubiquitous in origami
folding, and it is the underlying mechanism that induces the
shuffle in lattice transformation. The shuffle component can
be significant, and it can even move a lattice point from one
unit cell to another, triggering a break and reconstruction of
the nearest-neighbor relationship [e.g., Fig. 3(c) in the main
text].

5. 3D Dilation

Three-dimensional dilation is observed when transforming
a lattice of vertex inclusions based on a stacked generic-flat-
foldable (GFF) structure in the bulged-out configurations [27]
[a kind of 3D Bravias lattice shown in Figs. 2(e) and 9(c)].
The stacked GFF structure consists of two GFF units A and B

[Fig. 9(a), left]. Each unit is characterized by crease lengths
ax, cx and sector angles γx1, γx2. The subscript x takes the
values of A or B, denoting the bottom unit A or the top unit
B, respectively. Without loss of generality, we assume γx1 <

γx2. The following geometry constraints have to be satisfied to
ensure the kinematic compatibility between the two units:

aA = aB,
cos γA1

cos γB1
= cos γA2

cos γB2
= cB

cA
. (C17)

Folding of the stacked GFF structure is still a single-degree-
of-freedom mechanism, and it can be described by the di-
hedral angle ρA1 between two facets of the bottom unit A
[Fig. 9(a), right]. Alternatively, we can describe its folding by
using the dihedral angles θAi (or θBi) (i = 1, 2, 3, 4) between
the facets of the bottom unit A (or top unit B) and the reference
x-o-y plane. θAi and θBi are not independent of each other but
satisfy the following constraints:

cos θA1 tan γA1 = cos θB1 tan γB1,

sin θA1 sin γA1 = sin θA2 sin γA2

= sin θA3 sin γA1 = sin θA4 sin γA2,

sin θB1 sin γB1 = sin θB2 sin γB2

= sin θB3 sin γB1 = sin θB4 sin γB2. (C18)

When ρC1
A1 � ρA1 < 180◦, the structure is in nested-in con-

figurations and 0◦ < θAi � 90◦. In particular, when ρA1 =
ρC1

A1 , the structure self-locks so that θA1 = θA3 = 90◦ and
0◦ < θA2 = θA4 < 90◦. On the other hand, when 180◦ �
ρA1 � 360◦, the structure is in bulged-out configurations
and −180◦ � θAi � 0◦.

Here we focus on the bulged-out configuration of the
stacked GFF structure. For 180◦ � ρA1 � 360◦, the folding
can be divided into two stages. In the first stage, ρA1 increases
from 180◦ to a critical value ρC2

A1 (ρC2
A1 = ρC1

A1 + 90◦), and
|θAi| increases accordingly from 0◦ but remains smaller than
90◦. The first stage ends when ρA1 reaches a critical value
ρA1

C2. At this critical configuration, |θA1| and |θA3| reach 90◦
simultaneously, while |θA2| and |θA4| are smaller than 90◦. In
the second stage of folding, ρA1 continues increasing beyond
ρA1

C2 (ρC2
A1 < ρA1 � 360◦), and |θA1| and |θA3| also continue

increasing so that |θA1| = |θA3| > 90◦; however, |θA2| and |θA4|
decrease and remain smaller than 90◦ (|θA2| = |θA4| < 90◦).
Details of the folding kinematics are discussed in [27]. Specif-
ically, θAi(i = 1, 2, 3, 4) can be expressed as

θA1 = θA3 =
⎧⎨
⎩

arcsin sin γA2 sin ρA1√
sin2γA1+sin2γA2−2 sin γA1 sin γA2 cos ρA1

, 180◦ � ρA1 � ρC2
A1

− arcsin sin γA2 sin ρA1√
sin2γA1+sin2γA2−2 sin γA1 sin γA2 cos ρA1

− 180◦, ρC2
A1 < ρA1 � 360◦ ,

θA2 = θA4 = arcsin
sin γA1 sin ρA1√

sin2γA1 + sin2γA2 − 2 sin γA1 sin γA2 cos ρA1

, 180◦ � ρA1 � 360◦. (C19)

In the bulged-out configuration, the length L, width W , and height H of the stacked GFF structure [Fig. 9(a), right] are given by

L =
{

2aA sin ((ξ + η)/2), 180◦ � ρA1 � ρC2
A1

2aA sin ((−ξ + η)/2), ρC2
A1 < ρA1 � 360◦ .

