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This study investigated factors influencing Force and Motion Conceptual Evaluation (FMCE) pretest
and post-test scores for a sample (N ¼ 1116 students) collected in the introductory calculus-based
mechanics class at a large eastern land-grant university. Several academic and noncognitive factors were
examined using correlation analysis and linear regression analysis to understand their relation to students’
physics conceptual understanding. High school physics preparation was the most important factor in
predicting FMCE pretest score. The kind of high school physics class (normal or Advanced Placement) and
the student’s academic performance in that class also greatly affected pretest scores. The optimal linear
regression model explained 28% of the variance of pretest scores. Controlling for pretest score, ACT or
SAT verbal and mathematics scores, students’ grade expectation, and self-efficacy significantly predicted
post-test score. The optimal linear regression model explained 54% of the variance of post-test scores.
Pretest scores completely captured the effect of high school preparation on post-test scores; if pretest scores
were included in a model predicting post-test scores, then high school physics preparation variables were
not significant. Gender differences were observed on both the pretest and the post-test. These differences
were not substantially mediated by either academic or noncognitive factors.
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I. INTRODUCTION

The practice of comparing physics conceptual pretest
and post-test scores to evaluate the development of con-
ceptual understanding is prevalent in physics education
research (PER) and is often used in physics classes in
general. Most studies treat pretest and post-test scores as
simple measures of physics conceptual knowledge.
A growing body of research suggests this model is
incomplete with studies demonstrating a relation between
these scores and general academic preparation [1,2],
demographic factors [3–5], and noncognitive factors (such
as self-efficacy) [6].
Pretests often present students with an unusual testing

situation where they are given an examination for very little
course credit testing over material which has not been
covered in class yet and for which they have not studied.
The unusual nature of the testing situation may make
noncognitive factors such as the student’s self-beliefs or the
student’s personality more important than in more familiar
testing situations. It is also possible that pretest scores

incorrectly measure a student’s actual prior preparation in
physics because the student is not allowed to review for the
pretest. These factors open the possibility that pretest scores
do not fully capture prior preparation and that prior
preparation has an additional effect on post-test scores
not captured by pretest scores.
The practice of giving students a conceptual pretest prior

to instruction and the same instrument as a post-test after
instruction has been common in PER since the early days of
the field. In 1985, Halloun and Hestenes used this meth-
odology to show traditional instruction provided little
additional conceptual understanding in college classes
[7]. This observation led to the development of a catalog
of student misconceptions about mechanics [8] which
ultimately lead to the development of the Force Concept
Inventory (FCI) [9] to measure conceptual understanding
with an instrument that also presented students with
commonly selected incorrect answers. Hake used pretest
and post-test scores to show that the failure of traditional
instruction to improve conceptual understanding was gen-
eral [10]. The Hake study provided substantial impetus for
the conversion to more inquiry driven modes of instruction.
A 2014 synthesis by the National Academy of Sciences
showed that these reformed modes of instruction improved
performance on a broad collection of physics assessments
including conceptual inventories [11]. The Hake study also
popularized the use of the normalized gain which attempted
to control for differing incoming levels of preparation by
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dividing the absolute gain (post-test–pretest) by the avail-
able gain (100%–pretest).
The success of the FCI and the impact of the Hake study

has led to the development of many conceptual instruments
to probe student understanding on a variety of conceptual
topics in physics. Among the more widely cited in research
studies are the Force and Motion Conceptual Evaluation
(FMCE) [12], the Conceptual Evaluation of Electricity and
Magnetism (CSEM) [13], and the Brief Electricity and
Magnetism Assessment (BEMA) [14]. Current versions of
many assessments are available at PhysPort [15].

A. Research questions

This study was designed to explore the relation of high
school preparation, college achievement, and noncognitive
factors shown to be associated with college achievement
(i.e., self-efficacy) and physics conceptual pretest scores. It
also investigated how these factors as well as pretest scores
influence post-test scores. Furthermore, this study seeks to
provide a more thorough exploration of these factors than
presented in prior works to extend the understanding of the
incoming conceptual understanding of physics students.
This study seeks to answer the following research

questions:
RQ1 What academic and noncognitive factors are most
important in predicting FMCE pretest scores?

RQ2 What academic and noncognitive factors are most
important in predicting FMCE post-test scores cor-
recting for FMCE pretest scores?

RQ3 Do academic and noncognitive factors explain
gender differences in FMCE pretest and post-test
scores?

B. Pretest as a control

The use of pretest and post-test scores in PER is so
common that any summary of prior research is necessarily
incomplete. Some excellent review and synthesis articles
can provide readers with an overview of the field and the
role of research-based assessments in the field. McDermott
and Redish provided an overview of early work in PER
[16]. In 2014, Docktor and Mestre provided an extensive
synthesis of research in PER [17]. In 2017, Madsen et al.
provided an exhaustive overview of research-based assess-
ment instruments in physics [18]. The instruments are often
used to establish the efficacy of active teaching methods
and other classroom interventions; Meltzer and Thornton
provided an overview of different reformed instructional
models and the research supporting the efficacy of those
models [19]. The efficacy is often established by applying a
pretest followed by a post-test.
Multiple large studies have shown either the efficacy of

reform instruction across multiple institutions or the failure
of traditional instruction to improve conceptual learning.
Hake collected data from 62 physics classes at multiple
institutions to show interactive instruction was superior to

traditional instruction in promoting conceptual learning
[10]. Von Korff et al. synthesized research using either the
FCI or FMCE from 1995 to 2014 (a sample containing
50 000 students) to show that interactive instruction pro-
duced higher normalized gains than traditional instruction.
Freeman et al. synthesized research from multiple scientific
domains to show this result was general and not unique to
physics classes [11]. A meta-analysis by Schroeder et al.
demonstrated that reformed teaching methods are effective
at promoting learning for students at many different points
in their education [20]. Many studies have reported gender
differences in conceptual pretest and post-test scores;
Madsen et al. provided a summary of this research [3].

1. Gain scores

Pretest–post-test designs are used in studies in many
different fields to understand the effectiveness of a treat-
ment. This design has been analyzed in different ways to
characterize the overall change [21]. Within PER, the
normalized gain, the ratio of actual gain to the maximum
possible gain, is often reported. This statistic was popu-
larized in an influential study by Hake comparing instruc-
tional methods [10]. Nissen et al. showed the normalized
gain was biased in favor of populations with higher
pretest scores and suggested an alternate gain score using
Cohen’s d [22]. Either the actual gain, the normalized gain,
or Cohen’s d depend on the pretest score, the post-test
score, and the relation of pretest score to post-test score. As
such, all may be influenced by factors related to any of
these quantities.

2. Demographics and conceptual inventory scores

Many studies have reported and explored differences
between the conceptual inventory pretest or post-test scores
of members of demographic subgroups and nonmembers of
those groups including underrepresented minority students
(URM), first-generation college students (FGCS), women,
and rural students. Most of these studies have examined
differences by gender, but more recent studies have inves-
tigated other groups.
Salehi et al. examined performance differences in

introductory physics between several demographic groups
]1 ]. Differences in final exam scores between demographic
groups were fully explained by differences in SAT scores
and pretest scores. The study investigated three samples;
two used the FMCE as the pretest, one the FCI as a pretest.
Stewart et al. partially replicated this work examining
performance differences in FMCE post-test scores and
course grades [2]. General high school preparation mea-
sured by ACT and SAT scores and prior preparation in
physics strongly mediated demographic performance
differences for FGCS and URM students on both post-test
scores and grades. No difference in course grades between
men and women existed, so no mediation was possible.
Gender differences in post-test scores were weakly
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mediated by ACT and SAT score and pretest scores with
much of the initial gender difference unexplained by these
factors. Henderson et al. examined the amount of the
gender gap that was explained by instrumental fairness,
ACT and SAT scores, and pretest scores in five large
samples including two FMCE samples [4] finding that
different factors affect post-test scores in the five samples
by different amounts, but in all samples a large part of the
post-test gender differences were unexplained by these
factors. Other studies have also found differences between
rural and nonrural students on the FMCE pretest and post-
test [5]. Pretest scores on the FCI, the FMCE, and the
CSEM also correlate with postinstruction achievement
measures (post-test score, test average, and course grades)
differently for members of different demographic groups
[23]. As such, general high school measures of achieve-
ment, ACT and SAT scores, and measures of prior physics
knowledge explain some variation in a variety of physics
achievement measures, but the variation explained is not
consistent for different groups and much of the variation
in the conceptual post-test performance of women is
unexplained.

