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We conducted a multiyear project across three institutions to develop an instructional tutorial that
supports student understanding of change of basis in quantum mechanics. Building from our previous
work, we identified learning goals to guide activity development. The tutorial makes an analogy between
spin-1=2 states and a Cartesian coordinate system. This paper details the iterative development process
including reports of observations from classroom implementations and the resulting modifications to the
activity. Further, we report preliminary findings on the success of the activity in improving students’ ability
to correctly change basis and their articulation that change of basis is a choice of representation, not a
change to the physical system.
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I. INTRODUCTION

As part of a larger project focused on research-based
curricula for quantummechanics [1], we previously explored
student understanding related to basis [2]. Subsequently, we
have created a quantum basis tutorial (QBT) to support
students in learning about basis. The tutorial activity draws
on analogies to two-dimensional vectors that students have
used inmany of their prior physics andmathematics courses.
Quantum mechanics courses are often described as chal-
lenging because they are abstract [3]. The tutorial is designed
to counteract the abstract nature of quantum mechanical
states by grounding the concept of basis in a more familiar
and tangible vector context. In this paper, we present the
process through which we developed the QBT, and discuss
evidence for its effectiveness.
Basis is a fundamental aspect of quantum mechanics in

that it is tied to the mathematical representation of quantum
states used for reasoning about measurement and proba-
bility. Furthermore, there is often a preferred basis for
solving a given problem (e.g., to express a time evolved
state, the state needs to be expressed in the energy
eigenbasis). Our previous research investigated students’
interpretations of changing basis with respect to the
physical nature and mathematical representation of the

state (e.g., its effect, or lack thereof, on the probabilities of
different measurement outcomes) and also reported on the
various methods students used to change basis. In Sec. II,
we briefly summarize previous findings [2] that motivated
the development of the QBT.
The QBT is designed to help students develop a coherent

model of basis in quantum mechanics, and is based on our
research into how students understand basis [2]. We use an
analogy to a familiar, two-dimensional Cartesian coordi-
nate system to solidify concepts related to basis in the
abstract setting of quantum mechanics. This analogy has
been used by an activity written by Oregon State University
when looking at the effects of operators [4] and by Tutorials
in Physics: Quantum Mechanics [5] and the Quantum
Interactive Leaning Tutorials [6] when looking at intro-
ducing Dirac notation. Our learning goals (LG) for this
tutorial are for students to be able to

LG1. Recognize that changing basis does not change the
state or the probabilities of any measurement on
a state,

LG2. Use projection (inner products) as a method to
change basis with and without prompting,

LG3. Identify the coefficients in a basis expansion
(a) physically as probability amplitudes and (b) math-
ematically as inner products, and

LG4. Recognize that a reason for changing basis is
making desired information more readily accessible.

The initial development of the tutorial was motivated by
LG1 and LG2. A preliminary implementation, discussed in
Sec. V B, highlighted other facets related to changing basis
that we wanted to target and motivated the addition of LG3
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and LG4. Various questions and activities within the
tutorial were designed to target each of these goals. In
Sec. III, we detail the different parts of the QBTand discuss
how they align with our learning goals.
The development of theQBTfitswithin a growing effort to

support the use of interactive engagement [7] and active
learning [8] in quantum mechanics courses, building
on years of instructional reform in introductory physics.
Other researchers have explored the effectiveness of inter-
active pedagogy in quantum mechanics, including Peer
Instruction and Just-In-Time Teaching [9,10]. As part of
this transition away from a traditional lecture format, a
wide range of activities from tutorials to simulations have
been developed to support learning in quantum mechanics
[1,4,5,11–13]. Many of these activities have been the subject
of research aiming to evaluate their impact on student
understanding (e.g., Refs. [14–21]). However, little has been
published detailing the process of creation and refinement of
these activities.
The goals of this paper are twofold. First, we aim to detail

our process for developing the tutorial, motivate the choices
we made, and describe the interplay between development,
implementation, and further research. Second, like other
projects of this nature, we set out to present the QBTand pro-
vide preliminary evidence of its effectiveness. After present-
ing the design of the QBT in Sec. III, we outline the contexts
for the administration of the tutorial, and describe themethods
for data collection and study design in Sec. IV. Subsequently,
in Sec.Vwe summarize results from the two implementations
of the activity, and discuss improvements made following
these implementations. Finally, we present initial findings
related to the effectiveness of the tutorial in Sec. VI.

II. PREVIOUS WORK AND MOTIVATION

There is a growing base of physics education research in
the topical area of quantum mechanics (see Ref. [3] for an
overview). These investigations have explored student
understanding in several areas, including but not limited
to notation [21–27], expectation values [20,27–30], time
dependence [14,15,31–33], and measurement and probabil-
ity [14,30,34–37]. Physics education research in other areas
of quantummechanics has occasionally involved discussion
of basis, but basis itself has rarely been the main focus, with
the exception of a recent paper investigating student and
expert discourse related to basis [38]. One investigation
reported that students do not recognize that a relative phase
affects the probability ofmeasurement in different bases [37]
(student errors related to relative phase have been reported
elsewhere aswell [39]), while another found that students are
not always cued to change basis when expressing a time
evolved state [32]. In themathematics education community,
research has focused mainly on how students associate basis
with the properties of span and linear independence [40–42],
since these are two key properties of a generalized set of basis
vectors.

Our recent work, discussed in a separate paper [2],
explicitly investigated student ideas about basis and change
of basis in quantum mechanics within the context of
spin-½ systems. The four learning goals above were refined
through this research, which ran concurrently with the pro-
cess of tutorial development described in this paper. Herewe
present a brief summary of our previous findings to elucidate
the subsequent discussion of the QBT and motivate the
learning goals. The study centered on three points: students’
interpretations of change of basis;whatmethods students use
when changing basis; and how students interpret basis
expansion coefficients and relate them to inner products.
Surveys and interviews revealed that students may

believe that changing basis in a spins context affects a
quantum state beyond merely altering its mathematical
representation. Some students associated physical effects
with basis change; for example, on surveys, some said that
measurement probabilities were altered when a spin-½ state
was converted from the Sz basis to the Sx basis. We also
found that students may choose to change the notation for a
ket when changing its basis (e.g., if changing to the Sx
basis, students may change a ket’s label from jψi to jψix).
In some cases, students opting to relabel a ket nonetheless
did not associate physical significance with basis change.
Overall, these findings inform LG1.
Interviews and responses to quiz and exam questions

asking students to change basis revealed that students employ
a variety of mathematical methods when doing so. The
projectionmethod involves computing inner products to find
the new basis expansion coefficients; for example, to find the
coefficient associated with the jþix basis state for the state
jψi, onewould compute xhþjψi. Projection is often themost
generalizable and computationally simplemethod.However,
other valid methods were also common. For example, the
system of equationsmethod involves inverting the equations
defining the new basis states (e.g., j�ix) in terms of the
original basis states (e.g., j�i) to find how the original basis
states can be written in the new basis. Other methods, which
were generally incorrect, were also used. These findings
inform LG2. In Secs. V and VI, we report the frequency of
each of these methods on exams and quizzes.
Interviews and surveys probing students’ interpretation of

