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A common task when problem solving in quantum mechanics, including in a spins-first curriculum,
involves changing the basis of a given state. Our research in undergraduate quantum mechanics courses at
three institutions explores student thinking about basis, basis expansion coefficients, and change of basis in
the context of spin-½ systems. Our investigation is based on conceptual and computational written
questions as well as student reasoning interviews. We identify student ideas about whether and how
changing basis affects the state, examine how students perceive notation as indicative of choice of basis,
explore students’ interpretations of the structure and meaning of a basis expansion, and identify the range of
methods students employ when changing basis. For instance, we find a recurring idea that changing basis
alters the physical system, and observe that some students chose to relabel the ket representing a quantum
state vector after changing basis. Together, these results paint a broad, qualitative picture of a variety of
ways that students grapple with basis and change of basis, with potential implications for instruction.
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I. INTRODUCTION

Basis is a fundamental concept in quantum mechanics,
and converting between bases is a routine task when
solving quantum mechanical problems. States and observ-
ables are typically expressed in terms of a single set of basis
vectors. Physicists often choose to represent quantum states
in terms of a basis that corresponds to an observable
(measurable quantity) of interest. Depending on the physi-
cal system, the bases used may be continuous or discrete,
but a basis is always present when writing the state of a
quantum system. In this paper, we explore student ideas
related to basis, methods of changing basis, and coefficients
in a basis expansion within the context of a spins-first
quantum mechanics course and with a focus on Dirac
notation.
Although all representations of a quantum state provide

equal information in the abstract sense, the choice of
basis determines which information is easily accessible.
Changing basis involves performing a calculation that
converts between such representations. It neither affects
the mathematical identity of the represented state nor does
it alter the physical system that the state vector describes.

As an example, in spin-½ systems, there are two possible
outcomes for measuring the spin angular momentum (S)
along a given axis: þℏ=2 or −ℏ=2. Any such two-state
system can be described using two orthonormal basis
states, corresponding to each of the possible outcomes.
Consider the following two expressions for the same
quantum mechanical state, jψi:

jψi ¼ 2ffiffiffi
5

p jþi þ 1ffiffiffi
5

p j−i; ð1Þ

jψi ¼ 3ffiffiffiffiffi
10

p jþix þ
1ffiffiffiffiffi
10

p j−ix; ð2Þ

where j�i are the eigenstates of the Sz operator, often
referred to as the z basis or Sz basis, and j�ix are the
eigenstates of the Sx operator, often referred to as the x
basis or Sx basis. The coefficients in Eq. (1) are probability
amplitudes related to measuring a particle to have spin
þℏ=2 or −ℏ=2 along the z axis, corresponding to the
eigenstates jþi and j−i, respectively. Equation (2) displays
different probability amplitudes because the values are
related to measurements of the Sx operator corresponding
with spin along the x axis. It is convention to assume that
the kets j�i are the eigenstates of Sz unless there is a
subscript indicating a different direction.
Although Eqs. (1) and (2) are written in different bases,

both represent the same quantum mechanical state. Any
advantage of one expression over the other depends on the
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particular information that is desired or the calculation
that is being performed. Converting between bases can
be useful, e.g., for determining measurement probabilities
for different operators or for determining how states
evolve in time.
In recent years, there has been a growing body of

research on students’ difficulties with quantum mechanical
concepts [1–10] and on the resources students use when
working with those concepts [11–13]. Further research
has focused on the mathematical components of quantum
mechanics, including student understanding of Dirac and
linear-algebraic representations [14–16], calculation and
sense making of expectation values [1,7,17–19], boundary
conditions when solving for energy eigenstates [20], and
the process of normalization [21]. Serbin et al. have
investigated student and expert use of language related
to basis in quantum mechanics [22], but little other research
has specifically attended to student understanding of basis
and change of basis in quantum mechanics.
There are multiple calculations that can be used to

convert between bases. When working with orthonormal
bases as is typically done in quantum mechanics, the
method that often requires the fewest lines of algebra uses
inner products of the given state with the new basis vectors
to determine the coefficients in the new basis. For example,
the coefficient 3=