C. Factors influencing pretest scores

Many studies have investigated factors outside the college
physics classroom influencing pretest scores, post-test
scores, and normalized gains including demographic factors,
general high school academic factors, and specific high
school instruction in physics. Most of these studies have
focused on class grades, test averages, post-test scores, and
normalized gains; however, it seems quite likely that student
factors that existed prior to taking the physics class might
also influence pretest scores. Support for this can be found in
recent studies presenting path models including pretest
scores, standardized test scores (ACT or SAT), and class
outcome variables (grades, final exam scores, or post-test
scores) showing the ACT and SAT scores have a significant
effect on pretest scores as well as an effect on class outcomes
controlling for pretest scores [1,2].
Early work in PER predating the FCI investigated the

effect of many cognitive factors on course grades or test
averages including formal operational reasoning [24,25],
mathematics pretest scores [25,26], and logical reasoning
[26]. Meltzer showed the normalized gain on an electricity
conceptual inventory was correlated with mathematics
pretest scores and ACT or SAT mathematics percentile
scores [27]. Coletta and Phillips found a positive correla-
tion between Lawson’s Classroom Test of Scientific
Reasoning and FCI normalized gains [28]. Coletta et al.
demonstrated a strong positive correlation between
composite SAT scores and normalized gains on the FCI
in both college-level and high-school-level students [29].
In an unpublished work but highly cited work, Hake

showed that having high school physics affected college
physics normalized gains on the FCI, but the effect was a

small effect (d ¼ 0.19) [30]. According to Hart and Cottle,
math proficiency and high school physics background are
vital for college achievement [31]. Hazari et al. investigated
the relation of high school mathematics and sciences
grades, taking Advanced Placement (AP) calculus, instruc-
tional format, and some noncognitive factors involving
family support and found that many of these factors
significantly predicted physics grades in college [32]
controlling for demographic characteristics. Kost et al.
explored the effect on post-test scores controlling for
pretest scores and gender of many factors including
mathematics preparation measured both with standardized
test scores and a university-applied placement test and
students’ attitudes about science finding both sets of
variables as significant predictors of post-test scores
[33]. They also report a 7% difference in FMCE post-test
scores between students who had high school physics and
students who did not; the affect of high school physics was
larger for women, a 14% difference.

D. Studies of the properties of the FMCE

Many studies have examined the item properties of the
FMCE including their factor structure [34,35], their net-
work structure [36], and their psychometric properties
[34,37,38]. Psychometric properties investigated include
reliability, problematic item functioning, and item bias.
More qualitative analyses have examined the instrument
through the lens of the resource framework [39].
Ramlo examined the factor structure and reliability of the

FMCE using a sample of 146 students [34]. The instrument
was reliable with Cronbach’s alpha of 0.742 for the pretest
and 0.907 for the post-test. Ramlo found the pretest factors
extracted mixed items testing different concepts and thus
concluded that the pretest factor structure was undefined.
The post-test factor structure contained three factors.
Yang et al. examined the post-test factor structure using
multidimensional item response theory (MIRT) and found
5 factors as optimal [35]. These factors also contained
loadings mixing different topics in mechanics.
Henderson et al. examined the item characteristics of the

FMCE using classical test theory (CTT) and differential
item functioning (DIF) theory disaggregating the sample by
gender [37]. Many FMCE items had difficulty or discrimi-
nation within the range of problematic item functioning
using CTT [40] on the pretest; fewer items were problem-
atic on the post-test. Unlike the FCI, which contained many
items unfair to women (and a few unfair to men) identified
using DIF [41], the FMCE contained only one unfair item
identified in both samples and this item was unfair to men
(one sample contained a single item unfair to women).

E. Factors affecting college achievement

Pretest and post-test scores measure a student’s knowl-
edge of physics. The research into the factors affecting
pretest score summarized above also show they measure
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other academic factors such as general high school prepa-
ration. As such, they may be related to factors identified as
important in college achievement in general.

1. General academic factors

A substantial strand of education research seeks to
understand the factors that influence academic achievement
at the college level. Much work has been focused on SAT
and ACT scores as predictors of college achievement.
Composite scores on the SAT and ACT are highly corre-
lated with each other [42] and with measures of general
cognitive ability [43,44]. The College Board touts the
SAT’s validity as a predictor of freshman-year GPA [45],
while ACT has developed benchmarks for scores indicating
a 50% chance of earning a B or higher in introductory
college courses [46].
Although high school grades offer a less standardized

measure of academic performance due to differing grading
practices in different classrooms and schools [47], they
are consistently stronger predictors of freshman-year GPA
[42,48], cumulative college GPA [49], and college com-
pletion [49–51] than ACT and SAT scores. Galla et al.
found that self-regulation explained far more of the
variance in students’ high school GPA than did cognitive
ability and that this in turn explained the greater incre-
mental predictive validity of high school grades over ACT
and SAT scores for college completion [51].

2. Noncognitive factors

Many research studies have explored the influence
noncognitive factors on college achievement including
personality traits, motivational factors, and psychosocial
contextual influence [52,53].
Self-efficacy, “people’s beliefs about their capabilities to

produce designated levels of performance that exercise
influence over events that affect their lives” as defined by
Bandura [54], has been shown to affect student’s perfor-
mance and achievement in science classes [52,55,56].
Many studies have found that male students have higher
self-efficacy than female students in science, technology,
engineering, and mathematics (STEM) classes [57–60].
Besterfield-Sacre et al. showed that these differences exist
at the beginning of college using a study at 17 institutions
[61]. Dou et al. reported that, regardless of gender, students
on average had lower self-efficacy at the end of the
semester compared to the beginning of the semester
[62]. In physics, a study exploring impact on Modeling
Instruction on self-efficacy, reported that traditional lecture
classrooms negatively impact self-efficacy [63]. Cwik and
Singh reported a decrease in the self-efficacy gender
difference from the beginning to the end of the course
and that it was not due to the difference of performance
between men and women [64].
Hagerty et al. defined sense of belonging as “the

experience of personal involvement in a system or

environment so that persons feel themselves to be an integral
part of that system or environment.” Sense of belonging has
been an important construct in STEM education research and
has been shown to be related to students’ achievement [65].
The relation of belonging to achievement has been inves-
tigated in many STEM domains. Sense of belonging in
mathematics classes was predictive of mathematics achieve-
ment after controlling for other constructs affecting perfor-
mance [66]. In physics, sense of belonging has been shown
to relate to physics achievement (course grades) and par-
ticipation; the relation was the same for men and women.
Stereotype endorsement affected the sense of belonging in
physics for women with ACT and SAT mathematics scores
positively related to belonging [67]. Lewis et al. showed that
exposure to stereotypical cues decreased women’s sense of
belonging while the presence of other female peers and role
models impacted belonging positively [68]. Belonging
interventions increased the sense of belonging of women
in engineering majors where they are substantially under-
represented [69].
In this and many works, personality was characterized

using the five-factor model with facets: agreeableness,
conscientiousness, extraversion, neuroticism, and openness
[70–72]. The model is usually measured with an instrument
using Likert scale items. Personality has been shown to have
a direct influence on academic performance and achievement
[52,53]. Stewart et al. reported that students’ self-efficacy
and personality were related to their college achievement
[73]. Each facet measures a distinct characteristic of person-
ality; as such, their interactions with academic performance
also differ. Agreeableness, an individual’s tendency to be
cooperative and compassionate, has a positive correlation
with academic performance. Similarly conscientiousness,
how organized, focused, and careful an individual is, also
positively correlates with achievement. Openness, one’s
willingness to embrace new ideas and experiences, correlates
positively with academic performance. Unlike the previous
facets, extraversion, one’s inclination for social interactions
and attention, negatively correlates with academic perfor-
mance. Neuroticism, how anxious one feels, also negatively
correlates with academic performance [52].
Beyond the noncognitive factors examined in the present

study, many studies have investigated other factors that
may affect performance in the STEM classroom and how
these factors may explain demographic differences in
performance. Other extensively explored noncognitive
factors include mathematics anxiety [74,75], science anxi-
ety [76–78], stereotype threat [79], and attitudes toward
science, see Table I in Ref. [3]. Theoretically, the non-
cognitive factors explored in the present study should
possibly be related to some of these additional factors
but additional research is required to establish and under-
stand the relation.
The purpose of this study is threefold with the overall

goal of deepening the understanding of the factors which
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influence both conceptual pretest and post-test scores. First,
conceptual pretest scores, while broadly used, have received
far less study than post-test scores. Theoretically, pretest
scores could be influenced by a broad set of both cognitive
and noncognitive variables. Because pretest scores are
routinely used as control variables in PER studies, it is
crucial that their relations to other constructs are well
understood. This study collects a rich dataset containing
both noncognitive variables theoretically related to exam
performance and a more detailed set of high school
preparation variables than have previously been used in
PER studies. Second, this study seeks to determine how
completely pretest scores measure the effect of these
variables on post-test scores. If pretest scores incompletely
capture the effects of high school preparation on post-test
scores, their use as control variables is inaccurate. Third,
using the broad set of variables available to the study, this
work seeks to shed light on one of the most studied
outstanding questions in PER. What is the origin of the
gender differences observed in conceptual inventory scores?