basis expansion coefficients revealed that students may not
spontaneously associate these coefficients with probability
amplitudes or with inner products. The association with
inner products is particularly important to facilitate the use
of the projection when changing basis. Students have also
been found to have difficulties with recognizing the con-
nection between expansion coefficients and inner products
in a wave functions context [36]. Inner products are relevant
to basis representation because they give probability ampli-
tudes for measurements in a given basis. These findings
inform LG3, and the association between coefficients and
probability amplitudes is a prerequisite for LG4.
To support these four learning goals, the QBT builds on an

analogy between vectors in Hilbert space and real-valued,
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two-dimensional vectors, and includes graphing elements to
support this analogy. The use of this strategy is supported by
the literature. The first time many students encounter basis is
in the context of two-dimensional Cartesian vectors, as used
in introductory physics. Research has shown that addition
and subtractions of vectors using their graphical representa-
tions is challenging for students in introductory physics
[43–46] and that there are several difficulties related to
student understanding of vector components and multipli-
cation [44,45]. However, by the time students reach upper-
division courses, they have been shown to fall back on
Cartesian representations in situations where newer, non-
Cartesian coordinate systems are more appropriate [47–50],
suggesting that Cartesian coordinates had become more
familiar after years of use. Furthermore, research on one
tutorial activity has shown that the use of an analogy to 3D
Cartesian coordinates has supported student understanding
of Dirac notation [6]. Research in mathematics education
has shown that the use of geometric and graphical repre-
sentation bolsters students’ learning of abstract concepts in
linear algebra including span and linear independence
[40,51]. Related research shows that using graphical repre-
sentations provided physics students with helpful context

for the eigenvalue-eigenvector equation [52]. Prior quan-
tum mechanics instructional activities have incorporated
Cartesian representations to exhibit the role of operators
[5] or to support understanding of Dirac notation [6].

III. OVERVIEW OF THE QUANTUM
BASIS TUTORIAL

We use the word tutorials to refer to worksheets intended
to guide students in constructing conceptual physics knowl-
edge for themselves.Often, tutorials are done in small groups
in a classroom setting with a higher instructor-to-student
ratio. The worksheets are not typically collected or graded.
The QBT discussed in this paper is designed around an

analogy to a two-dimensional Cartesian coordinate system,
with influence from theUniversity ofWashington’s quantum
tutorials [5]. Leveraging the familiarity juniors and seniors
have with a Cartesian coordinate system, the activity uses a
vector, expressed in Dirac notation, to introduce a way of
thinking about basis. Bydrawing and labeling components of
the vectors using different sets of basis vectors as axes,
students discover that a basis is a representational choice that
conveys a certain set of information.

TABLE I. This table presents a summary of each part of the QBT, as well as which learning goals the part targets. Each part fills one
printed page, so students have room to write their answers and show their work when needed. The language for the questions or tasks in
this table is significantly condensed from the real QBT, and some explanatory text and hints are missing.

Part Abbreviated questions or tasks Associated learning goals for each part

I What do the coefficients in jψAi ¼ 3=5jþi − 4=5j−i tell you?
Create histograms for the probability amplitudes and probabilities.
Label the histograms with Dirac expressions.
How do probability and probability amplitude relate?

LG3a: Coefficients and probability amplitudes
LG3b: Coefficients and inner products
LG4: Accessible information

II Do the Cartesian unit vectors jii and jji form a basis?
Plot the vector jui ¼ 1=

ffiffiffi
5

p jii þ 2=
ffiffiffi
5

p jji on Cartesian axes.
Express jui as a column vector using values and inner products for the
components.
Label the inner products on the graph, and discuss a conceptual meaning
for inner products.

LG3b: Coefficients and inner products

III Write jui in the basis of jv1i and jv2i (two new vectors).
Graph the vector using a set of axes for the new basis vectors.
Write the state as a column vector of the form ð□□ÞV .
Why is there a v subscript on the column vector?

LG2: Using projection to change basis
LG3b: Coefficients and inner products

IV Plot original jui, new basis vectors/axes, and jui in new basis.
Graphically, compare the vector in the original basis with the vector in
the new basis.
Using the analogy, explain what changing the basis means.
Does the new vector need a new name or label?
Can we write jψi ¼ ajþi þ bj−i ¼ cjþix þ dj−ix?

LG1: State unaffected by change of basis
LG2: Using projection to change basis

V Draw axes for measuring position and potential energy on an incline plane.
Does the coordinate system affect the physical scenario?
Why might you rewrite a state in a new basis?
Which basis is useful for finding probabilities of quantum measurements
of Sz=Sx ?
Does changing basis affect the state?
Why change basis?

LG1: State unaffected by change of basis
LG3a: Coefficients and probability amplitudes
LG4: Accessible information
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We designed the tutorial over several iterations which
included two main versions—alpha and beta—that were
implemented over a full lecture in the classroom. In its
current form, the tutorial is divided into five parts, each
with a specific purpose. Parts II–IV form the core of the
tutorial activity and were given as a preliminary version, or
alpha-version. Parts I and V provide priming and wrap-up
discussion, respectively. These parts were added based on
observations of the preliminary alpha implementation and
further research, which are described in Sec. V C. The beta
version of the activity was administered with all five parts
outlined below. An overview of each part of the activity, as
well as the learning goals each part targets, is provided in
Table I. The full tutorial is available online as part of the
“tutorial collection” under adaptive curricular exercises for
quantum mechanics [1].
Part I of the activity was designed to address LG3 by

drawing out the connections between (a) basis expansion
coefficients, (b) probability amplitudes associated with a
measurement, and (c) the Dirac expressions for an inner
product. The first question gives a generic state, jψAi ¼
3
5
jþi − 4

5
j−i, in both Dirac and matrix representations.

Students are told that the coefficients are called probability
amplitudes and asked to explainwhat information they reveal
about the state. Then students are instructed to complete two
blank histograms labeled “probability amplitude” and “prob-
ability.” After drawing the histograms for jψAi, students are
asked to label the height of each bar on the histogram with
Dirac notation. Lastly, students are asked about the relation-
ship between probability and probability amplitude.
Part II begins the analogy to a Cartesian system by

presenting Cartesian unit vectors in Dirac notation: jii and
jji are given as alternative notation for î and ĵ. Students
first answer whether these unit vectors could be used as a
basis. Then they are given a vector, jui ¼ 1ffiffi

5
p jii þ 2ffiffi

5
p jji,

which they are asked to graph using a set of Cartesian axes
(see student example in Fig. 1). To promote accuracy in
graphing (especially important for part IV) and save
students time, an unlabeled coordinate grid was added
to the beta-version of the activity. Students are then asked to
represent jui as a two-dimensional column vector and to
represent the two components as inner products. Lastly,
they are asked to identify these inner products on the graph
(shown in Fig. 1), and discuss the conceptual meaning of
the inner product based on the graph. This final question is
designed to help connect the idea of an inner product in
quantum mechanics to finding a component in a specific
coordinate direction, associated with learning goal LG3b.
Part III is where students calculate a change of basis.