W =
{

2cA

√
1 − sin2γA1sin2θA1 cos [(ξ − η)/2], 180◦ � ρA1 � ρC2

A1

2cA

√
1 − sin2γA1sin2θA1 cos [(ξ + η)/2], ρC2

A1 < ρA1 � 360◦ ,

HA = cA sin γA1 sin |θA1|, HB = cB sin γB1 sin θB1,H = HA + HB, 180◦ � ρA1 � 360◦, (C20)
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shear involved in transforming a lattice of vertex inclusions based on a GFF sheet; (f) 3D shuffle involved in transforming a lattice of vertex
inclusions based on a stacked Miura-ori structure (nested in).

where ξ and η are similarly defined as Eq. (B3); i.e.,

ξ = arccos
cos γA1√

1 − sin2γA1sin2θA1

,

η = arccos
cos γA2√

1 − sin2γA1sin2θA1

. (C21)

Based on the assignment of lattice points on the stacked
GFF structure given in Fig. 9(c), the lattice vectors corre-
sponding to two different configurations (with dihedral angle

ρA1 and ρ ′
A1) can be formulated as

lρA1
1 =

⎛
⎝L|ρA1

0
0

⎞
⎠, lρA1

2 =
⎛
⎝ 0

W |ρA1

0

⎞
⎠, lρA1

3 =
⎛
⎝ 0

0
H |ρA1

⎞
⎠;

lρ
′
A1

1 =
⎛
⎝L|ρA1

′

0
0

⎞
⎠, lρ

′
A1

2 =
⎛
⎝ 0

W |ρA1
′

0

⎞
⎠, lρ

′
A1

3 =
⎛
⎝ 0

0
H |ρ ′

A1

⎞
⎠.

(C22)

Since there is no diffusion, the folding-induced lattice trans-
formation from angle ρA1 to ρ ′

A1 can be described by a

023010-14



ORIGAMI LATTICES AND FOLDING-INDUCED LATTICE … PHYSICAL REVIEW RESEARCH 1, 023010 (2019)

transformation matrix U3D-D such that(
lρ

′
A1

1 lρ
′
A1

2 lρ
′
A1

3

)T = U3D-D
(
lρA1
1 lρA1

2 lρA1
3

)T
. (C23)

U3D-D (a diagonal matrix) describes the lattice-distortive
strains that transform the lattice; the subscript “3D-D” means
three-dimensional dilation. U3D-D can be written as

U3D-D =

⎛
⎜⎝

L|ρ ′
A1
/L|ρA1

0 0

0 W |ρ ′
A1
/W |ρA1

0

0 0 H |ρ ′
A1
/H |ρA1

⎞
⎟⎠.

(C24)

By substituting the expressions of L, W , and H [i.e.,
Eq. (C20)] into Eq. (C24), one can correlate U3D-D to the
rigid-folding kinematics.

The observed 3D dilation has a close relation to the auxetic
properties of the stacked GFF structure. Based on Eq. (C20),
the Poisson’s ratios can be calculated via

vW L = −εW

εL
= −dW/W

dL/L
, vHL = −εH

εL
= −dH/H

dL/L
,

vW H = −vW L/vHL. (C25)

Figure 9(b) shows the Poisson’s ratios (vW L and vHL) of the
stacked GFF structure with respect to folding at the bulged-
out configuration (i.e., 180◦ � ρA1 � 360◦). After the critical
point ρC2

A1 , the stacked GFF structure exhibits negative Pois-
son’s ratios in all three directions. Therefore, in the folding
range ρC2

A1 < ρA1 � 360◦, if L|ρ ′
A1

> L|ρA1 , the negative Pois-
son’s ratios indicate that Wρ ′

A1
> W |ρA1 and H |ρ ′

A1
> H |ρA1 .

This suggests that the lattice dilates along all of the three
lattice vectors. Therefore, the tridirectional auxetic effect (i.e.,
negative Poisson’s ratios in all three directions) is the root
cause of the 3D dilation.

6. 3D Contraction and extension

Three-dimensional contraction and extension is observed
when transforming a 3D Bravais lattice of vertex inclusions
based on a stacked Miura-ori structure in the bulged-out
configuration (−90◦ < θA < 0) [27] [a kind of 3D Bravias
lattice shown in Figs. 2(f) and 9(d)]. Construction of the
stacked Miura-ori structure is introduced in Fig. 6(b), and its
outer dimensions are given in Eq. (B7).