II. METHODS

A. The FMCE

The FMCE [12] measures conceptual understanding of
Newtonian mechanics. The test consists of 43 multiple
choice items (excluding the energy items). After its
introduction, Thornton et al. [80] introduced a modified
scoring method that produced a total score of 33 by
eliminating some items and scoring some items as groups;
this method is used in the current study.

B. Sample

This study was performed from Fall 2017 to Fall 2019 at
a large land-grant university in the eastern United States.
The university’s general undergraduate population was
80% White, 6% international, 4% Hispanic, 4% African
American, 4% students reporting two or more races, 2%
Asian, and other groups each with 1% or less [81].
The study was performed in the calculus-based intro-

ductory mechanics course taken by scientists and engi-
neers. The class was presented with three 50-min lecture
sessions and one 3-h required laboratory session each
week. The class was overseen by a single lead instructor
with a strong knowledge of research-based instruction and
a commitment to student engagement. This instructor
managed lab and homework content. The class offered
multiple lecture sections each semester either taught by the
lead instructor or by another instructor in partnership with
the lead instructor. All lecture sessions implemented the
Peer Instruction [82] pedagogy using clickers. The labo-
ratory session featured a mix of white-boarding activities,
hands-on inquiry activities, traditional experiments, and
group problem solving.

Student demographic and college performance measures
were accessed from institutional records. Noncognitive
factors were measured using a survey instrument given
the first week of the semester. Student high school science
and mathematics course information was collected using a
survey instrument given the second week of the semester.
In the period studied, 3777 students enrolled in the class

studied. Removing students without basic high school
information (GPA, ACT, or SAT scores), students not
enrolled as first-time freshman, and students without
college level academic information such as college GPA
left 3063 students. Removing students without FMCE
pretest or post-test scores left 2279 students. Students
were also removed who did not take both of the survey
instruments leaving an overall sample size for this study
of N ¼ 1116.
This study was performed using the same general student

population examined in some of the PER studies examined
above [2,4,5,23,37,73].

C. Instruments

Noncognitive and high school course taking were
accessed using two surveys given early in the semester.
Some survey items were constructed for this study and
some were taken from published work.
This study collected four noncognitive measures which

could be related to pretest performance: personality, self-
efficacy, sense of belonging, and the student’s self-reported
expected grade (grade expectation) in the class studied.
Self-efficacy, a student’s belief that he or she will be
successful in the class, could influence the student’s
performance by modifying the effort invested in the pretest
or by modifying patterns of answering pretest questions,
possibly causing low self-efficacy students to doubt their
answers (and possibly change those answers). Self-efficacy
has long been reliably associated with academic perfor-
mance [52]. For the class studied, the pretest is given the
first week of the semester before any physics content has
been covered. The student is in their first college physics
class, in an unfamiliar setting, generally with many students
he or she does not know. Whether the student feels they
belong in this setting could possibly influence how he or
she performs on a lightly incentivized exam over material
not yet covered in the class by modifying the effort directed
toward the exam or by encouraging the student to complete
the exam quickly so he or she could leave the setting.
Personality, measured by the five-factor model, has two
facets of particular interest in the pretest setting: neuroti-
cism and conscientiousness. Conscientiousness, the ten-
dency to carefully complete tasks, could adjust the care
taken with the pretest. Conscientiousness has also been
reliably shown to correlate with academic achievement
[52]. Neuroticism, the tendency to feel stress or other strong
emotions, could influence a students reaction to the
unfamiliar testing situation. Finally, the student’s grade
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expectation which is related to both self-efficacy and
academic motivation, could modify how effectively the
incentive given for the pretest causes careful work.

1. Personality

Personality was measured using the big five inventory
(BFI) which uses five facets to characterize personality:
agreeableness, conscientiousness, extraversion, neuroti-
cism, and openness [70–72]. It contains 44 survey ques-
tions with each measured on a five-point Likert scale.
The BFI has been extensively used in a broad variety of
research [83].

2. Self-efficacy

Self-efficacy was measured using the self-efficacy for
learning and performance subscale from the motivated
strategies for learning questionnaire (MSLQ) [84]. The
subscale has strong validity [84] and is widely used [85].
This subscale asks the student to rate how much they
agree with statements accessing self-efficacy on a 5-point
Likert scale. For example, “I’m confident I can do an
excellent job on the assignments and tests in this course.”
These statements were specialized by replacing “course”
with “physics class.” Word substitution to specialize the
MSLQ to specific domains has been used in previous
research studies [86].

3. Belonging

A student’s sense of belonging in his or her physics class
was accessed using three items adapted from Good, Rattan,
and Dweck’s “Math Sense of Belonging” instrument [66].
For example, students were asked how much they agree
with the statement “I feel I fit in when I am in physics
classes and with students in my physics classes.” One’s
sense of belonging in a class could affect performance on
an examination either by reducing or increasing anxiety
or changing one’s belief that they could succeed on an
examination.
Both the sense of belonging and the self-efficacy sub-

scales were modified from their original published form.
Both subscales were re-validated before the study began
first by conducting interviews with students to confirm the
modified items were being interpreted correctly, then by
applying open-ended versions of the items and examining
responses. The internal reliability of the final version of
each subscale was characterized by Cronbach’s alpha
showing each subscale was highly reliable (α > 0.9).

4. Grade expectation

Students were also asked to predict the grade they would
receive in the class using the question “What grade do you
expect to get in your physics class?” This was converted to
a three-level variable: “A,” “B,” and “C, D, F, or W.”

Personality, self-efficacy, belonging, and grade expect-
ation were collected with a survey instrument given in the
first full week of classes. Students received a small amount
of course credit upon the completion of the survey.

5. High school preparation

High school physics and mathematics programs are
highly variable in how well they prepare students for
college. Universities often collect incomplete information
about high school course taking (or store such information
in digitally inaccessible forms, such as images). To collect
more complete information, students were given a survey
instrument that asked about high school science and
mathematics preparation in detail.
Information on AP and transfer classes was available for

the institution studied. This was only available for AP or
transfer (dual enrollment) classes which received college
credit (a minimum AP score or a passing transfer grade).
All students retained in the sample were enrolled as “first-
time freshmen” and, therefore, transfer classes were taken
in high school. To capture AP classes taken where the AP
test was not passed, the students were also asked to report
the AP mathematics and physics classes taken and to report
their score on the AP test.
Students were asked about the first and second high

school science classes taken in each of three domains:
physics, chemistry, and biology. They were also asked to
classify the level of each class as “regular,” “honors,” “AP,”
“dual enrollment,” and “other advanced” and asked to
report the grade they received in each class. This generated
a very complex set of data with many of the categories
implied by the many levels in the data containing few
students. Preliminary analysis first fit the raw survey data
predicting pretest score, then formed combinations of
variables to yield a more parsimonious set of variables
with similar predictive power where all levels of each
variable contained enough students for statistical reliability.
This resulted in a seven-level categorical variable HS
Physics which combined broad divisions of the type of
the last high school physics class taken with the grade in the
class. These two measures were combined because a
student who has a grade in high school physics has taken
high school physics and we wanted to isolate the overall
effect of taking a high school physics class. Grades were
divided into two levels, “A” and “B, C, or D”; types of
physics class where divided into “high school physics not
taken,” “high school physics not AP,” “high school physics
AP—test not passed (no college credit),” and “high school
physics AP—test passed.”Multiple AP high school physics
classes are offered; students with credit for the calculus-
based class are not required to take the class studied. As
such, students with AP physics credit had taken the
algebra-based AP physics class.
All students reporting HSGPA taking a college physics

class had taken some mathematics in high school. Students
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were asked to report the most advanced high school class
taken and the grade in that class. A similar procedure of
analysis yielded two variables: a dichotomous “high school
last math grade A” variable and a 4-level categorical
variable capturing the type of most advanced high school
mathematics class: “high school math not calculus,”
“high school math calculus—not AP,” “high school math
calculus—AP (test not passed),” and “high school math
calculus—AP (test passed).” Note, regular, honors, and
dual enrollment (concurrent credit) high school classes
were combined into the high school physics (calculus) not
AP category because disaggregating these levels did not
improve predictive power. At the institution studied, a score
of 4 on either the AP calculus or physics class was required
to earn university credit (to pass the AP test).
For both mathematics and physics, passing the AP test

was accessed from university records, not from the self-
reported survey responses.
The variables described above focus on AP class taking.