They are first given new basis states, jv1i and jv2i,
associated with column vectors in the Cartesian basis.
Students are asked to write jui in the new basis, such that it
has the form ajv1i þ bjv2i. They are then asked to graph
the vector using jv1i and jv2i as the basis vectors. Since
changing the basis changes the coefficients of the state,

treating jv1i and jv2i as the horizontal and vertical axes
results in the vector jui being oriented differently than in
part II. Mirroring the questions in part II, students write the
state jui as a column vector in the new basis, express each
component as an inner product, and represent the inner
products on their graph. Since the column vector here uses a
different basis, students are given the form�

a

b

�
v

and are later asked about the purpose of putting the
subscript on the column vector.
The questions in part III continue to address the con-

nection between the coefficient and the inner product
(LG3b). The questions about identifying the coefficients
in each basis also deliberately lay the groundwork about
what information is accessible from a basis representation
(LG4) which is addressed directly in part V.
In part IV, students make connections between the basis

representations. They are told that they will temporarily
relabel the vector represented in the basis of jv1i and jv2i as
jki. Students are told, “We will decide later whether or not
we needed to do this,” since this relabeling is unnecessary.
This allows for students to discover that the vectors are
indeed the same, targeting LG1. To discover the relation-
ship between jui and jki, students are instructed to draw all
vectors on the same set of jii and jji axes from the
beginning of the activity. This is structured so students first
redraw jui, add the new basis vectors, and then find where
jki would be placed using the new set of basis vectors (see
the example in Fig. 2). Careful plotting of these vectors
results in jui and jki overlapping.

FIG. 1. Student work depicting jui as a vector on a Cartesian
coordinate plane. Here the individual components are labeled
with inner products in Dirac notation.
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Follow-up questions in part IV ask students about the
relationship between jui and jki, what their inner product
would be, and to synthesize that changing the basis of a state
does not affect the physical information (LG1). Lastly,
students are asked two questions about labeling states.
The first of the questions addresses whether relabeling
the state as jki was necessary. For the second question,
they are given a state written out as jψi ¼ ajþi þ bj−i ¼
cjþix þ dj−ix and asked “why do we not need a subscript
on the state jψi?”Both the z-basis and x-basis spin states are
well known by this point in the course. These follow-up
questions also target LG1, and are meant to encourage
students to extend their conclusions to the quantummechan-
ics context. Additionally, they can conclude, based on their
work, that a different basis representation in quantum

mechanics is analogous to a projection (LG2, LG3b) to
different sets of axes that, in turn, provides different sets of
probabilities (LG3a, LG4).
The final portion of the activity, part V, draws out explicit

discussion aligned with LG4 about what information can be
read from or provided by a state. While this idea has been
hinted at throughout the previous portions of the tutorial,
part V directly reinforces it. Students are first prompted to
think about an inclined plane from classical mechanics,
draw a coordinate system for tracking the position of the
car, draw another coordinate system for measuring gravi-
tational potential energy, and discuss whether changing the
coordinate system affects the physical scenario. Following
the same theme, students are then asked several questions
within the context of quantum mechanics; for example,
“when they might prefer using a state written in the x basis
as compared to the z basis,” and “does a change of basis
affect the physical system?”

IV. METHODOLOGY, CONTEXT FOR TUTORIAL
DEVELOPMENT, AND EVALUATION

Development of the quantum basis tutorial took place in
five stages across three universities (A, B, and C) and
spanned three years. Preliminary investigations took place
over the first two years. Interviews and assessment data
revealed the need for a tutorial about basis, and allowed us to
write the initial alpha version of the QBT. In year 2, we
administered the alpha version at university A, conducted
further investigations, and made improvements to the
tutorial activity. In year 3, we administered the beta version
and began to evaluate the tutorial’s effectiveness. Figure 3
presents a timeline of these stages, including all the instances
where we collected data in assessments, surveys, and
interviews. In this section, we describe the courses in which
we collected data and administered the tutorial, aswell as our
methods for data collection and analysis.

FIG. 2. Student work depicting all vectors on the same graph.
The vectors jii and jji are represented by the horizontal and
vertical axes, respectively. The new basis vectors, jv1i and jv2i,
effectively form a rotated set of axes. Students confirm that the
vector jui remains unchanged regardless of which set of axes it is
plotted against (so long as the appropriate components are used
for each basis).

FIG. 3. Timeline for research, tutorial development, and evaluation. The three main phases of the project are identified in the column
header and the different years of the project are shown with brackets above the table. Each quiz, midterm, and final included a change-of-
basis question (similar to the one in Fig. 4). The tutorial was not repeated at University A in year 3 due to a change in instructor. All data
collection and tutorial implementation was completed prior to the 2020 pandemic.
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A. Courses included in this study

We collected data on student understanding of basis at
three large, public universities in upper-division spins-first
quantum mechanics courses. University A and University
B are large, public, primarily undergraduate, Hispanic-
serving institutions. University C is an R1, PhD-granting
institution. “Spins-first” refers to one of two common
curricular paradigms in quantum mechanics [53]. In a
spins-first instructional paradigm, students are initially
introduced to the Stern-Gerlach experiment and learn about
the postulates of quantum mechanics in the context of a
spin-½ system. This is in contrast to the position-first
paradigm, which begins by solving Schrödinger’s energy
eigenvalue equation for continuous wave functions.
All the quantummechanics courses in this study followed

a similar content trajectory, aligned with a common course
textbook [54]. They used interactive instructional strategies
(such as peer instruction [55]), and drew from the same set of
tutorials, clicker questions, and homework assignments from
Adaptable Curricular Exercises for Quantum Mechanics
(ACEQM) [1]. Universities A and B have similar pacing and
cover the postulates of quantum mechanics in spin-½
systems including time evolution, entanglement, and tran-
sition to wave functions in the context of infinite and finite
square well potentials. University C progresses at a faster
pace and additionally covers the free particle, orbital angular
momentum, and the hydrogen atom.
The topics of basis and procedures for changing basis are

introduced early in each course as part of the discussion of
probability and measurement of spin operators. Students
are introduced to basis using both Dirac and matrix notation
and are given the eigenstates of the Sy and Sx operators (y-
and x-basis states) in terms of the conventional z basis.
Students use these basis states to reason about measurement
and make calculations. As part of instruction, students are
shown the formula for a state’s basis expansion coefficients
in terms of inner products.
Linear algebra, as offered by the math department, is not

required as part of the physics curriculum at Universities A
and B, but is taken by some students. At these two
institutions, the linear algebra that students learn prior to
quantum mechanics courses is from a mathematical meth-
ods for physics course taught by the physics department. At
University C, a one-semester linear algebra course is a
required prerequisite for quantum mechanics.

B. Alpha implementations of tutorial

The first version of the QBTwas developed and piloted by
two of the authors in a required recitation section during
week 11 of the upper-division quantum mechanics course at
University A in Year 2 (see timeline, Fig. 3). By this point in
the semester, all spins content had been presented and the
course had transitioned to topics related towave functions for
the infinite square well. The tutorial is presented in the
context of a spin-½ system and was intentionally designed

for use earlier in the semester. However, the tutorial was
developed as an immediate response to observations from
this course (see Sec. VA). The late administration served to
test the activity’s potential utility, solicit feedback from
students, and also readdress student understanding of basis
before the end of the semester.
At the time of the tutorial’s implementation, 37 students

were enrolled across two recitation sections of the upper-
division quantum mechanics course. Students worked in
groups of 3–4. This alpha version of the tutorial consisted
only of the core tasks and questions (Parts II–IV from
Table I). Students were also asked to provide open-ended
feedback about the tutorial. students’ worksheets were
collected and scanned.