ffiffiffiffiffi
10

p
in Eq. (2) is given by the inner

product of the jþix basis state with jψi: xhþjψi. This
calculation (with a similar one for the other coefficient,
1=

ffiffiffiffiffi
10

p
) can be used to derive Eq. (2) given Eq. (1); i.e., to

change jψi from being expressed in the Sz basis to being
expressed in the Sx basis.
Previous research has explored how students connect

the inner product with probabilities in a wave functions
context [9]. Wan and colleagues found that students
identified the coefficient associated with expansion in
the energy basis, but did not know to solve for it using an
inner product. This is similar to recognizing 2=

ffiffiffi
5

p
as a

coefficient in Eq. (1), but not recognizing how to represent
it as an inner product (e.g., hþjψi). Note that although the
two situations are analogous, they are not the same: the
context of continuous wave functions includes additional
concepts beyond those necessary for spins, such as
connecting the inner product to an integral expression.
As such, it is worth investigating this topic in the context
of spins specifically.
In a separate study, Wan and colleagues noted that “many

students do not recognize the measurable effects of relative
phases” because they do not consider observables associated
with bases other than the one provided [23]. Basis is also
relevant in other studies of student reasoning about relative
phases in spin-½ states [24]. Other work exploring students’
methods for computing expectation values found that
students may not think to change basis, even if doing so
is required to solve the problem [17]. The present study
complements prior work with a comprehensive examination

of student ideas about basis and change of basis specifically
in the discrete (spin-½) context.
In the mathematics education community, research has

focused on student understanding of two properties asso-
ciated with a general basis in linear algebra [25]: span and
linear independence [26–30]. In quantum mechanics, basis
states are typically further restricted to being orthogonal
and normalized. Because physicists can exploit orthonor-
mality, the methods for changing basis in physics classes
are different from the more universal methods needed for
general bases in linear algebra. Mathematics education
research on basis has a broader scope and does not account
for the specific use of basis in quantum mechanics.
Given the significant role that basis plays in a spins-first

course, as well as the importance of changing basis when
solving problems in quantum mechanics more generally,
we extended prior research by administering several sur-
veys, conducting interviews, and examining three years of
students responses on quizzes and exams. Applying a
phenomenographical perspective [31–33], we address the
following research questions in a spin-½ context:

RQ1: How do students interpret a change of basis with
respect to both the physical nature and the represen-
tation of the state?

RQ2: What methods do students use when performing a
change of basis for a quantum state?

RQ3: How do students interpret coefficients in a basis
expansion and/or relate them to inner products?

A state may be represented in a number of ways (e.g.,
with Dirac notation, with matrix notation, or graphically).
Although this study focuses primarily on Dirac notation,
we do discuss examples where other representations are
relevant.
Using a variety of data sources, we identified the ways

students change basis and the ideas related to different
facets of understanding basis. This qualitative analysis will
help inform the development of curricular materials [34].

II. METHODOLOGY

Data were collected over three years from three public
universities. Universities A and B are large, Hispanic-
serving, primarily undergraduate institutions with between
25 and 55 students enrolled in upper-division quantum
mechanics in a given year. University C is an R1, Ph.D.
granting institution with 60þ students enrolled in quantum
mechanics each semester.
The quantum mechanics courses from which data were

collected used a spins-first instructional paradigm follow-
ing McIntyre’s “Quantum Mechanics” textbook [37]. Each
course was taught by one of us, who used similar interactive
instructional materials including multiple choice concept
questions and tutorials to emphasize conceptual under-
standing of the material [35]. We met weekly to discuss
the curriculum and shared select quiz and exam questions.
Two of the courses were paced similarly and only covered
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material through the infinite and finite square well.
Additional topics covered at University C included the
free particle, orbital angular momentum, and the hydrogen
atom. All courses met in person.
To address the three research questions, we analyzed a