Students also receive college credit by taking college level
classes while in high school; these class are called transfer
classes. The number and type of transfer classes were very
weakly predictive of pretest scores and were, therefore, not
included in our final high school physics variable encoding.

D. Variables

Table I shows all variables used in this study. A short
name is provided for each variable as well as a more
complete description. The variables are divided into two
types continuous (C) or dichotomous (D). Continuous
variables are normalized by subtracting the mean and
dividing by the standard deviation when used in linear
regression analysis. By normalizing the continuous varia-
bles, which are all measured on different scales, one
converts the scale of measurement of all variables to
standard deviation units. This allows comparison of the
importance of the different variables.
ACT and SAT scores were accessed from institutional

records. Each was converted to a percentile score using
tables published by the testing companies. When both were
available, the two scores were averaged. The ACT English
subscore was used as the ACT verbal score.
All calculations were performed with the “R” software

system [87].

III. RESULTS

A. Descriptive statistics

Table II presents descriptive statistics for all variables.
For dichotomous variables, the percentage of the students
in the higher level of the variable (the student is in the state
represented by the variable) is shown. For continuous
variables, the mean and standard deviation of the variable
is presented. The correlation of each variable with FMCE
pretest score r and the significance of this correlation is

presented. If the variable is continuous then the Pearson
correlation is used; if dichotomous the point-biserial
correlation. Variables are separated into groups that are
called “panels” in this work. Some dichotomous variables
are independent such as whether the student is repeating the
physics class; some are not. For groups of interdependent
dichotomous variables such as the variables in the high
school (HS) physics panel, a base level of the variable
is selected (indicated by “BL” in the Table II). Analyses
calculate changes against this variable. For a dichotomous
variable in a panel, the correlation for a nonbase variable is
deceptive if calculated naively. For example, the high level
of the variable “High school physics class not AP—A”
represents students who took high school physics, but not
as an AP class, and earned an A in the class. The low level
of this variable represents all other students including
students who did not take high school physics as well as
students who took AP physics and passed the AP test. For a
fair comparison of the importance of being in the high
school physics class not AP—A group, students in this
group are compared to the base level (students without high
school physics) by subsetting the data to only include
students in these two groups. Other nonbase variables in
panels were handled similarly. The table also presents the
R2 values for a model regressing all variables in the panel
on pretest score as well as the significance of the model.
For panels with a single variable, R2

panel ¼ r2.
For correlation coefficients, Cohen’s effect size criteria

are r ¼ 0.1 as a small effect, r ¼ 0.3 as a medium effect,
and r ¼ 0.5 as a large effect [88]. Only a few variables have
correlations with a medium to large effect; a number of
variables in the HS physics panel meet this criteria. The
effect of taking an AP physics class and earning an A in that
class is substantial whether or not the AP test is passed (the
effect is larger if the test is passed). The only other variable
meeting this criteria is taking AP calculus and passing
the AP test. A number of variables fall in the range 0.2 <
r < 0.3 (small to medium effects) including college math
readiness, ACT or SAT math and verbal scores, self-
efficacy, and reporting expecting to earn an A in the
physics class. Not taking high school physics was neg-
atively correlated with pretest scores (r ¼ −0.22). Many
variables exceeded the small effect size threshold including
gender. General college success measured by college GPA
was less correlated with pretest scores than the variables
above implying that the pretest is measuring elements of
preparation prior to entering college as opposed to general
academic success in college. As such, the FMCE pretest
seems to measure first high school preparation in physics
(and the details of that preparation), then general high
school preparation.
Each dichotomous variable divides the sample into two

groups. Table III presents the number of students in each
group, the mean and standard deviation, as well as the p
value for a t test comparing the pretest scores of the two
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groups. The effect size of the difference between pretest
scores for the two levels of the variable is characterized
by Cohen’s d. Cohen’s criteria for d are that 0.2 is a
small effect, 0.5 is a medium effect, and 0.8 is large effect.

While both effect sizes, the effect size criteria for r
discussed earlier are effect sizes for the degree of associ-
ation between two variables while Cohen’s d measures
the effect size of the difference between two groups.

TABLE I. List of variables. Type indicates whether the variable is continuous (C) or dichotomous (D). The base level variable for each
dummy-coded multilevel variable is indicated by bold face.

Panel Abbreviation Type Description

Pretest C FMCE pretest percentage.
Post-test C FMCE post-test percentage.

Repeat Repeat D Is the student repeating the class?

College Complete C Percentage of college classes attempted that are completed before class.
CGPA C College grade point average before class.
STEMCls C STEM classes completed before class.
Credit C Credit hours completed before class.
Enroll C Current hours enrolled in semester of physics class.

Math ready MathReady D Was the student’s first college mathematics class Calculus 1 or higher?

HS general ACTM C ACT or SAT mathematics percentile score.
ACTV C ACT English or SAT verbal percentile score.
HSGPA C High school grade point average.

AP general AP.NMP D Does student have AP credit excluding math and physics credit?
AP.C.NMP C Number of non-math or non-physics classes with AP college credit.

Transfer TR.NMP D Does the student have transfer credit excluding math and physics credit?
TR.C.NMP C How many non-math and non-physics transfer classes?
TR.Phys D Does the student have transfer credit for physics?
TR.Math D Does the student have transfer credit for math?

HS physics HSP.NTake D High school physics not taken.
HSP.NAP.NA D High school physics class not AP—grade B, C, D.
HSP.NAP.A D High school physics class not AP—grade A.
HSP.APNP.NA D High school physics AP (test not passed)—grade B, C, D.
HSP.APNP.A D High school physics AP (test not passed)—grade A.
HSP.APP.NA D High school physics AP (test passed)—grade B, C, D.
HSP.APP.A D High school physics AP (test passed)—grade A.

HS math HSM.A D Was the grade in the student’s most advanced high school math class an A?
HSM.NCal D Was most advanced high school math class below calculus?
HSM.NAP D Was most advanced high school math class calculus?
HSM.APNP D Was most advanced high school math class AP calculus (test not passed)?
HSM.APP D Was most advanced high school math class AP calculus (test passed)?

Belonging Belong C Sense of belonging in physics class.

Self-efficacy SelfEff C Self-efficacy towards physics class.

Grade expectation GrdExA D Does the student expect to earn an A in physics?
GrdExB D Does the student expect to earn a B in physics?
GrdExC D Does the student expect to earn a C, D, F, or W in physics?

Personality Agr C Personality facet—Agreeableness
Cns C Personality facet—Conscientiousness
Nrt C Personality facet—Neuroticism
Ext C Personality facet—Extraversion
Opn C Personality facet—Openness

Demographics Gender D Does the student identify as female?
FirstGen D Is the student a first-generation college student?
URM D Does the student identify as URM?
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TABLE II. Descriptive statistics. The base level of a set of dummy-coded variables is given by BL and indicated in bold face. For
dichotomous variables, the percentage of students in the high level of the variable is reported. For continuous variables, the mean (M)
and standard deviation (SD) is presented. For all variables, the correlation rwith pretest score and the probability that the correlation or a
larger correlation occurred by chance p are reported.

Panel Variable BL % M � SD r p R2
panel ppanel

FMCE Pretest % 23.31� 18.3 1.00 0.000
FMCE Post-test % 46.61� 27.8 0.66 0.000

Repeat Is repeating physics class? 4.9 0.01 0.664 0.000 0.664

College College course completion % 94.01� 11.1 0.11 0.000 0.055 0.000
College GPA 3.35� 0.48 0.17 0.000
College STEM classes taken 3.78� 0.91 −0.10 0.001
College credit earned 27.11� 15.9 −0.16 0.000
College hours currently enrolled 16.6� 1.67 0.04 0.150

Math ready Entered college math in calculus 64.0 0.21 0.000 0.046 0.000

HS general ACT or SAT mathematics % 81.21� 13.9 0.27 0.000 0.093 0.000
ACT or SAT verbal % 75.32� 17.9 0.23 0.000
High school GPA 3.9� 0.44 0.05 0.073

AP general Has AP credit (not math or physics) 37.4 0.08 0.010 0.013 0.001
Number AP classes (not math or physics) 4.15� 3.2 0.12 0.012

Transfer Has transfer credit (not math or physics) 35.5 −0.02 0.438 0.004 0.342
Number transfer credits (not math or physics) 4.25� 4.2 −0.05 0.353
Has transfer credit physics 1.9 −0.01 0.840
Has transfer credit calculus 9.7 −0.06 0.050