C. Beta implementation of tutorial

During year 3, as part of the continued development of
the QBT, the expanded beta version was administered at
University B and was coupled with various pre- and
postevaluations as part of a larger study. The beta version
was also administered in year 3 in an interview setting at
University C. Data related to the beta version was not
collected from University A because of a change in
instructor. The beta version contained all parts I–V.
At University B, the tutorial was administered in lecture

by two of the authors during the fourth week as part of
regular course instruction after change of basis had been
covered. This quantum mechanics class had 26 students,
and students worked on the activity in groups of 3–5. While
most groups completed the activity during the 75 min class
period, a couple groups needed to complete Part V outside
of class. At the beginning of the following lecture, there
was a whole-class discussion about students’ findings from
the last two parts of the activity. Students’ work on the
tutorial was not graded, but was collected and scanned after
all groups were given time to complete part V. Students
were later asked for feedback on the activity on an optional,
prelecture assignment.
At University C, the tutorial was run in three semi-

structured hour-long interviews with three pairs of paid
student volunteers (six total students). Students were
currently enrolled in the upper-division, spin-first quantum
mechanics course and had received all relevant instruction
on basis in a spin-½ system. Interviewees individually
completed an on-paper version of the survey 1 administered
at University B before working on the tutorial (see Fig. 5
below). Interviews allowed for focused investigation into
how students interacted with the tutorial, leading to refine-
ments of the beta version as well as providing a new context
for studying student ideas. The interviewees were the only
students at University C who completed the QBT.

D. Explorations of content understanding

In addition to observing students during the alpha- and
beta-implementations of the QBT, we also investigated
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student understanding of basis and change of basis on exam
questions, in interviews, and through conceptual surveys.
The quizzes and midterm (only given at University B) and
final exams (given at all universities) shown in the timeline
(Fig. 3) all included a similar change-of-basis question. The
question, presented in Fig. 4, asked students to rewrite a
spin-½ state (originally provided in the z-basis) in terms of
new basis states j�in. Different iterations of the question
included different numerical coefficients in the definitions
of j�in. The language of the hint varied but always
referenced writing the state in terms of the n-basis states.
The change-of-basis question was coded for correctness

(i.e., did students get the answer jψi ¼ ajþin þ bj−in,
with the correct numerical values for a and b?). In addition,
we categorized the methods students used to change basis.
Descriptions of the methods we observed are provided in
Sec. VA as well as in Ref. [2]. The categorization scheme,
as well as the category assigned to each sample of student
work, was agreed upon by multiple authors.
A similar change-of-basis question was also given to

students in interviews (the “prelim. interviews” on the
timeline in Fig. 3). The interviews were designed to assess
whether students attempted or were aware of projection.
Students who attempted other methods were asked if there
were additional methods that could be used for changing
basis. Interviewees’ methods for changing basis were
categorized using the same scheme as used for the exam
questions. In addition, interviewees were asked whether the
state written in the new basis represented the same state as
when it was written in the old basis.
As shown in the timeline (Fig. 3), the change-of-basis

question was given at University B on a quiz in years 1 and
2 without the QBT intervention, and was given again
following the QBT implementation in year 3, this time on a
final exam. This allowed us to compare the performance (as
well as the methods used to change basis) of a similar
population of students with and without the QBT. The final
exams given in year 2 at Universities A and C allowed us
to assess the extent to which methods for change of

basis existed at other institutions with different student
populations.
Also in year 3 at University B, students were given an

online prelecture survey (survey 1) to complete as a pretest
prior to the implementation of the beta version of the QBT.
Relevant survey questions are shown in Fig. 5: students
were asked about the coefficients in the Dirac representa-
tion of the state and given true-false questions that asked for
explanations (Fig. 5). Students were not given answers to
any of the survey questions. As mentioned above, survey 1
was also given to interviewees at University C, before they
completed the tutorial during interviews.
Question 2 from survey 1 (Fig. 5) was used again on the

quiz at University B in year 3. This quiz came after the
tutorial, and thus served as a post-test for question 2.
Similarly, question 3 was repeated at the end of the
semester as part of another online prelecture survey (survey
2 on the timeline), serving as a post-test for question 3.

V. DEVELOPMENT OF THE
QUANTUM BASIS TUTORIAL

This section aims to explicate the process of developing a
tutorial, along with the research findings that are used to
inform the development. The following Sec. VI then
provides the results on the impact of the tutorial using
the data collected in the larger study around the beta
implementation. The four subsections here map to the

FIG. 4. One version of the quiz and exam change-of-basis
question. Versions of this question were administered to students
at each of the three institutions on several for-credit quizzes or
exams in multiple semesters. Different versions of the question
used different numerical coefficients and/or used varied language
for the hint.

FIG. 5. Survey 1: Three of the questions given to students as a
pre-test for the quantum basis tutorial. Questions are numbered
here for reference. Correct answers are bolded and starred. In year
3, question 2 was used again on the quiz, and question 3 was
incorporated into survey 2.
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pretutorial investigation, alpha implementation, modifica-
tions, and beta implementation from Fig. 3, respectively.

A. Results of pretutorial investigations

We analyze the methods students use to change basis
from two years of quiz data from University B and one year
of final exam data from University C, from before the
implementation of the tutorial [2]. Students were given a
state written in the z basis and were asked to write the state
in terms of new basis states j�in (Fig. 4). Table II high-
lights the different methods that students used when
changing basis and the percentage of all responses that
were correct and used that method.
Analysis of these assessments (and several interviews)

including a change-of-basis question revealed several
common methods that students used when attempting this
change of basis: projection, substitution, and system of
equations. The projection method involves calculating
inner products, nh�jψi, to determine the expansion coef-
ficients in the new basis (Fig. 6). The substitution and
system of equations methods are more algebraically
demanding. The system of equations method treats the

new basis states as a system of equations that can be solved
for the j�i states expressed in the n basis. Alternatively, the
substitution method begins with inserting the j�in repre-
sentations into the generic state, jψi ¼ ajþin þ bj−in, and
then creating a system of equations from comparison with
the original state (Fig. 7). All three of these methods can be
used to correctly find the new basis representation.
The “Other” category contains methods that were used

less than 10% of the time. These other methods resulted in
incorrect answers, such as constructing a matrix for Sn or
deriving the spherical coordinate angles associated with the
orientation of a Stern-Gerlach apparatus. One incorrect
method drew on probability: students used the probabilities
for measuring the corresponding outcomes as the coeffi-
cients for the new basis states, or they used the square root
of these probabilities without regard for phase. Another
incorrect method involves students swapping subscripts

(Fig. 8), replacing the given jþin ¼ 1ffiffi
3

p jþi þ
ffiffi
2

pffiffi
3

p j−i with

jþi ¼ 1ffiffi
3

p jþin þ
ffiffi
2

pffiffi
3

p j−in. Although this method works for

a few special cases, it does not work in general; in this
example it fails when the basis state includes complex
coefficients.
Applied by approximately 30% of students at University

B, projection was not a particularly common method.
Furthermore, it only resulted in the correct answer for

TABLE II. A list of the different methods students used to change basis and the frequency of each method at
Universities B and C. The quiz was given at University B for credit within 2 weeks following all related instruction.
For the three methods that can lead to correct answers, the number in parentheses indicates the percentage of all
students who both applied the method and also arrived at the correct answer. These data were collected before any
tutorial implementation.