variety of data sources, including interviews, surveys,
and for-credit assessments. Tables I, II, and III show an
abbreviated list of questions that were given to students for
the purposes of this study. A standard change of basis
question (Table II) was given at different points over the
three year span on exams at the three universities. An
isomorphic version of the question was given to students in
interviews conducted at Universities A and B—we refer to
these as the “exploratory interviews.” Several ungraded
surveys (S1, S2, and S3) were later administered to provide
insight into specific ideas related to research questions RQ1
and RQ3. Interviews probing these ideas were also con-
ducted with students at University C—we refer to these as
the “follow-up interviews.” The surveys and interviews are
described in more depth below.
We employed methods of phenomenography to inves-

tigate the range of student ideas. A phenomenographical
approach is a qualitative approach that aims to identify and
categorize the variations among individuals’ perceptions
and conceptualizations of phenomena [31–33]. Students
responding to a question in similar ways may share a
similar conceptualization of that phenomena regardless of

correctness. In the present study, the categories used in
analysis were emergent from the data and used as a
description for procedures or lines of reasoning that arose
multiple times. Because the majority of the data collected
includes interviews and written explanations, we approach
the data from a qualitative perspective to identify student
ideas related to basis and change of basis. In this work, we
catalog both correct and incorrect ideas and procedures, as
our goal is to uncover the breadth of ideas that students
express.

A. Data and analysis:
Interpretations of changing basis (RQ1)

Of the three administered surveys, S1 and S2 included
questions designed to probe students’ interpretations of a
change of basis. In addition to these surveys, both rounds of
interviews included elements that targeted RQ1. In the
exploratory interviews, which followed a semi-structured
format, students were asked to carry out a change of basis,
and then asked if the state at the end of calculation (in the
new basis) was the same state as the one given in the
problem (in the basis of Sz) or whether a new state had been
created. The exploratory interviews preceded and informed
the design of the surveys.
Survey S1 (Q1–Q3, Table I; Q8, Table III) was given

as part of regular online prelecture assignments, which

TABLE I. Survey questions targeting RQ1 regarding students’ interpretation of a change of basis. Surveys S1 and S2 were both
administered at one institution throughout a quantum mechanics course. Identical versions of surveys S1 and S2 were administered to 6
student interviewees at a second institution. Correct answers to true or false and multiple-choice questions are given in bold.

Survey S1
N ¼ 29

Q1 By writing the state jψi in the x-basis, we’ve changed the probabilities for measuring along the z-direction.
Choose one and explain your response: True False

Q2 We can’t know the probabilities for measurements along both the z-direction and the x-direction at the
same time.
Choose one and explain your response: True False.

Q3 By representing the state jψi in the x basis, we’ve created a new quantum state.
Choose one and explain your response: True False

Survey S2
N ¼ 27

Q4 Consider a spin-½ state written in terms of the z-basis vectors: jϕi ¼ 3
5
jþi − 4

5
j−i. Suppose we rewrote this state

in terms of the x-basis vectors. (The coefficients in all the answers are correct.) How would you choose to label
the state now? Explain your choice.
a. jϕi ¼ − 1

5
ffiffi
2

p jþix þ 7

5
ffiffi
2

p j−ix (Don’t relabel the state)

b. jϕix ¼ − 1

5
ffiffi
2

p jþix þ 7

5
ffiffi
2

p j−ix (Add an x subscript on the state)

c. jαi ¼ − 1

5
ffiffi
2

p jþix þ 7

5
ffiffi
2

p j−ix (Give the state a new name)

Q5 In the previous question, did rewriting the state in the x basis create a new quantum state? Explain your choice.
a. Yes
b. No

Q6 jþi represents the spin-½ state with Sz eigenvalue þℏ=2. What is jþiy? Explain your choice.
a. jþiy is the state with Sy eigenvalue þℏ=2
b. jþiy represents jþi in the y basis.