Based on the assignment of lattice points on the stacked
Miura-ori structure given in Fig. 9(d), the lattice vectors
corresponding to two different configurations (with folding
angle θA and θ ′

A) can be expressed as

lθA
1 =

⎛
⎝L|θA

0
0

⎞
⎠, lθA

2 =
⎛
⎝ 0

W |θA

0

⎞
⎠, lθA

3 =
⎛
⎝ 0

0
H |θA

⎞
⎠;

lθ
′
A

1 =
⎛
⎝L|θA

′

0
0

⎞
⎠, lθ

′
A

2 =
⎛
⎝ 0

W |θA
′

0

⎞
⎠, lθ

′
A

3 =
⎛
⎝ 0

0
H |θA

′

⎞
⎠.

(C26)

Since there is no diffusion, the folding-induced lattice trans-
formation from angle θA to θ ′

A can be described by a

transformation matrix U3D-C/E such that

(
lθ

′
A

1 lθ
′
A

2 lθ
′
A

3

)T = U3D-D
(
lθA
1 lθA

2 lθA
3

)T
. (C27)

U3D-C/E (a diagonal matrix) describes the lattice-distortive
strains that transform the lattice; the subscript “3D-C/E”
means three-dimensional contraction and extension. U3D-C/E

can be formulated as

U3D-C/E =
⎛
⎝L|θ ′

A
/L|θA

0 0
0 W |θ ′

A
/W |θA

0
0 0 H |θ ′

A
/H |θA

⎞
⎠.

(C28)

By substituting the expressions of L, W , and H [i.e., Eq. (B7)]
into Eq. (C28), one can correlate U3D-C/E to the rigid-folding
kinematics.

The observed 3D contraction and extension has a close re-
lation to the Poisson’s ratios of the stacked Miura-ori structure
(bulged-out configurations, with −90◦ < θA < 0). Based on
the outer dimensions given in Eq. (B7), the Poisson’s ratios
vW L and vHL have opposite signs in that

vW L = −εW

εL
= −dW

dL

L

W
= −cos2θAtan2γA < 0,

vHL = −εH

εL
= −dH

dL

L

H

= − tan γA(1 − sin2γAsin2θA)

sin2γA sin θA

√
tan2γB − cos2θAtan2γA

> 0. (C29)

Hence, in the folding range −90◦ < θA < 0, if L|θ ′
A < L|θA ,

the negative Poisson’s ratios vW L indicates that Wθ ′
A < W |θA ;

however, the positive Poisson’s ratio vHL suggests that
H |θ ′

A > H |θA . As a result, the lattice contracts in the L and W
directions but extends in the H direction. In other words, the
opposite Poisson’s ratios are the origin of the 3D contraction
and extension.

7. 3D Shear

Three-dimensional shear is observed when transforming a
3D Bravais lattice of vertex inclusions based on a GFF sheet
[27] [a kind of 3D Bravias lattice shown in Figs. 2(g) and
9(e)]. A GFF unit is characterized by crease lengths a, c and
sector angles γ1, γ2. Without the loss of generality, we assume
γ1 < γ2. Its folding can be described by the dihedral angle ρ1

or the folding angles θi(i = 1, 2, 3, 4) (defined as the dihedral
angle between the facets and the reference x-o-y plane).
Folding of a GFF unit can also be divided into two stages. In
the first stage, ρ1 decreases from 180◦ to a critical value ρC

1 ,
while θi(i = 1, 2, 3, 4) increase from 0◦ but remains smaller
than 90◦. At the end of the first stage, ρ1 reaches a critical
value ρC

1 , and θ1 and θ3 reach 90◦, while θ2 and θ4 remain
smaller than 90◦. In the second stage, ρ1 continues decreasing
towards 0, and θ1 and θ3 keep increasing (θ1 = θ3 > 90◦), but
θ2 and θ4 start to decrease and remain θ2 = θ4 < 90◦. Details
of the folding kinematics are discussed in [27]. Specifically,
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θi(i = 1, 2, 3, 4) can be expressed as

θ1 = θ3 =
⎧⎨
⎩

arcsin sin γ2 sin ρ1√
sin2γ1+sin2γ2−2 sin γ1 sin γ2 cos ρ1

, ρ1
C � ρ1 � 180◦

180◦ − arcsin sin γ2 sin ρ1√
sin2γ1+sin2γ2−2 sin γ1 sin γ2 cos ρ1

, 0 � ρ1 < ρ1
C

,

θ2 = θ4 = arcsin
sin γ1 sin ρ1√

sin2γ1 + sin2γ2 − 2 sin γ1 sin γ2 cos ρ1

, 0 � ρ1 � 180◦. (C30)