Quiz Quiz Final

N ¼ 29 N ¼ 34 N ¼ 63

Applied method University B Year 1 University B Year 2 University C Year 2

Projection (correct=N) 31% (10%) 30% (18%) 57% (42%)
Substitution (correct=N) 48% (3%) 29% (3%) 19%(6%)
System of Eqs. (correct=N) 3% (3%) 6% (0) 6% (2%)
Other 10% 33% 16%
Blank 7% 3% 2%

FIG. 6. Student solution to a standard change-of-basis problem.
This student uses the projection method by taking the inner
products of the state with the new basis vectors. The short
calculation correctly and efficiently provides the coefficients in
the new basis representation.

FIG. 7. The start of a student’s solution to a change-of-basis
question. This student employs the substitution method, where
they insert the basis conversions into the generic basis repre-
sentation. The subsequent steps (not shown) involve rearranging
terms, setting each coefficient equal to the coefficient of the given
state, and solving a system of equations for a and b. Reproduced
from Ref. [2].
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10%–18% of all University B students. Projection is not the
only correct method, but it often requires the least algebra
and is the most closely related to the meaning of basis,
because it selects the probability amplitude associated with
the measurement of a given basis state. Moreover, Table II
shows that students using projection more often arrived at
the correct answer. On the two University B quizzes, 33%
and 60% of the students who applied projection arrived at a
correct answer. This contrasts with the low percentages
associated with the substitution and system of equations
methods. The most common alternative method was sub-
stitution. Many students using this method did not finish
the calculation or made an algebraic mistake, which
resulted in its low rate of correctness.
The poor performance on University B’s quiz question—

especially the small number of students using the preferred
method to change basis—was a key motivation behind the
development of the QBT, along with classroom and inter-
view observations at Universities A and B. More specifi-
cally, these data directly informed LG2. At University C,
fewer than half of the students correctly used the projection
method to change basis on a final exam, suggesting that the
QBT could be beneficial to students at varied institutions.

B. Observations from the alpha-version
implementation

For the initial implementation of the alpha version,
students were given the core components of the activity
(parts II–IV) that cover the analogy to Cartesian coordi-
nates: plotting a vector jui using jii and jji basis vectors, a
change-of-basis representation and plotting using the new
jv1i and jv2i basis, and the final comparison of graphical
representations in the two different bases.
In the first part of the alpha version (part II), students

successfully recognized jii and jji as basis vectors and
subsequently graphed the vector jui (Fig. 1). Following the
graphing aspect, students then translated the state to a
column vector representation and wrote the appropriate
inner products without instructor intervention. Almost all

students went on to define the inner products using the
language of “projection” as shown in the following written
response:

The inner product is the projection of jui onto either the
jii or jji axes. (like a dot product).

Overall, our observations suggested that students could
easily adopt Dirac notation in the Cartesian context.
We found that the next part of the tutorial (part III), in

which students were asked to convert the state to the basis
of jv1i and jv2i was more difficult for most students, as
many attempted the more rigorous substitution methods.
Instructor intervention was needed for almost all groups to
cue the calculation of the coefficients using the projection
method. Once the state was written, students quickly
graphed the state using the v1 and v2 axes and correctly
labeled the inner products. Students were asked to tempo-
rarily label the state in the v basis as jki. The tutorial
explicitly states that students will later decide whether this
relabeling was necessary.
In part IV, the majority of students drew jv1i and jv2i

correctly when graphing all the vectors using jii and jji as
the basis. Students who plotted carefully arrived at a
representation showing the vectors jui and jki were indeed
the same regardless of basis representation (Fig. 2).
Because of difficulty plotting irrational values without
graph paper, a few students erroneously drew jui and
jki as different vectors. Students were able to fix this error
after being encouraged to plot carefully.
By this point in the activity, all groups correctly

answered that hujki ¼ 1. Most groups drew this conclusion
based on their graph, but the few students who had
difficulty graphing were able to explicitly compute the
inner product. It was common for students in each group to
express surprise and excitement by this discovery. When
first changing the basis, no student objected to the initial
relabeling. When asked to explain what changing basis
means for a quantum state, most students wrote something
explicitly related to reference frames and acknowledged
that the vectors, jui and jki, were the same, as shown in the
two written responses below.

It’s the same vector but with a new reference frame.
Changing the basis is just another way of writing the
vector. It does not physically change the state.

Responses of this nature indicate that the activity was
successful in supporting students’ understanding of basis
representation, and that students were able to recognize that
change of basis does not physically change the state but is a
choice of representation (LG1).
In written feedback, students described the activity as

helpful and said they felt it allowed them to relate
mathematics and physics concepts. Two representative
student responses are shown below.

FIG. 8. An image of the given basis states (top) and a student
incorrectly determining the z-basis representation by swapping
subscripts (bottom). The student then substitutes these into the
given state to change basis.
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The [tutorial] generalizes the procedure for changing
basis and highlights that changing basis does not affect
the overall value of the vector, only its components.
It was nice to relate the math to the concepts.

Consistent with the above, the remaining feedback was
overwhelming positive.
Whereas the alpha version of the QBT successfully

achieved LG1 (recognition that the state is unchanged),
results from a change-of-basis question given on the
University A final shows it was not as successful with
LG2 (use projection to change basis). The exam was
administered several weeks after the QBT, and we found
that approximately a third of the students used projection to
change basis (see Table III). Without any pretutorial data
for University A, we could not yet comment on the
effectiveness of the activity. The limited use of projection
could be related to several factors. First, the activity was
given later in the semester, well after the spin portion of the
course had concluded. Second, the alpha version of the
tutorial did not emphasize the direct connection between
projection and the probability amplitudes.

C. Modifications to the QBT based on
research and observation

The observations above, specifically the difficulty of part
III, motivated the creation of two additional sections to the
tutorial (see Table I for an overview of the QBT). One
section at the beginning was developed to reinforce the idea
of probability amplitude and how it relates to basis (which
became part I), and one section at the end provided physical
and problem-solving contexts to help solidify students’
understanding (which became part V).
Part I intentionally reinforces the connection between

probability calculations and the use of inner products to
represent the coefficients (e.g., jhþjψij2 ¼ jaj2 versus
hþjψi ¼ a) by asking students to make, label, and discuss
histogram representations for probability and probability

amplitude. This change coincides with the addition of LG3
and was partly inspired by a small number of responses
(< 10%) from the University C final exam where students
used a probability calculation, (jnhþjψij2) and used the
result inside the modulus square for the new expansion
coefficients Fig. 9. This suggested that students are more
comfortable with finding probabilities and could use a
refresher on the connection between probability and
probability amplitude.
Part V was added to the tutorial to emphasize that

changing basis can be a useful tool (LG4) and does not
indicate a change to the physical system (LG1). This
addition asks students about which basis is best for solving
a given problem and were meant to reinforce the reasons
why we change basis representation, specifically in regards
to being able to easily access a given set of informa-
tion (LG4).
Parts II, III, and IV were modified slightly to improve

how students engaged with the tutorial but the substance of
these sections remained unchanged. We added grid tem-
plates to the graphing questions to assist students in the
accuracy of graphing the vectors. We also changed wording
and reordered text based on observation of student strug-
gles. For example, the portion where students were asked to
temporarily label the vector in the new basis as jki was
moved to just before the student graphed the vector rather
than after the initial basis change. The text was changed to
indicate that the relabeling was temporary and the meaning
would be immediately discussed.