c. BOTH of the above.
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received participation credit only. The survey was com-
pleted by N ¼ 23 students at University B after relevant
course instruction. Survey S2 (Q4–Q6, Table I) was given
in the same class at the end of the semester as an optional
survey (N ¼ 21).
Survey S1 was also given at University C in a set of

interviews carried out with 3 pairs of student volunteers
(N ¼ 6) who were currently enrolled in the quantum
mechanics course. These follow-up interviews followed
a semistructured format. First, interviewees complete sur-
vey S1 working alone. Then the interviewed pairs com-
pleted an instructional activity related to basis and change
of basis within the context of spin-½ systems, with limited
guidance from the interviewer. Finally, the interviewed
students also completed survey S2 on their own several
weeks after their interview.
Questions Q1–Q3 are true or false questions given to

probe ways that students might think a state has been
physically altered by changing basis. These questions are
presented in Table I. Q1 asks whether changing basis
affects measurement probabilities. Q2 asks whether meas-
urement probabilities (not outcomes) are simultaneously
knowable for multiple directions. Q3 asks whether chang-
ing basis creates a new state. These questions are primarily
targeted towards students’ interpretation of change of basis
with respect to the physical nature of the state.
Questions Q4–Q6 probe student understanding of nota-

tion as it relates to basis (also in Table I). Q4 asks whether a
ket should be relabeled after changing basis. Relabeling a
ket jϕimeans either adding a subscript (e.g., jϕix) or giving
it a new name (e.g., jαi). Q5, like Q3, asks whether a new
state has been created by the change of basis. Q5 was asked
again to complement Q4, allowing the survey to distinguish
students’ use of notation for states in different bases from
their interpretation of the process and consequences of
change of basis. Q6 asks students to interpret the subscript
on jþiy; we asked Q6 to probe student understanding of
subscripts as they relate to basis to complement Q4 answer
(b), which suggests applying a subscript to a ket after
changing basis. These questions are primarily targeted
towards students’ interpretation of change of basis with
respect to the representation of the state.
When coding students’ responses to questions Q1–Q3,

we identified specific reasoning elements. A reasoning
element is an idea or line of argumentation a student uses to
justify or explain their answer; for example, the “conflation

of change of basis with measurement” element arose in
students’ explanations for why they expected measurement
probabilities to differ after a change of basis was applied to
a state. Reasoning elements are similar to resources [38],
but are not necessarily as primitive or fundamental. In line
with our phenomenographical approach [31–33], the rea-
soning elements we present generalize multiple students’
statements, and we present all reasoning elements regard-
less of correctness.
We also identified broad ideas, which we define as

possible answers to RQ1: according to students, what effect
(if any) does changing basis have on the physical nature
and/or the representation of a state? A priori, one might
anticipate at least two broad ideas—changing basis does or
does not have or result in a physical effect—as well as,
possibly, others related to ways in which changing basis
affects or is reflected in the representation of the state. We
found that three distinct broad ideas emerged from student
responses, outlined below (Sec. III A). Each reasoning
element is consistent with only one broad idea, but a single
broad idea may have multiple consistent reasoning elements.
For example, we label statements that changing basis alters
the physical system as belonging to a single broad idea
category, but students employed a variety of reasoning
elements to justify answers consistent with this idea.
The broad ideas and reasoning elements were originally

identified by the first author, and then refined in discussion
with five of the authors. These codes, which were emergent
from the survey S1 data, were then applied to the analysis
of related questions from survey S2. We also analyzed
discussions from both the exploratory and follow-up inter-
views in light of these codes; in particular, interviews
afforded us a closer look into student thinking related to the
broad ideas and reasoning elements. Although we had
a priori notions for how to categorize these data, using
emergent coding allowed us to identify unexpected dis-
tinctions in students’ ideas. Results from this analysis are
discussed in Sec. III A.