HS physics High school physics not taken × 22.0 −0.22 0.000 0.175 0.000
High school physics class not AP—B, C, D 17.6 0.13 0.008
High school physics class not AP—A 31.9 0.21 0.000
High school physics AP
(test not passed)—B, C, D

11.4 0.35 0.000

High school physics AP (test not passed)—A 13.4 0.46 0.000
High school AP physics test passed—B, C, D 0.9 0.35 0.000
High school AP physics test passed—A 2.9 0.65 0.000

HS math High school last math grade A 58.4 0.08 0.007 0.049 0.000
High school last math not calculus × 28.9 −0.15 0.000
High school last math calculus (not AP) 19.2 0.08 0.064
High school last math AP calculus
(test not passed)

41.0 0.16 0.000

High school last math AP calculus
(test passed)

10.8 0.32 0.000

Belonging Sense of belonging in physics 4.08� 0.69 0.12 0.000 0.015 0.000

Self-efficacy Self-efficacy toward physics 4.06� 0.71 0.20 0.000 0.042 0.000

Grade expectation Physics grade expectation A 41.3 0.24 0.000 0.044 0.000
Physics grade expectation B 41.0 0.12 0.002
Physics grade expectation C, D, F, W × 17.7 −0.15 0.000

Personality Agreeableness 3.84� 0.57 −0.06 0.032 0.031 0.000
Conscientiousness 3.77� 0.55 −0.04 0.151
Neuroticism 2.79� 0.76 −0.02 0.606
Extraversion 3.19� 0.74 −0.12 0.000
Openness 3.65� 0.53 0.07 0.024

Demographics Gender (Female ¼ 1) 29.1 −0.13 0.000 0.019 0.000
First-Generation (First-gen ¼ 1) 15.9 −0.05 0.077
URM (URM ¼ 1) 7.0 −0.01 0.816
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Table III provides support for the observations made about
Table II. Whether the student took high school physics
represented a medium effect (d ¼ 0.53) which is approx-
imately commensurate with the effect of being calculus
ready upon entering college (d ¼ 0.46) and expecting to
earn an A in the physics class (d ¼ 0.53). Therefore, while
taking high school physics is very important to pretest
score, it is not uniformly the most important effect. Taking
AP high school calculus and passing the AP test was a
larger effect (d ¼ 0.77).
The kind of high school physics taken has a dramatic effect

on pretest scores, with taking AP physics increasing pretest
scores from d ¼ 0.79 to an extraordinary d ¼ 2.70 for
students who passed the AP test and report earning an A
in the AP class. Comparisons of the mean percent score for
different modes of taking high school physics and different
grade outcomes also show exceptional differences with
students who do not take high schools physics scoring
16% on the pretest and students who passed the AP test
and earned anA scoring 53%on the pretest. As inTable II, for
variables in a panel, the mean of the low level is the mean of
students in the base level of the panel; for high school physics,
the base level is studentswhodonot take high school physics.
In summary, Table II shows that variables related to the

details of a students high school experience, the type of
high school physics taken and the student’s performance in

that class, as well whether the student took AP calculus and
passed the AP test were the most correlated with pretest
scores. As such, studies attempting to relate high school
experiences to physics conceptual knowledge when enter-
ing a physics class should collect very detailed measures of
that experience. More general measures of high school
preparation, ACT and SAT scores, were also strongly
correlated with pretest scores as were measures of self-
efficacy, but not as strongly as physics and mathematics
high school preparation. Table III supports these general
conclusions with the strongest differences in pretest scores
related to high school physics and mathematics differences.

B. Correlation analysis

Figure 1 shows a visualization of the correlation matrix
for variables in Table I that are not part of the same panel.
The visualization uses green (solid) lines for positive
correlations and red (dashed) lines for negative correla-
tions. Thicker lines represents a larger absolute value of the
correlation. The visualization is rendered with the “qgraph”
package in R that uses the force-direct graph visualization
[89]. This representation is largely for visual effect, but it
does allow the identification of groups of variables that are
strongly intercorrelated. To produce the visualization,
Hooke’s lawlike attractive forces are introduced between

TABLE III. Comparison of dichotomous variables. The levels of the variables are 0 or 1 and are indicated by subscripts. Ni represents
the number of students in each level. The mean (Mi) and standard deviation for each level of the variable on the FMCE pretest is
also presented. A t test was performed testing the difference between the levels. The significance of the t test is measured by the
probability p and the effect size of the difference by Cohen’s d.

Variable N0 N1 M0 � SD M1 � SD p d

Is repeating physics class? 1061 55 23.3� 18 24.4� 17 0.638 0.06
Entered college math in calculus 402 714 18.1� 14 26.3� 20 0.000 0.46
Has AP credit (not math or physics) 699 417 22.2� 17 25.1� 20 0.012 0.16
Has transfer credit (not math or physics) 720 396 23.6� 18 22.7� 18 0.436 0.05
Has transfer credit physics 1095 21 23.3� 18 22.5� 13 0.773 0.04
Has transfer credit calculus 1008 108 23.7� 19 20.0� 14 0.017 0.20
High school physics not taken 870 246 25.4� 19 15.9� 11 0.000 0.53
High school physics class not AP—B, C, D 920 196 15.9� 11 19.1� 15 0.010 0.25
High school physics class not AP—A 760 356 15.9� 11 22.2� 16 0.000 0.44
High school physics AP (test not passed)—B, C, D 989 127 15.9� 11 26.3� 17 0.000 0.79
High school physics AP (test not passed)—A 967 149 15.9� 11 33.8� 24 0.000 1.06
High school AP physics test passed—B, C, D 1106 10 15.9� 11 37.9� 22 0.011 1.91
High school AP physics test passed—A 1084 32 15.9� 11 53.1� 27 0.000 2.70
High school last math grade A 464 652 21.6� 16 24.6� 20 0.005 0.16
High school last math not calculus 793 323 25.1� 19 19.0� 14 0.000 0.33
High school last math calculus (not AP) 902 214 19.0� 14 21.5� 17 0.072 0.16
High school last math AP calculus (test not passed) 658 458 19.0� 14 24.8� 19 0.000 0.34
High school last math AP calculus (test passed) 995 121 19.0� 14 32.3� 24 0.000 0.77
Physics grade expectation A 655 461 17.5� 12 27.5� 21 0.000 0.53
Physics grade expectation B 658 458 17.5� 12 21.5� 17 0.000 0.26
Physics grade expectation C, D, F, W 919 197 24.5� 19 17.5� 12 0.000 0.39
Gender (Female ¼ 1) 791 325 24.8� 19 19.7� 15 0.000 0.28
First-generation (First-gen ¼ 1) 939 177 23.7� 19 21.1� 14 0.031 0.15
URM (URM ¼ 1) 1038 78 23.3� 18 22.8� 19 0.820 0.03
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nodes with spring constant proportional to the correlation
coefficient. Repulsive Coulomb’s lawlike forces are intro-
duced between all nodes with the same effective positive
charge given to all nodes. The energy of the system is them
minimized pushing weakly correlated nodes away from the
system and drawing strongly correlated nodes together. An
alternate visualization using the “CORRPLOT” package [90]
is shown in the Supplemental Material [91].
The correlation matrix helps highlight some general

patterns in Tables II and III. Pretest scores are most strongly
correlated with taking AP high school physics for any grade
as well as taking and passing AP calculus. In general,

demographic characteristics, transfer credit, and noncog-
nitive variables are weakly related to pretest score. The
noncognitive variables do share some strong relations
among themselves.