D. Observation of the beta implementation

With the additions of Part I and Part V, as well as other
minor changes, a beta version of the tutorial was imple-
mented in the classroom at University B and in interviews
at University C. In this section we discuss observations of
the new groups of students working through the tutorial. In
the beta implementation, we saw that students were able to
use Part I as a touchstone to engage with the unchanged
parts of the tutorial. This may be due to the improvements
made to the tutorial and/or the administration of the tutorial
during the spin portion of the course right after the
introduction of bases.
The newly added part I was intended to provide students

with the scaffolding to successfully engage with probability
amplitudes in Secs. II–IV, and begins by asking students
what the coefficients for the state jψi ¼ 3

5
jþi − 4

5
j−i are

called. We found that a number of students who were
unfamiliar with the language of the intended answer:
“probability amplitudes.” Most interviewed students were
likewise unfamiliar with that terminology, and even
expressed surprise that a probability amplitude was per-
mitted to be negative. As a result, the language was
changed following the beta implementation to introduce
the coefficients as being called probability amplitudes and
then ask “what do they tell you?”

TABLE III. A list of the different methods students used to
change basis and the percentage of each method on the final
exams at University A. For the three methods that can lead to
correct answers, the percentage of students would applied that
method and arrived at the correct answer are shown for each
assessment.

N ¼ 37

Applied method Post-tutorial

Projection (correct=N) 38% (32%)
Substitution (correct=N) 14% (5%)
System of Eqs. (correct=N) 24% (5%)
Swap subscripts 14%
Other 11%
Blank 0
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When students were asked to plot a histogram of
probability amplitudes, many did not initially account
for the negative sign associated with the second coefficient,
but corrected the mistake following group discussion. In
the moment, all students labeled the Dirac expression for
probability and determined the appropriate expression for
probability amplitude on the two histograms. Students also
correctly articulated the relationship between the proba-
bility amplitude and the probability.
With the addition of the grids to the graphing questions,

students more easily plotted the vectors than in the alpha
implementation (Fig. 10). In both versions, students easily
labeled and identified the projections for the vector given in
terms of jii and jji.
The first question of part III asks students to change

basis. During the in-class tutorial implementation, we
observed that many students did not recognize that they
could use projection as a method for changing basis. In
response, instructors were able to direct students’ attention
to part I of the tutorial without explicitly telling students to

calculate inner products. Of the three interviewed pairs, one
pair did recognize that they could use projection
unprompted when the tutorial asked them to perform a
change of basis. Following some guidance from the
interviewer, all three discussed the strategy in detail before
carrying it through, such as debating which inner products
needed to be calculated to find the two coefficients. When
asked to reflect at the end of the interviews, several
interviewees named this basis-change question as one of
the most useful. They said they appreciated the practice
changing basis and computing inner products.
As described in Sec. III, part IVof the activity is designed

to have students recognize that a vector points in the same
direction, even when it is written in different bases. None of
the interviewees initially expressed the expectation that the
vector would be the same, and some appeared excited to
discover that they were after plotting the two vectors. One
student interviewed from University C exclaimed

Ohh, what?! [Laughs] That’s cool!

This section benefited the most from the grid template since
it allowed students to more accurately plot their vectors and
see that vector, jui, was unchanged (Fig. 2). However one
student treated the two sets of basis vectors as the same set
of horizontal and vertical axes (Fig. 11). This error was
fixed with instructor intervention, when instructors pointed
out that the column vectors for the jv1i and jv2i were
written in the jii and jji basis.
The remaining questions in part IV were the same as the

alpha version. These questions prompt students to use the
analogy of basis in Cartesian coordinates and to explain
the reasons for changing basis (LG4). In response to these
questions, we found that students had rich discussions
regarding the role of notation in communicating the basis
used to represent a vector. Example written student
responses to the question “Explain what changing basis
means for a quantum state” are given below.

We are reorienting the axes of our system.
It means to change to a new perspective.

FIG. 9. Portion of a student’s solution where they used
probability calculations to find the expansion coefficients in a
new basis representation. They started a probability calculation,
jxhþjψij2, but rather than complete the complex square, they just
took the result of the inner product from inside the complex
square.

FIG. 10. Student’s graph of the vector in the new basis.
Inclusion of the grid allowed students to create their own scale
and graph the vectors more accurately.

FIG. 11. Student work where both sets of basis vectors are
drawn as the horizontal and vertical axes. Here the student
incorrectly equates the unit vectors.
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Changing the basis vectors…gives the same vector
written in a different basis.
It [the state] doesn’t change. It’s expressed in another
form.

As intended, the QBT allowed students to make sense of
basis representation in quantum mechanics. In particular,
the use of the Cartesian analogy provided a foothold for
students, as shown in the first quote, where the student
references “reorienting the axes” as they did in part III.
The last follow-up question in part IV expressed the

state jψi in two different bases (jψi ¼ ajþi þ bj−i ¼
cjþix þ dj−ix) and asked why a subscript was not needed
on the ket jψi. Most students agreed the subscripts were not
needed on jψi because “the subscripts on the kets tell us
what basis it is in and jψi does not have to stay in one
particular basis.” However, not all students reached that
conclusion. A few students argued that a subscript would
be useful to indicate the direction because without it the z
direction would be implied.
Written responses from the in class implementation were

consistent with interviews at University C. One pair of
interviewees debated the idea that relabeling the vector when
expressing it in a new basis was useful, “just so you don’t
confuse it.” Meanwhile, when considering the role of sub-
scripts on a ket, one student incorrectly concluded that, if
adding an x subscript was not necessary when expressing a
ket in the x basis, then the subscripts on jix and Sx were
optional.
In Part Vof the tutorial, the focus is on why it is useful to

change basis. We found this section straightforward for
students after they had completed the other portions of the
activity. While engaging with the inclined plane example,
students acknowledged that rotating the coordinate system
made it easier to solve for the position of the car, while
using the more standard horizontal or vertical axes made
solving for potential energy easier, but that neither choice
affected the physical scenario. Students then associated
these responses with quantummechanics, noting that it was
easier to solve for probabilities from measurements of Sz
when the state was represented in the z basis. Students’
correct responses to this last question about identifying
what information is easily accessible, show the success of
the tutorial in addressing LG4.
The interview protocol concludedwith a brief sequence of

open-ended questions prompting students to reflect on the
activity. We found their responses were similar to student
feedback on the alpha version. When asked, students
identified a variety of things that they felt they had learned
and that they found useful (or not) about the activity. First, all
interviewees named practice with, and improved under-
standing of, the change-of-basis procedure as a key takeaway
of the activity. For example, one student said that she

knew [the projection strategy for changing basis], but
not like on the same level that I do now…I didn’t fully

understand it…I knew the equations but not what they
meant.