B. Data and analysis:
Methods for changing basis (RQ2)

To determine which methods students use when chang-
ing basis, question Q7 was given in interviews and on for-
credit assessments at all three institutions. Shown in
Table II, Q7 asks students to write a state in terms of a
new set of basis states. In addition to being given on exams,

TABLE II. Interview and exam question targeting RQ2 regarding methods students use when changing basis. Versions of this question
were administered to students at each of the three institutions on several for-credit quizzes or exams in multiple semesters. Different
versions omitted the hint and/or changed the numerical coefficients in the definitions of j�in.
Interviews and assessments
N ¼ 237

Q7 Consider a spin-½ particle prepared in the state jψi, written in the z basis as jψi ¼ 1ffiffi
2

p jþi þ i 1ffiffi
2

p j−i
Write the state in the n basis assuming jþin ¼ 1ffiffi

3
p jþi þ i

ffiffi
2

pffiffi
3

p j−i and j−in ¼
ffiffi
2

pffiffi
3

p jþi − i 1ffiffi
3

p j−i.
Hint: Solve for the values of a and b such that jψi ¼ ajþin þ bj−in
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a version of Q7 was part of a set of interviews across
Universities A and B in the second year of data collection
(the exploratory interviews, N ¼ 22). These think-aloud
interviews were conducted with paid student volunteers
who were enrolled in the quantum mechanics course. The
interviews followed a semistructured protocol, allowing
room to probe students’ conceptual understanding of basis.
To address RQ2, we focus on how students went about
changing basis in the interviews.
Beyond the interviews, separate variations of question

Q7 were given in different semesters for a total of 215
written responses from the three universities (N ¼ 237
including interviews). With the exception of one adminis-
tration (N ¼ 37), all variations included complex coeffi-
cients but used different numerical values for the
probability amplitudes in the given state and basis states.
Analysis of the procedural change of basis question (Q7)

produced categories describing the different approaches
students used to calculate a change of basis. For example,
student responses that used inner products to calculate
coefficients were labeled as using the “projection” method,
while student responses that used algebraic manipulation
and substitution were considered a separate category. The
application of these categories required minimal interpre-
tation beyond parsing students’ handwritten work. All of
the responses were coded by two authors, and the list of
categories were agreed upon by all authors. Results from
this analysis are discussed in Sec. III B

C. Data and analysis:
Coefficients and inner products (RQ3)

Survey questions were also administered to investigate
students’ interpretations of basis expansion coefficients and
the ways they relate to inner products. Relevant questions
are shown in Table III. Survey S1, described above, also
included Q8. In question Q8, students were given a state
and asked what information is provided by the coefficients
in the expansion of a state in a basis.
Survey S3 (Q9 and Q10) was given in class (N ¼ 24)

after all relevant instruction. Question Q9 asked students to
describe the meaning of an inner product written in Dirac
notation, yhþjψi. Question Q10 probed whether students

could generate the generic expression for the expansion of a
state in a basis; e.g., jψi ¼ ajþin þ bj−in in the n basis.
When previously asked to change basis (Q7), the question
text included this expression in a hint.
When analyzing student responses to Q8–Q10, we

focused on two steps that are involved when using
projection inner products as a method for changing basis:
recognizing that a state can be written as an superposition
of other basis states; and connecting basis expansion
coefficients with inner products. We identified the different
ways students addressed these concepts in their responses,
using a coding strategy similar to our strategy for RQ1:
categories emerged from the data and were refined in
discussion among us to increase confidence in our inter-
pretation of students’ written statements.

III. RESULTS

In this section,we present a variety of student ideas on basis
and change of basis in the context of a spin-½ system. First,
addressing RQ1, we describe the ideas that students express
when they are asked to interpret the meaning of a change of
basis and its implications on the state (Sec. III A). Second,
addressing RQ2, we identify the procedural methods that
students use when they are asked to represent a state in a new
basis (Sec. III B). Finally, addressingRQ3,we discuss student
understanding of the structure of a basis expansion and
students’ interpretation of the coefficients, of inner products,
and of the relationship between the two (Sec. III C).

A. Interpretations of changing basis (RQ1)

To explore student understanding of how changing basis
affects the quantum state, interviews and written questions
were designed to target specific conceptual and notational
aspects of basis and changing basis. Three broad ideas
arose in student responses to these survey questions, as well
as in dialogue in interviews. These ideas are summarized in
Table IV and described in detail below.
A basis change is akin to expressing a vector in a

different coordinate system. As such, it has no effect on the
quantum state, and does not require relabeling the asso-
ciated ket (quantum state vector). This is broad idea (i): the
idea that changing basis does not affect the physical system

TABLE III. Survey questions targeting RQ3 regarding students’ interpretations of coefficients in a basis expansion. Survey S1 also
included questions presented in Table I. Like surveys S1 and S2, survey S3 was administered at one institution in the quantum
mechanics course.