The outer dimensions of a GFF unit are

L =
{

2a sin [(ξ + η)/2], ρ1
C � ρ1 � 180,

2a sin [(−ξ + η)/2], 0 � ρ1 < ρ1
C,

W =
{

2c
√

1 − sin2γ1sin2θ1 cos [(ξ − η)/2], ρ1
C � ρ1 � 180,

2c
√

1 − sin2γ1sin2θ1 cos [(ξ + η)/2], 0 � ρ1 < ρ1
C,

H = c sin γ1 sin θ1, K =
√

a2 − H2 − (W/2)2, 0 � ρ1 � 180, (C31)

where ξ and η are similarly defined as Eq. (A1); i.e.,

ξ = arccos
cos γ1√

1 − sin2γ1sin2θ1

, η = arccos
cos γ2√

1 − sin2γ1sin2θ1

. (C32)

Based on the assignment of lattice points on the GFF sheet given in Fig. 9(e), the lattice vectors corresponding to two different
configurations (with dihedral angles ρ1 and ρ ′

1) are

lρ1
1 =

⎛
⎝L|ρ1

0
0

⎞
⎠, lρ1

2 =
⎛
⎝ 0

W |ρ1

0

⎞
⎠, lρ1

3 =
⎛
⎝ −K|ρ1−W |ρ1

/2
H |ρ1

⎞
⎠;

lρ
′
1

1 =
⎛
⎝L|θ1

′

0
0

⎞
⎠, lρ

′
1

2 =
⎛
⎝ 0

W |θ1
′

0

⎞
⎠, lρ

′
1

3 =
⎛
⎝ −K|ρ ′

1−W |ρ ′
1
/2

H |ρ ′
1

⎞
⎠. (C33)

Since there is no diffusion, the folding-induced lattice transformation from angle ρ1 to ρ ′
1 can be described by a transformation

matrix U3D-S such that (
lρ

′
1

1 lρ
′
1

2 lρ
′
1

3

)T = U3D-S
(
lρ1
1 lρ1

2 lρ1
3

)T
. (C34)

U3D-S describes the lattice-distortive strains that transform the lattice; the subscript “3D-S” indicates three-dimensional shear.
U3D-S can be formulated as

U3D-S =

⎛
⎜⎜⎝

L|ρ ′
1
/L|ρ1

0 0

0 W |ρ ′
1
/W |ρ1

0
K|ρ1

( H |ρ′
1
/ H |ρ1

)− K|ρ′
1

L|ρ1

W |ρ1
( H |ρ′

1
/ H |ρ1

)−W |ρ′
1

2 W |ρ1
H |ρ ′

1s/H |ρ1

⎞
⎟⎟⎠. (C35)

By substituting the expressions of L, W , H , and K [i.e.,
Eq. (C31)] into Eq. (C35), one can correlate U3D-S to the
rigid-folding kinematics.

U3D-S is not a diagonal matrix. Its nontrivial main di-
agonal elements describe the contraction and (or) extension
along the lattice vectors; and its nonzero off-diagonal el-
ements describe the distortion due to shear. Note that the
GFF origami is characterized by its ability in achieving out-
of-plane shearing deformation during folding, which man-
ifests as the changes of the angle ψ [27]. For example,
by folding the GFF unit (a = c, γ1 = 36◦, γ2 = 72◦) from
ρ1 = 90◦ to ρ1 = 30◦, the angle ψ changes from 54.7◦ to
42.1◦. As a result, the out-of-plane shearing deformation

is the root cause of the 3D shear component in lattice
transformations.

8. 3D Shuffle

Three-dimensional shuffle is observed when transforming
a 3D non-Bravais lattice of vertex inclusions based on a
stacked Miura-ori structure in the nested-in configurations
(0 � θA � 90◦), shown in Figs. 2(h) and 9(f). Construction
of the stacked Miura-ori structure has been introduced in
Fig. 6(b). Its folding can be described by the dihedral folding
angle θA between a facet of the bottom Miura-ori unit and
the reference x-o-y plane. In the nested-in configurations, the
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TABLE IV. Correlations between diffusionless lattice transformations and origami kinematic properties.