Students also appreciated how, “all the graphing,” allowed
them to visualize the process.
Second, all pairs of interviewees considered the idea that

basis change does not affect the vector as another key
lesson. When asked what his main takeaways were, one
student remarked

Changing basis does not change the vector. I did not
know that prior to this.

Another student said the activity helped her specifically by
“distinguishing change of basis from measurement.”
Multiple students also discussed how the tutorial helped

them solidify their understanding of the new notation
introduced in the course. One student said

We learned many notations in the QM class and this
thing helped me clear up the things we learned,

while another remarked, “I like bringing it back to 2D,”
because she found that all the new terminology in QM
made it difficult to recognize relationships to concepts she
already knew. The takeaways that students identified
aligned with our intended learning goals for the activity.

VI. EVALUATING EFFECTIVENESS OF THE QBT

Our evaluation of the QBT explicitly assessed how the
tutorial addresses our first two learning goals. We assessed
LG1 by analyzing student responses to a pair of pre and
post-test questions aimed at the effect of changing basis on
a state given before and after the implementation of the
tutorial. To study the effect on the methods students use to
change basis, we compare the results of the quiz results to
years without the QBT and to responses to question 1 on
survey 1 (Fig. 5). LG3 and LG4 were the main catalysts for
the addition of part I and part Vof the tutorial and while our
observations suggest the tutorial is successful, we leave
more detailed analysis for future work.
To discuss effectiveness, we report statistical signifi-

cance (p value) and effect size. A p value less than 0.05 is
taken to be a measure of statistical significance for
comparison between two sets of data. Given the small size
of our sample, we additionally report p values within the
range of 0.05–0.1, which could be interpreted as potentially
significant for a small sample size. To report effect size, we
apply Cramer’s V, which measures how strongly two
categorical fields (counts of true or false responses) are
associated [56]. The effect size for Cramer’s V depends on
the degrees of freedom: number of choices minus 1. For our
true or false questions the degree of freedom is 1, so a small
effect size is given around V ¼ 0.10, a medium effect size
is given around 0.30 and a large effect size is 0.50 or higher.
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A. Pre and post comparison related to LG1:
Effects on the state

In year 3, two questions (Q2 and Q3 in Fig. 5) were given
at University B around the beta implementation of the
tutorial in order to probe the tutorials effectiveness at
improving student understanding about the effects of
changing basis (LG1). Both questions were true or false
(and asked for explanations) and referenced a state given in
the z basis and asked if the following were true: (Q2) “by
writing the state jψi in the x basis, we have changed the
probabilities for measuring along the z direction,” and (Q3)
“by representing the state jψi in the x basis, we’ve created a
new quantum state.” Both questions were given before the
tutorial on survey 1. After the tutorial, Q2 was given on the
quiz three class periods (1.5 weeks) following the tutorial
and Q3 was given at the end of the semester on the
ungraded survey 2. Tables IVand V show the percentage of
correct responses for each questions using matched data.
When answering whether the probabilities were affected

(Q2), 75% of matched students selected the correct answer
on the pretest but only 54% of all students provided a
correct explanation. Roughly half of the explanations
considered correct included a statement about basis being
a choice of representation of “the same physics” informa-
tion. The remaining correct explanations noted that the
change of basis was a reversible process and that the same
probabilities would be found. Students answering incor-
rectly most often associated changing the basis with
making a measurement. The explanations given were
consistent with our preliminary interview findings.

On the post-test (quiz at University B) the number of
correct responses increased to 86% and the number of all
students providing a correct explanation increased to 79%.
There was also a noticeable improvement in the quality of
students’ explanations. Two example student responses
after the tutorial are shown below.

The probabilities are still the same in the z direction. All
we did was find the probability amplitudes in the n
direction.
A change of basis means looking at measurements from
a different perspective. If we revert n to z we should get
the initial probabilities from before. Going mass to
moles shouldn’t change our initial mass. We will still get
our mass if we go from moles to mass.

In both example responses, students argue that the
probabilities would be unchanged for other measurement
outcomes.On survey 1, the first student above argued that the
probabilities would change because that is what happened
based on the Stern-Gerlach experiment. Comparison of the
percentage of correct explanations showed a medium effect
size (V ¼ 0.27, p value of 0.063) for our small N.
When answering the question about whether or not

changing basis created a new quantum state (Q3), 53%
of students answered correctly on the pretest while 47% of
all students also provided a correct explanation. All the
correct explanations argued that a change of basis was just a
change of representation. Seventeen percent of students
additionally included a statement about the reversibility of
changing basis.
At the end of the semester, the percentage of students

answering correctly increased to 82%, with 59% of all
students providing relevant reasoning. As with survey 1,
students’ explanations were consistent with basis being a
change in representation rather than changing the state
itself. More students answered correctly with a medium
effect size (V ¼ 0.31, p value ¼ 0.067).
Responses to both of these pre and post-test questions

provide modest evidence that the tutorial successfully
addresses LG1. After the tutorial, students were more
likely to acknowledge that the probabilities for measure-
ments in the original basis representation were unaffected
and that changing basis did not create a new quantum state.

B. LG2: Methods used for changing basis

Assessing the changes in students’ methods of changing
basis is done in two parts. First, from the collected pre- and
post-test data we can make comparisons between methods
students used to change basis and responses to a question
about which representation converts a state to a different
basis (Q1 from Fig. 5). Second, since in-class assessment
data were collected in previous years, we can make
comparisons at equal points in the semester between
students who experienced the QBT and those who did not.

TABLE IV. Percentage of students answering that changing the
state to the x basis does not change the probabilities for
measurements in the z direction (Q2 in Fig. 5). Pretest and
post-test results are shown with 23 matched students, represent-
ing 92% of the students enrolled in the course. All students
provided some explanation.

Survey 1 Quiz

Pre-QBT Post-QBT

Correct 75% 86%
Correct w/ explanation 54% 79%

TABLE V. Percentage of students answering that changing the
state to the x basis does not create a new quantum state (Q3 in
Fig. 5). Pretest and post-test results are shown with 17 matched
students accounting for 68% of enrolled students.