C. Variable importance

In the next section, linear regression is used to build an
optimal model combining all variables. The interrelations
of the variables evident in the previous section raise
concerns of the effect of multicolinearity on these models.
There are strong theoretical reasons to believe one variable
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FIG. 1. Correlation matrix. Green (solid) lines represent positive correlations; red (dashed) lines negative correlations. Thicker lines
represented stronger correlations.
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could mask the effect of another variable in a combined
model, indicating it was less important than it actually was.
Measures of general high school academic success such as
ACT and SAT scores and high school GPA are related to
general measures of college success such as college GPA.
Academic success should improve self-efficacy and lead to
higher grade expectations in physics classes. Specific
academic success measured by course grades in high
school physics and mathematics classes should be related
to general academic success. Furthermore, taking an AP
physics class requires the school to offer AP physics which
may imply a generally more enriched academic curriculum.
Students who take and pass AP calculus may be more likely
to have access to AP physics.
To understand these relations, four measures of variable

importance were calculated. The first uses the variable as
the only independent variable in a linear regression
predicting pretest score: R2

f measures the variance
explained by this model and pf the significance of the
model (f indicates first). This model estimates the impor-
tance of the variable in exclusion of other variables. The
second builds a linear model using all other variables and
reports the difference in R2 of this model and a model
including the variable of interest: ΔR2

l measures the change
in variance explained by the two models and pl the
significance of the difference (measured by an ANOVA
analysis; the subscript l indicates last). This measures the
additional variance explained by the variable in the pres-
ence of all other variables. This may understate the
importance because of covariance with other variables.
The third measure borrows a method from machine learn-
ing and measures the difference in variance explained
by a model containing a randomly sampled subset
of variables and a model which adds the variable of
interest to the subset: the difference is captured by ΔR2

s
and ps (s for sampled). This is a bootstrapped method using
500 replications sampling the data with replacement which
allows a standard deviation to be estimated. This measures
the average importance of the variable in the presence of
other variables. These three measures are calculated using
the groups of variables (panels) defined in Table I; the
results are presented in Table IV. The final measure
attempts to predict the variable of interest using the other
independent variables and reports the R2 of this model, R2

v.
This measures how much of the information provided by
the variable is available in combinations of other indepen-
dent variables; this can only be performed on individual
variables and not panels and is only reported in the
Supplemental Material [91]. The Supplemental Material
reports all four measures for each variable individually.
Each measure of variable importance provides different

information about the relation of the variable to other
independent variables and to the dependent variable. The
change in R2 if the variable is the last variable added to the
model, ΔRl, is probably the most interesting because if

captures how much unique variance the variable explains
above all other variables. If this measure is high, the
variable is capturing unique information important to the
prediction of the dependent variable not captured by
the other variables. This measure, however, may indicate
a variable has low importance because the variable is
colinear with other variables, understating its importance.
The sampled variable importance, ΔRs, partially addresses
this underestimate by calculating the average additional
variable explained in the presence of a randomly selected
set of variables. This is probably the best estimate of the
actual explanatory power of the variable. The first-in
variable of importance, R2

f, should generally overestimate
the importance because some of the predictive power of the
variable used as the only variable in the model comes from
colinearity with other variables.
Table IV shows that high school physics taking patterns

explain the greatest amount of variance in the models
when used as the only variable in the model (R2

f) or the last
variable added to the model (ΔR2

l ). This panel of variables
is not, however, independent of the other variables as
shown by the difference in R2

f and ΔR2
l ; taking and doing

well in high school physics is related to other more general
features of academic success and access to enriched high
school classes. HS general explains the second most
variance when added first to the model, but little variance
when added last. Differences in general high school
preparation influence other variables in the model; these
influences reduce the additional predictive power of this

TABLE IV. Paneled variable importance. R2
f represents the

variance explained when all variables in the panel are the only
variables in the model. ΔR2

l represents the additional variance
explained when all variables in the panel are added as the last
variables in the model. ΔR2

s is the average additional variance
explained when adding the variables in the panel to a model
subsampling the variable list to 5 variables. pf is the p value for
the panel only model. pl is the p value for the ANOVA test
comparing the two models. The ps value is the probability the
difference ΔR2

s happened by chance found using a t test.

Panel R2
f pf ΔR2

l pl ΔR2
s ps

Repeat 0.000 0.664 0.011 0.000 0.007 0.000
College 0.055 0.000 0.017 0.000 0.031 0.000
Math ready 0.046 0.000 0.003 0.020 0.017 0.000
HS general 0.093 0.000 0.020 0.000 0.048 0.000
AP general 0.013 0.001 0.001 0.436 0.005 0.000
Transfer 0.004 0.342 0.001 0.831 0.005 0.000
HS physics 0.175 0.000 0.104 0.000 0.134 0.000
HS math 0.049 0.000 0.004 0.152 0.021 0.000
Belonging 0.015 0.000 0.002 0.122 0.007 0.000
Self-efficacy 0.042 0.000 0.001 0.236 0.017 0.000
Grade expectation 0.044 0.000 0.010 0.000 0.025 0.000
Personality 0.031 0.000 0.014 0.000 0.029 0.000
Demographics 0.019 0.000 0.009 0.003 0.016 0.000
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group greatly. This is also true of a number of variables
explaining about 5% of the variance on their own (College,
Math Ready, HS Math, Self-Efficacy, and Grade
Expectation), but little variance when added to the model
with the all other variables present. High school physics
stands out explaining 10% additional variance when added
last to the model. Beyond HS physics, only college, HS
general, and personality explain at least 1% additional
variance when added last to the models.
In summary, high school physics stands out as the

variable that explains by far the most unique variance
(10%), variance not explained by other variables, in pretest
scores. Beyond high school physics, general high school
preparation (HSGPA, ACT, and SAT scores) and college
performance (CGPA) also explain about 2% additional
variance when added as the last variable in the models.

D. Optimal pretest model

The full set of variables in Table I was used to predict the
pretest score using multiple linear regression. The base
level variables were removed because they are colinear
with other variables in the variable’s panel; the regression
coefficients of the other variables in the panel measure
changes with respect to the level of the base variable. This
model is presented as the full pretest model in the
Supplemental Material [91]. An optimal model, also shown
in the Supplemental Material, was constructed by removing
dependent variables that were not statistically significant at
the p < 0.05 level. All variables representing the coding
of a multilevel categorical variable such as HS physics
were retained if one of the variables was significant. The
optimal model was statistically equivalent to the full model
[Fð15; 1079Þ ¼ 0.97, p ¼ 0.48] using ANOVA and
explained R2 ¼ 0.31 of the variance in pretest score.
The original model contained 36 independent variables,

therefore, construction of the optimal model involved
performing 36 statistical tests. If a Bonferroni correction
is applied to the p < 0.05 significance level to correct
for the number of statistical tests, the new significant
threshold is p < 0.05=36 ¼ 0.0014. A Bonferroni cor-
rected optimal model removing variables that did not meet
the corrected significance level was constructed and is
presented Table V. The corrected model was statistically
inferior to the optimal model, [Fð7; 1094Þ ¼ 6.83,
p ¼ 0.00000] and explained R2 ¼ 0.28 of the variance.
A Bonferroni correction removes significant regressors and
therefore lowers R2. The corrected model is used in future
discussion; interested readers can consult the Supplemental
Material [91] for the full model.
Table V presents both the unstandardized regression

coefficient B, its standard error SE, and the standardized
regression coefficient β. The standardized coefficient is
calculated by repeating the regression with all continuous
variables normalized by subtracting the mean and dividing

by the standard deviation. For dichotomous independent
variables, B measures the difference in the percentage
pretest score between the two levels of the dichotomous
variable and β measures the difference in the normalized
pretest scores between the two levels of the variable in
standard deviation units; as such, it can be interpreted as an
effect size using Cohen’s criteria for the d statistic. For
continuous independent variables, B measures the change
in the pretest percentage score when the independent
variable is increased by one unit; β represents the change
in pretest scores in standard deviation units for a 1 standard
deviation change in the independent variable. β also
represents the correlation between the independent and
dependent variables (correcting for other variables) and
may be interpreted using Cohen’s effect size criteria for r.
For the dichotomous variables, repeating the class was near
a medium effect as was taking AP physics, receiving a
grade less than A, and not passing the AP test. Passing the
AP physics test, as well as not passing but earning an A in
the AP class, were all large effects. For the continuous
variables, no variable produced more than a small effect.
In summary, the optimal pretest regression model

explained 28% of the variance in pretest score. As might
be expected from the variable importance analysis, high
school physics variables had by far the largest regression
coefficients. Interestingly, repeating the class produced a
fairly large positive effect when other factors were con-
trolled for. A student’s belief that they would do well and
earn an A in the class was also important, showing some
noncognitive factors remain important even after control-
ling for academic factors.

TABLE V. Optimal pretest model with Bonferroni correction.
B is the regression coefficient, SE the standard error, β the
standardized regression coefficient, t the t statistic, and p the
probability a value as large or larger than t occurred by chance.
The overall model explains R2 ¼ 0.28 [Fð14; 1101Þ ¼ 30.4,
p ¼ 0.00000] of the variance in pretest score.