Diffusionless lattice Representative
2D and 3D transformations Origami kinematic properties origami structures

Dilation Negative in-plane Poisson’s ratio Miura-ori sheet
Contraction and extension Positive in-plane Poisson’s ratio Egg-box sheet

2D Shear In-plane shearing deformation mechanism SC origami sheet
Changes in the relative positions among

Shuffle Miura-ori sheet
characteristic entities

Tri-directional auxetic effect Stacked Miura-ori
Dilation

(negative Poisson’s ratios in three directions) structure (bulged out)

Contraction and extension Opposite Poisson’s ratios GFF sheet

3D Out-of-plane shearing deformation Stacked Miura-ori
Shear

mechanism structure (nested in)

Changes in the relative positions among Stacked Miura-ori
Shuffle

characteristic entities structure (bulged out)

structure’s outer dimensions are

HA = cA sin γA sin θA, HB = cB sin γB sin θB,

H = HB − HA, L = 2aA
cos θA sin γA√

1 − sin2γAsin2θA

,

J = aA√
1 + tan2γAcos2θA

, W = 2cA

√
1 − sin2γAsin2θA.

(C36)

Unlike the three aforementioned cases, here, three lattice
vectors are not sufficient to describe the 3D non-Bravais lat-
tice here due to the additional lattice point inside the unit cell.
Therefore, a shift vector p has to be incorporated in addition
to the lattice vectors li [43], similar to the 2D shuffle scenario.
The lattice vectors li describe the constituent Bravais lattice,
and the shift vector p describes the offset between the two
congruent lattices. Specifically, these vectors corresponding
to two different configurations (with folding angle θA and θ ′

A)
can be formulated as

lθ1 =
⎛
⎝L|θ

0
0

⎞
⎠, lθ2 =

⎛
⎝ 0

W |θ
0

⎞
⎠,

lθ3 =
⎛
⎝ 0

0
H |θ

⎞
⎠, pθ =

⎛
⎝ L|θ /2

J|θ + W |θ /2
HA|θ

⎞
⎠;

lθ
′

1 =
⎛
⎝L|θ ′

0
0

⎞
⎠, lθ

′
2 =

⎛
⎝ 0

W |θ ′

0

⎞
⎠,

lθ3 =
⎛
⎝ 0

0
H |θ ′

⎞
⎠, pθ ′ =

⎛
⎝ L|θ ′/2

J|θ ′ + W |θ ′/2
HA|θ ′

⎞
⎠. (C37)

Since there is no diffusion, the folding-induced lattice trans-
formation from angle θ to θ ′ can be described as a combina-
tion of deformation and shift. Hence, we can formulate the

transformation matrix T3D-SH such that(
lθ

′
1 lθ

′
2 lθ

′
3 pθ ′)T = T3D-SH

(
lθ1 lθ2 lθ3 pθ

)T
. (C38)

Here the subscript “3D-SH” means three-dimensional shuffle,
and T3D-SH can be written as

T2D-SH =

⎛
⎜⎝ U3D-D

0
0
0

μ1 μ2 μ3 λ

⎞
⎟⎠. (C39)

T3D-SH is not a diagonal matrix, and it reflects how the
lattice-distortive strain and shuffle component are integrated
in the transformation. The submatrix U3D-D relates to the 3D
dilation, which describes the lattice-distortive strains of the
constituent 3D Bravias lattice. It can be replaced by other
3D transformation matrices (i.e., U3D-S, U3D-C/E, or U3D-S) if
different origami structures are used. The nontrivial elements
in the fourth row quantify the 3D shuffle component; they
satisfy the following relationship:

(pθ ′
)T = (μ1 μ2 μ3 λ)

(
lθ1 lθ2 lθ3 pθ

)T
. (C40)

By substituting the expressions of L, W , H , HA, and J [i.e.,
Eq. (C36)] into Eqs. (C39) and (C40), one can correlate
T3D-SH to the rigid-folding kinematics.

Again, we emphasize that changes in the relative positions
among vertices (or other characteristic entities) are ubiquitous
during origami folding, and it is the fundamental mechanism
that generates the shuffle during lattice transformation.

Overall, this section examines all types of 2D and 3D
diffusionless lattice transformations by formulating the lattice
transformation matrices based on the rigid-folding kinemat-
ics. Although the analyses here are based on specific examples
of origami structures, the uncovered correlations between
the diffusionless lattice transformations and the kinematic
properties of origami structures (summarized in Table IV)
hold strong generality that can be used to guide the design
and control of transformable lattice systems.
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