Survey S1
N ¼ 29

Q8 Consider a spin-½ electron prepared in the state jψi ¼ 1ffiffi
3

p jþi þ
ffiffi
2

pffiffi
3

p j−i
What do the coefficients in this expression (the 1ffiffi

3
p and the

ffiffi
2

pffiffi
3

p ) tell you about the state?

Survey S3
N ¼ 24

Q9 Consider a quantum state jψi. What is the meaning of yhþjψi? Describe what the symbols are as well as any
physical meanings you associate with the expression as a whole.

Q10 How can we represent a general state jψi in the Sx basis? Write an expression for any unknown variables you use.
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or the state vector. In other words, changing basis does not
affect the state.
Broad idea (ii) is the idea that changing basis has a

physical effect, such as modifying measurement probabil-
ities or outcomes. If we ask “Does changing basis affect the
state?,” a student holding broad idea (ii) might answer
affirmatively. However, we must disambiguate the word
“state,” as students may use it to mean the state vector (the
ket), or the physical system. Broad idea (2) specifically
refers to students thinking that the physical system is
changed as a result of changing basis.
A related question is, “Does changing basis involve

relabeling the state vector (i.e., the ket)?”Broad idea (iii) says
yes: it is the idea that a state vector can or should be labeled
differently when represented in a different basis. We saw no
instances where students simultaneously argued that the
physical system had been altered by a change of basis but
that the notation for the state vector should remain
unchanged. However, we did encounter cases where students
opted to relabel the state vector following a change of
basis, but nonetheless argued that the physical system was
unaltered. Therefore, broad idea (iii) emerged as a distinct
category from broad idea (ii). As such, students opting to
relabel after a change of basis certainly places their response
under broad idea (iii), but is insufficient evidence determine
whether or not they also hold broad idea (ii).

In quantum mechanics, there is (up to global phase) a
one-to-one correspondence between the configuration of a
physical system and the quantum state vector describing that
configuration.When the distinction between physical system
and quantum state vector is relevant to distinguishing student
ideas in the discussion below, we use the terms “physical
system” and “quantum state vector” (or “ket”) explicitly.
Otherwise, when we use the term state, we refer to both the
physical system it represents and the corresponding state
vector. When students say state, we cannot always be certain
if they mean one or both of these things. For the purposes of
this analysis, whenever possible, we infer what students
mean by the word state from context.
Students’ responses to the various questions included a

range of reasoning elements consistent with one of the three
broad ideas, as summarized in Table IV. Although indi-
vidual responses largely fell under one of these three ideas,
different responses from the same student sometimes
aligned with multiple ideas, indicating that students’ ideas
about the meaning of basis and change of basis were fluid,
and that different questions could draw out different
reasoning elements for students.
In the following three subsections, we elaborate on the

three broad ideas and provide relevant examples from
student work. The survey questions referred to in this
section can be found in Table I.

TABLE IV. Students expressed a range of reasoning elements on different questions probing their understanding of change of basis and
its affect on both the physical system and the quantum state vector (ket) describing that system. Each reasoning element is consistent with
one of three broad ideas, which represent possible interpretations of the effect of change of basis on a quantum state. Different questions
(from Table I) invoked different reasoning elements. The table also gives examples of answers that were consistent with the broad idea.

Broad idea Consistent expressed reasoning elements Answers given

(i) Changing basis does not
affect the physical system or the
state vector (Sec. III A 1)

Choice of basis is strictly a means of
representing a state vector.

Change of basis is strictly a reversible
calculation.

Stating that changing basis does not change
measurement probabilities, and choosing to
retain a ket’s original label when representing it
in a new basis.

For example, answering “False” on Q1
or (a) on Q4.