B SE β t p

(Intercept) 6.34 5.70 −0.53 1.11 0.26621
HSP.APP.A 33.22 2.97 1.82 11.17 0.00000
HSP.APNP.A 16.80 1.64 0.92 10.22 0.00000
ACTV 0.21 0.03 0.20 6.82 0.00000
HSP.APNP.NA 11.46 1.73 0.63 6.62 0.00000
Gender −5.64 1.07 −0.31 −5.29 0.00000
GrdExA 6.25 1.38 0.34 4.55 0.00001
HSP.NAP.A 5.59 1.31 0.31 4.27 0.00002
HSP.APP.NA 21.52 5.06 1.18 4.25 0.00002
CGPA 4.66 1.17 0.12 3.99 0.00007
Repeat 8.15 2.25 0.45 3.62 0.00031
Ext −2.28 0.64 −0.09 −3.58 0.00036
HSGPA −4.28 1.33 −0.10 −3.21 0.00136
HSP.NAP.NA 4.97 1.57 0.27 3.17 0.00156
GrdExB 2.38 1.34 0.13 1.77 0.07721
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E. Optimal post-test model

The same set of variables now including pretest score
was used to predict post-test score. The full regression
model is presented in the Supplemental Material [91]. An
optimal model was constructed by removing independent
variables which were not significant at the p < 0.05 level.
This model is also presented in the Supplemental Material.
This model explained R2 ¼ 0.56 of the variance in post-test
score. This model was not statistically different from the
full model using an ANOVA test [Fð21; 1078Þ ¼ 1.39,
p ¼ 0.1103]. As before, a Bonferroni corrected model was
constructed, which was statistically inferior to the optimal
model, [Fð9; 1099Þ ¼ 5.42, p ¼ 0.00000], but explained
54% of the variance. We will focus on this model presented
in Table VI as it explains the majority of the variance and
contains only the variables most important to predicting the
post-test score.
The optimal model for the post-test was dramatically

different from the model for the pretest; the post-test
model was missing the variables related to high school
physics. This seems to indicate that the pretest score fully
captures the effects of high school physics and that there
are not additional effects of high school physics on the
post-test score. To further test this conclusion, the post-
test models were fit without using pretest score as an
independent variable. The models are shown in the
Supplemental Material [91]. Without pretest score in
the model, high school physics is a strong predictor of
post-test score. As such, there seems little advantage in
conceptual learning conferred by taking high school
physics that is not measured by the pretest. The advan-
tages conferred by relearning the material are not impor-
tant in the overall conceptual understanding developed in
the class.
The Bonferroni corrected optimal model (Table VI)

contains 6 variables (grade expectation is a single
categorical variable) and explains 54% of the variance

in post-test score; some variables are generally unavail-
able to physics faculty such as self-efficacy or grade
expectation. A simplified model containing only pretest
score, gender, and ACT and SAT scores explained 53% of
the variance and is shown in Table VII. One can then
progressively remove variables to determine how much
variance each explains. Removing gender produced a
model which explained 50% of the variance (Table VIII);
gender explained 3% additional variance controlling for
pretest score and ACT and SAT scores. Removing ACT
and SAT mathematics and verbal percentile scores pro-
duced a model which explained 44% of the variance
using only the pretest score. Pretest alone explained 44%
of the variance in post-test score; ACT and SAT scores
explained an additional 6% of the variance controlling
for pretest score. This should not imply these variables
are independent; a model with ACT and SAT scores but
not pretest scores explains 18% of the variance in post-
test scores.
In summary, the optimal model explained 54% of the

variance in post-test scores. By far the most important
variable in the model was the pretest score explaining 44%
of the variance on its own. ACT and SAT scores (6%) and
gender (3%) were also important in the model. The high
school physics variables were no longer significant pre-
dictors when pretest was controlled for.TABLE VI. Optimal post-test model with Bonferroni correc-

tion. B is the regression coefficient, SE the standard error, β the
standardized regression coefficient, t the t statistic, and p the
probability a value as large or larger than t occurred by chance.
The overall model explains R2 ¼ 0.54 [Fð7; 1108Þ ¼ 184.25,
p ¼ 0.00000] of the variance in post-test score.

B SE β t p

(Intercept) −22.45 4.67 0.27 −4.81 0.00000
Pretest 0.85 0.03 0.56 25.34 0.00000
Gender −10.13 1.30 −0.37 −7.79 0.00000
ACTM 0.31 0.05 0.16 6.19 0.00000
ACTV 0.23 0.04 0.15 5.71 0.00000
SelfEff 3.47 0.87 0.09 3.97 0.00008
GrdExB −5.78 1.64 −0.21 −3.53 0.00044
GrdExA −5.32 1.73 −0.19 −3.07 0.00217

TABLE VII. Post-test model with pretest, gender, and ACT and
SAT scores. B is the regression coefficient, SE the standard error, β
the standardized regression coefficient, t the t statistic, and p the
probability a value as large or larger than t occurred by chance.
The overall model explains R2 ¼ 0.53 [Fð4; 1111Þ ¼ 310.03,
p ¼ 0.00000] of the variance in the post-test score.

B SE β t p

(Intercept) −13.45 3.46 0.11 −3.89 0.00011
Pretest 0.86 0.03 0.56 25.89 0.00000
ACTM 0.33 0.05 0.17 6.48 0.00000
ACTV 0.22 0.04 0.14 5.38 0.00000
Gender −10.69 1.30 −0.39 −8.24 0.00000

TABLE VIII. Post-test model with pretest and ACT and SAT
scores. B is the regression coefficient, SE the standard error, β the
standardized regression coefficient, t the t statistic, and p the
probability a value as large or larger than t occurred by chance.
The overall model explains R2 ¼ 0.50 [Fð3; 1112Þ ¼ 368.56,
p ¼ 0.00000] of the variance in the post-test score.

B SE β t p

(Intercept) −15.33 3.55 −0.00 −4.32 0.00002
Pretest 0.90 0.03 0.59 26.69 0.00000
ACTM 0.37 0.05 0.18 6.99 0.00000
ACTV 0.15 0.04 0.10 3.67 0.00025
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IV. DISCUSSION

This study investigated three research questions which
will be discussed in the order proposed. Many results were
discussed as they were presented, and therefore, the
following summarizes the findings.
RQ1: What academic and noncognitive factors are most

important in predicting FMCE pretest scores? This work
found that high school physics preparation was a very
important feature in explaining pretest score. High school
physics has been investigated in other works with varying
outcomes [30–33]. This work illustrates the importance of
the details of the student’s high school experience captured
by whether the course was AP and their performance in the
high school class captured by their grade. The variable
HSP.NTake captures whether the student took any high
school physics; this variable explains only 4.6% of the
variance in pretest score. The difference in pretest score
between students who took high school physics and those
who did not was 9%, a medium effect (d ¼ 0.52). This was
a larger effect size than the difference observed in normal-
ized gain scores by Hake [30], but commensurate to the
difference in pretest scores reported by Kost et al. [33]. The
difference between students who took no high school
physics and those who had high school physics changed
dramatically with the type of high school physics and
whether the student earned an A in the high school physics
class. A student who took AP physics, passed the AP test,
and earned an A had a pretest score 37% percentage points
higher than a student with no high school physics, an
extremely large effect (d ¼ 2.7). The full set of variables in
the HS physics panel which capture both the kind of high
school physics taken and the student’s grade explained
17.5% of the variance in pretest score, the majority of the
variance explained by the full set of variables (31%, 28% if
Bonferroni corrected).
Many other variables had correlations with pretest score

above the threshold of a small effect as shown in Table II.
Beyond high school physics, ACT and SAT scores, being
math ready, and the student’s expected grade in the physics
class had substantial correlations. Many dichotomous
variables showed substantial differences in pretest score
between the two levels of the variable (Table III). Again
beyond high school physics, being math ready, expecting
an A in the physics class, and passing the AP calculus test
were at or near medium effects. Correlation analysis
supported the central importance of taking high school
physics and the type of high school physics taken in
predicting pretest scores, Fig. 1.
Measures of variable importance, Table IV, continued to

support the central role high school physics preparation
plays in pretest scores with the HS Physics group of
variables explaining 10% additional variance when added
to a model containing all other variables, five times as much
additional variance as any other group of variables. High
school preparation is not the only factor affecting pretest

scores controlling for other variables; college and general
high school academic achievement explained 2% addi-
tional variance and personality 1% additional variance.
Bonferroni corrected linear regression analysis, Table V,

also supported the centrality of high school physics in
predicting pretest score, but also the role of some additional
variables. Variables in the HS Physics group had β
coefficients with the largest effect sizes with many above
the threshold of 0.5 for a medium effect. Repeating the
class was near a medium effect. Believing one would
receive an A in the class and gender were small effects as
was college CGPA and ACT and SAT verbal score.
Overall, only 28% of the variance in pretest scores was

explained by the extensive set of variables used in this
study. There are many potential reasons for the amount of
variance unexplained. First, pretest scores were on aver-
age fairly low (the pretest average was 23%). For this
student population, the FMCE is not well calibrated to
discriminate different incoming levels of conceptual
understanding (the pretest is too difficult for these
students). With Thornton scoring [92], the total FMCE
score is 33 and each item contributes approximately 3.3%
to the total score. The 10% difference in pretest between
taking and not taking high school physics is then only
3 items. A single misconception addressed in one high
school classroom, but not addressed in another, could
account for this difference (the FMCE presents many
items testing the same misconception). There are poten-
tially broad variations of the high school experience of
students in each level of the high school physics variable
which could affect pretest scores.
RQ2: What academic and noncognitive factors are most