Survey 1 Survey 2

Pre-QBT Post-QBT

Correct 53% 82%
Corr. w/ corr. explanation 47% 59%
Corr. w/ no explanation 0% 23%
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For a pretutorial assessment, we developed a multiple-
choice question related to the process of changing basis.
The distractors were developed using the list of methods
students used when changing basis on for-credit assess-
ments in previous years. The question, number 1 in Fig. 5,
asked students to identify which expression(s) correctly
convert a state jψi into the x basis. Students were allowed
to select multiple answers. This question was given online
after the requisite instruction related to basis and projection
but before tutorial instruction. Results are presented in
Table VI. Out of 30 students, 11 (37%) identified the
equivalent of using projection (option b), where the
coefficients were replaced with the Dirac expression for
the probability amplitude. However, only 20% of all
students correctly identified projection as the sole correct
answer. This is consistent with preliminary findings
(Table II) in which only ∼30% of students used projection
to change basis at this point in the semester. Each of the
distractors for this question were chosen at similar rates
(with the exception of option d).
As a post-test comparison, we used the change-of-basis

question asked on the quiz (an isomorphic version of the
question asked in years 1 and 2—see Fig. 4). The quiz was

given three lectures (1.5 weeks) after the tutorial. Results
from the quiz, a midterm, and the final exam at University
B are presented in Table VII alongside the quiz data from
previous years when the tutorial was not run.
Eighty-four percent of students used projection to

change basis on the quiz post-QBT, more than double
the number of students who identified the use of inner
products on survey 1. Making a comparison to the quiz in
previous years, the results in year 3 show a marked
improvement in the use of projection: 30% (prior years)
to 84% (post-QBT). The results following the QBT are a
statistically significant increase in the use of projection
versus both of the previous years with a large effect size
(V ≥ 0.50, p value < 0.01).
Further analysis of the quiz post-QBT shows that, of the

students using projection, about half arrived at the correct
answer, while another fifth made an error specifically with
complex conjugation. Three weeks later on the midterm
exam, students were given another change-of-basis ques-
tion in an alternative context. On this midterm exam, 100%
of students used the projection method with 72% arriving at
the correct answer. The results from the midterm and final
show that student’s use of projection persisted throughout
the semester. Addressing an understanding of change of
basis at this early juncture could support students in
learning other quantum mechanical concepts (e.g., time
evolution). The above results suggest the tutorial was
effective at addressing LG2.

VII. DISCUSSION

We have described the process of developing a tutorial
on change of basis in quantum mechanics, and have
conducted a preliminary evaluation of the effectiveness
of the final product. Survey and exam performance data
suggest that the tutorial helps students learn to carry out and
correctly interpret a basis change in the context of spin-½
systems. Development of the tutorial involved an interplay
between research into student understanding, activity
design, and classroom implementation [57].

TABLE VI. Student response rate on survey 1 question 1 from
Fig. 5. Answer options from Fig. 5. The correct option is bolded.
Note: students could select multiple choices.

Survey 1 (Pre-QBT)

Which expression correctly converts jψi into the x basis? Circle
any correct options.

Option % Chosen

a. 1ffiffi
3

p jþix þ
ffiffi
2

pffiffi
3

p j−ix 23%

*b. xhþjψijþix þ xh−jψij−ix 37%

c. jxhþjψij2jþix þ jxh−jψij2j−ix 20%

d. xhþjþijþix þ xh−j−ij−ix 10%

e. 1ffiffi
3

p
x
hþjþi þ

ffiffi
2

pffiffi
3

p
x
h−j−i 27%

TABLE VII. Methods for changing basis from University B from various assessments over a number of years.
Quiz and exam data from years prior to tutorial implementation is replicated from previous tables for comparison.

Quiz Quiz Quiz Midterm Final

Year 1 Year 2 Year 3 Year 3 Year 3

N ¼ 29 N ¼ 34 N ¼ 25 N ¼ 25 N ¼ 25

Attempted method No QBT No QBT Post-QBT Post-QBT Post-QBT

Projection (correct=N) 31% (10%) 30% (18%) 84% (44%) 100% (72%) 100% (72%)
Substitution (correct=N) 48% (3%) 29% (3%) 12% (0) 0 (0) 0 (0)
System of Eqs. (correct=N) 3% (3%) 6% (0) 0 (0) 0 (0) 0 (0)
Other 7% 30% 0 0 0
Blank 7% 3% 0 0 0
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Our original motivation for the QBT came from informal
classroom observations in which we noticed students
struggling to change basis. Analysis of interview and exam
data helped us refine two primary learning goals for the
activity: For students to be able to (LG1) recognize that
changing basis does not change the state or the probabilities
of any measurement on the state; and (LG2) use projection
as a method to change basis with and without prompting.
At this stage, we created an initial version of the QBT,
which asks students to represent a 2D Cartesian vector in
Dirac notation and its components as inner products,
change basis, and plot the vector with both coordinate
systems on the same graph (parts II–IV).
Observations from a classroom implementation of the

alpha QBT version led us to identify the need for two
auxiliary learning goals to support the primary ones: (LG3)
Identify the coefficients in a basis expansion (a) physically
as probability amplitudes and (b) mathematically as inner
products; and (LG4) recognize that a reason for changing
basis is making desired information more readily acces-
sible. Parts I and V were added to the tutorial to address
these goals, and help better achieve LG1 and LG2.
Classroom observations also led to minor modifications
to refine the language in the other parts of the QBT.
Following these additions and improvements, we con-

ducted another classroom implementation (beta) of the
QBT, and also administered the activity in interviews. We
also administered pre- and post-tests (surveys, quizzes, and
exams) with conceptual and computational questions about
change of basis. This implementation provided additional
opportunities for our investigation of student understanding
(see Sec. II), led to some additional improvements to the
activity, and allowed for preliminary evaluations of the
effectiveness of the QBT. Results of the quiz and survey 2
following the beta implementation suggests that the QBT
helped students achieve LG1 and LG2. A set of true-false
questions showed that, following the QBT, students were
better able to articulate that a change of basis is just a
change of representation for that state. A comparison of
quizzes to prior years showed that students more frequently
and more accurately applied projection when changing
basis after completing the QBT. Investigation of the QBT
with respect to our auxiliary learning goals LG3 and LG4 is
left to future research.
In addition to the success of the QBT in the context of

spins, in our own classes we were able to use the activity as
a touchstone as we progressed through more advanced

topics including spin-1 systems, time evolution, and spatial
wave functions. We were thus able to fall back on a familiar
language and representation. Anecdotally, we observed less
student discomfort [58] with the shift to continuous bases,
and more spontaneous use of language and ideas about
using projection as the primary tool to change basis.
Overall, as instructors, we perceived that the QBT gave
a meaning to changing basis beyond just being a procedure.
Student understanding of basis presents a fruitful area for

research. Our continuing work explores how students
connect the concepts related to change of basis for spin
systems to the wave function portion of the course. The
topic of basis is equally important when working with
position, energy, and momentum representations where the
same wave function can be written in terms of different
variables or as a superposition of energy eigenfunctions
which are each individually functions of position. Student
feedback from the alpha version showed the activity was
helpful even at the later point in the semester, but further
research needs to be conducted into how ideas such as inner
products or superpositions are affected by the transition
from discrete spin states to continuous wave functions.
On-going work is exploring other modalities for tutorial

instruction. The time intensiveness of tutorials is often a
hurdle for instructors when it comes to incorporating them
into the classroom.We have created an online version of the
QBTas part of a larger project to adapt this and other ACE-
QM [1] activities to an online environment [59]. The online
version adds interactive guidance elements. Design of these
guidance elements was informed by the results discussed
here. In future work, we will be exploring the effectiveness
of adaptive, online tutorials.
In summary, we developed the QBT through an iterative

process of research and activity design. The process
included multiple classroom trials, which led to modifica-
tions of the activity and contributed to our investigation of
student ideas about basis and change of basis. The result is
a tutorial that effectively helps students to make sense of
and carry out a change of basis in quantum mechanics by
drawing an analogy between quantum state vectors and 2D
Cartesian vectors.
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