(ii) Changing basis alters
the physical system
(Sec. III A 2)

Changing basis is the same thing as making a
measurement.

One cannot know probabilities for spin
measurements along different directions at the
same time (misinterpretation of the uncertainty
principle).

jψi is associated with just one pair of spin-up/
down probabilities.

Stating that changing basis changes
measurement probabilities.

For example, answering “True” on Q1.

(iii) Changing basis can involve
relabeling the state vector (i.e.,
the ket) (Sec. III A 3)

Notation (e.g., a subscript on a ket) indicates
choice of basis (by convention).

It is useful to indicate choice of basis with
notation (even if convention does not require it).

A ket or state vector is mathematically distinct
when represented in a new basis (even if it
describes an unchanged physical system).

Choosing to relabel a ket when representing it in
another basis (e.g., jψi → jαi), or choosing to
add a subscript to a ket when representing it in
another basis (e.g., jψi → jψix).
For example, answering (b) or (c) on Q4.
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1. Idea that changing basis does not affect
the physical system or the state vector

Correct answers to questions Q1–Q5 are consistent with
this broad idea. Students answering these questions cor-
rectly provided explanations along two lines: that basis is
just a means of representing a state, and that change of basis
is a reversible calculation.
First, some students argued that changing basis did

not alter the physical system nor the state vector because
a basis is just a means of representing the same state vector.
In response to Q5, one student said

It isn’t creating a different state, it’s writing the same
state in a different representation.

Some students drew an explicit analogy with coordinate
systems, as in this response to Q5:

Our choice of basis does not change the state, just like
our coordinate system does not change where something
physically is.

Another student made a similar analogy but instead with
unit conversion, saying in response to Q1,

To me, I see doing a change in basis similar to doing
unit conversions in a way. “Going from mass to moles
does not change our initial mass.”

Whereas the first line of reasoning centers on the
meaning of basis, the second focuses on the idea that
change of basis is only a calculation—in particular, one that
can be undone. One student presented this reversibility
argument in response to Q3 as follows:

It is the same quantum state...converting back and forth
will not change the original state.

The argument that change of basis is a reversible calcu-
lation arose in multiple students’ correct explanations for
these five questions.
Students in both rounds of interviews cited both revers-

ibility and the idea that a basis is a choice of representation
as reasons why changing basis does not alter the state. No
other lines of reasoning identified as completely correct
were evident in our sample.

2. Idea that changing basis alters the physical system

Questions Q1, Q2, and Q3 targeted student thinking
around how changing basis might affect the physical
system—an answer of true to any of those question
suggests student reasoning that is consistent with the broad
idea that changing basis alters the physical system, and
students’ explanations illuminate reasons why they may
hold this belief. These findings confirm what we observed

in the exploratory interviews, in which students made
statements consistent with broad idea (2). We encountered
three reasoning elements in explanations to answers con-
sistent with the broad idea that changing basis has a
physical effect.
The first is the notion that a state is associated with a

specific basis and thus tied to a specific pair of (physical)
spin-up or spin-down probabilities. In reality, a single state
encodes all possible pairs of probabilities at once—that is,
probabilities for spin measurements along any axis. Among
the reasons given in favor of True for Q1 and Q3 was the
response that “the probabilities”would be different after the
change of basis. By probabilities, students appear to mean
the pair of probabilities for measuring spin-up or spin-down
along a specific direction. For example, in an explanation
for Q1, one student wrote

If you change the orientation, you will get different
probabilities.