important in predicting FMCE post-test scores correcting
for FMCE pretest scores? The Bonferroni corrected opti-
mal post-test linear regression model, Table VI, which
contained the pretest score as a variable did not contain any
high school physics variables; pretest score fully controlled
for the effect of high school physics preparation. Therefore,
there is not an additional effect of relearning material that is
evident on the post-test. If the pretest was inaccurately
measuring the student’s prior preparation because they had
physics knowledge they had forgotten, we would expect
prior high school preparation variables to affect the post-
test in ways not controlled for by the pretest. This suggests
the student does not have hidden conceptual knowledge at
the time of the pretest that he or she knew at a previous time
but has forgotten. We note this result does not imply there
are not benefits of relearning forgotten physics knowledge
that impact other factors in a physics classes such as
quantitative or procedural knowledge.
Post-test scores also depended on general high school

academic preparation measured by ACT and SAT math-
ematics and verbal scores and a student’s belief in their
ability to succeed in the class measured both the self-
efficacy and by their grade expectation. The optimal model
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explained 54% of the variance in post-test score, which is
substantial but far from perfect.
The variables grade expectation and self-efficacy were

collected through a survey instrument and would not be
available to most instructors. Removing these variables
reduced the variance explained by the model by only 1%.
The primary variables predicting post-test score were
pretest score (44% of the variance alone), ACT and SAT
scores, an additional 6% of the variance when added to a
model containing pretest score (18% of the variance on its
own), and gender explaining 3% of the variance when
added to a model containing pretest score and ACT and
SAT scores. As such, the majority of the variance in post-
test score is explained by pretest scores, but some prior
academic achievement variables and demographic varia-
bles are also important.
RQ3: Do academic and noncognitive factors explain

gender differences in FMCE pretest and post-test scores?
Part of the motivation for this work was to determine if
gender differences in pretest and post-test scores could
be explained by differences in high school preparation or
differences in noncognitive factors. The overall gender
difference in pretest score was 5.1%; the difference grew to
13.8% on the post-test. The models controlling for both
high school preparation and noncognitive factors (Tables V
and VI) failed to account for the gender difference. If
noncognitive or high school preparation were the source of
the gender difference, the gender regression coefficient
would have been reduced in these models (these factors
would have mediated the gender difference). This was not
the case for the pretest where the gender regression
coefficient in the model presented in Table V showed a
gender difference of 5.6% correcting for all these factors.
The gender coefficient in the post-test model was
reduced slightly to 10.1%, but most of the original gender
difference remained unexplained. As such, none of the
gender difference in pretest scores was explained by
noncognitive factors or high school preparation while
ð13.8% − 10.13%Þ=13.8% ¼ 27% of the difference in
post-test scores was explained by these factors and pretest
scores. Thus, neither noncognitive nor high school prepa-
ration differences account for the majority of the gender
difference in either pretest or post-test scores at the
institution studied. This observation does not support
Salehi’s et al. [1] finding that prior preparation variables
fully mediated gender differences in final examination
scores. It is consistent with Stewart’s et al. observation
the much of the gender difference in post-test scores are
unexplained by the same factors [2].

V. IMPLICATIONS

This study examined the features predicting pretest
scores with a large sample and an extensive set of high
school level, college level, and noncognitive variables.
The total variance explained with all these measures was

only 28%. As such, an instructor using pretest scores
should anticipate that there is some, possibly substantial,
uncertainty in the pretest scores of individual students. If
pretest scores are used for instructional decisions, they
should be used cautiously. Likewise, uncertainly in pretest
scores will generate uncertainty in the absolute gain and the
normalized gain.
Because of this uncertainly, small differences in pretest

scores are not particularly meaningful and only large
differences in scores are potentially useful for instructional
decisions. The high school physics panel in Table III can
provide some guidance in these decisions. Students who
have not had high school physics may need additional
support; the average pretest score of these students is 16%.
Students who had high school physics, but not AP physics,
and were successful earning an A scored on average 22%
on the pretest. A student who had the enriched AP
curriculum, earned an A but did not pass the AP test,
scored on average 34%; those who pass the AP test 53%.
As such, 10% differences in pretest score imply a sub-
stantially different high school physics experience.
This work showed that by far the most important variable

in predicting pretest scores was the type of high school
physics and the student’s grade in high school physics
which predicted 17.5% of the variance in pretest score
alone. The kind of high school physics (whether or not it
was AP physics) and how the student did in the physics
class and on the AP test was crucial to the predictive power
of high school physics. Whether or not the student took any
kind of high school physics explained only 4.6% of the
variance. As such, researchers seeking to explore the role of
high school physics preparation should gather detailed
information about the high school experience.
For the optimal pretest regression model, Table V,

measures of general high school academic and college
achievement were important, but not as important as high
school preparation. As such, a pretest score measures
primarily prior preparation in physics but is also influenced
by the general high school academic preparation and
college academic achievement of the student. This means
that pretest scores may change with factors not related to
specific preparation in physics which confounds their use
as a control for prior knowledge of physics.
For the optimal post-test regression model, Table VI, the

majority of the variance was explained by pretest scores
(44%), ACT and SAT scores explained an additional 6% of
the variance, and gender 3%. All other variables only
explained 1% together. As such, pretest score captures most
of the effect of prior preparation and noncognitive effects
on post-test score and should act as a good, but not perfect,
control for these effects.
The relation of post-test scores to pretest scores and

other variables have important implications for an ongoing
debate in PER about how to measure conceptual learning
gains in a physics class [22]; specifically how can and
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should the normalized gain popularized by Hake [10] be
updated? Nissen et al. showed the normalized gain was
biased toward students with higher pretest scores [22]. This
work showed that both pretest and post-test scores were
related to general high school level achievement measured
by ACT and SAT scores and that pretest score was also
related to general college level achievement measured by
college GPA; these relations should also bias normalized
gain toward populations with higher scores on these
measures. A substantial number of studies suggest some
groups underrepresented in physics have lower general
high school achievement scores than their majority peers
[1,2,93]. These differences are partially the result of limited
access to advanced coursework in schools serving under-
represented students [94].
Examining the differences of pretest scores by level of

high school preparation in Table III shows that there is a
broad spectrum of prior preparation in physics in the class
studied. It is important to take this into consideration when
designing activities in the class and interpreting the results
of assessment so that all students in the class can have the
chance to succeed. If only a small subset of students seem
to grasp some part of the material, it may be because they
understood it before starting the class.
This work identified taking, but possibly not passing,

an AP physics course as an important factor in predicting
FMCE pretest scores in college physics classes. The focus
on AP was not meant to suggest that other enriched
curriculum such as the International Baccalaureate (IB)
program could not produce similar results. There were
insufficient students in these programs in the sample to
draw statistical conclusions. It was, however, clear that
classes taken in college during high school, transfer classes,
were of little benefit in producing conceptual understanding
in college. It is unclear if this is because of the variable
quality and content of these courses, or because they are
often offered by school districts unable to make the
investment required to offer AP physics classes. This lack
of resources could have general negative effects on the
academic program.

VI. LIMITATIONS

This work was performed at a single institution. The
work should be replicated at institutions with a range of
incoming students levels of preparation and demographic
composition so as to determine if the results are general.

VII. CONCLUSION

This study applied correlation analysis and linear regres-
sion analysis to understand the relation of high school
preparation, college achievement, and noncognitive factors
to students’ physics conceptual understanding measured by
the FMCE and whether any of these factors explained
gender differences in FMCE pretest and post-test scores.
Several academic and noncognitive factors were signifi-

cant in predicting FMCE pretest scores including high
school physics preparation, high school math preparation,
ACTand SAT verbal scores, college GPA, and the student’s
expected grade. Whether the student had taken high school
physics explained 4.6% percent of the variance in pretest
score. The kind of high school physics (normal or AP)
and the student’s grade in high school physics explained
substantially more variance, 17.5%. ACT or SAT verbal
and mathematics scores, students’ grade expectation and
self-efficacy were significant in predicting post-test score
while controlling for pretest scores. High school physics
taking patterns were not important in predicting post-test
scores if pretest scores were controlled for. As such, pretest
scores completely captured the effects of high school
preparation on post-test scores in the regression analyses.
Gender differences observed in FMCE pretest and post-test
scores were changed little by controlling for either high
school preparation or noncognitive factors.
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