While this statement would be true if the student were
discussing changing the orientation of a measurement,
they gave it as an explanation for why changing basis
from the z basis to the x basis would alter the probabilities
for measurement along the z direction. This line of
reasoning arose in responses to both Q1 and Q3. Similar
reasoning arose in the exploratory interviews: some stu-
dents argued that the probabilities for “spin-up” and “spin-
down” had changed with the change of basis. Again,
students seemed to associate the state with just one pair
of spin-up or spin-down probabilities.
The second reasoning element that arose was misappli-

cation of the uncertainty principle. Q2 asked whether it is
possible to know the probabilities for measurements along
multiple axes simultaneously. Because these probabilities
are directly encoded in basis expansion coefficients,
responses arguing that knowing this information simulta-
neously is physically impossible (answers of true) are
consistent with the idea that the state vector representing
a physical system is tied to a single basis, and that therefore
change of basis alters the physical system. Some students
who answered Q2 in this way alluded to the uncertainty
principle, incorrectly extending it to apply to measurement
probabilities as well as measurement outcomes. For exam-
ple, one student said

We can only be certain of the probabilities for mea-
surements in only one direction at a time.

This interpretation of the uncertainty principle was also
consistent with other students’ justification for answering
true for Q1:

By changing the z basis to x basis we...now only can
calculate the outcome in the x direction.
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If this interpretation of the uncertainty principle were
accurate—meaning that probabilities for incompatible
measurements could not be known simultaneously—it
would imply that changing basis creates and destroys
information and would suggest that change of basis is
(or is associated with) a physical process.
The third reasoning element we observed demonstrated

a conflation between the process of change of basis and
the act of making a measurement. Unlike change of
basis, measurement is a physical procedure that does
alter probabilities. For example, measuring spin along
the x direction provides a definite value for that observable,
but in general invalidates any previously known probabil-
ities for, say, the z component of spin.
If a student conflates measurement with change of basis,

they may misapply a valid understanding of measurement
to draw invalid conclusions about the consequences of a
changing basis. Some responses appeared consistent with
this conflation. For example, some students referred to
the effect of measurement to justify their answer for Q2.
One student said

The act of measuring in one direction will alter the
system such that the other direction would be random.

Arguments about measurement arose in responses to Q1
and Q3 as well. One student responded to Q1 with the
argument that,

…measuring in another basis will alter the probability
of the output that comes out in the z direction. I think this
is because measuring a state alters it.

The same student made a similar argument in answer to Q3:

By measuring it in that axis we have an altered quantum
state…

Responses like these suggest that some students conflate
change of basis with the physical act of making a
measurement. The same conflation was made by some
students in the follow-up interviews. In a debrief at the end
of their interview, one student named distinguishing basis-
change from measurement as one of the key things they had
learned during the interview. (The follow-up interviews
included an instructional activity, which was completed
after interviewees took survey S1.)

3. Idea that changing basis can involve relabeling
the state vector (i.e., the ket)

In both interview and written contexts, students often
elected to relabel a ket when representing it in a different
basis. Options (b) jϕix and (c) jαi for Q4, which asked how
best to label a ket after a change of basis, exemplify this idea
(see Fig. 1). We consider these choices incorrect because
relabeling is not necessary and has the potential to lead to

confusion (for example, relabeling could suggest that the
Dirac notation expressions for the state in each basis cannot
be related by an equals sign, whereas they are in fact equal).
Students’ justifications for relabeling a ket after chang-

ing basis appeared to fall in two categories: one argument
was that the notation for a ket plays a role in indicating
choice of basis; the other was that a ket represented in a
different basis is somehow a mathematically distinct object
from the ket represented in the original basis.
The first argument that students gave in favor of

relabeling a state vector after changing basis was that
the notation for a ket either does, or should, indicate the
basis used to represent the state. This reasoning element
arose both in responses to Q4 and in the interviews.
Students who choose to relabel a ket after changing basis
may understand that neither the physical system nor the ket
itself have changed, but they may still consider relabeling
to be notationally useful.
Subscripts—specifically subscripts on the angle bracket

of the ket, such as jþix—arose as the notation of choice for
some students who opted to relabel a ket after changing
basis. Some did not see the addition of a subscript as
equivalent to giving the ket a new name, and some saw
subscripts as playing a special role in indicating choice of
basis. This explanation for choosing jϕix as the answer
to Q4 demonstrates both of these ideas:

We can write states in different basis if we indicate it
with a subscript on the state. The state itself doesn’t
change in a different basis so there’s no need to give it a
new name [referring to jαi].
Q6 was designed to probe students’ interpretation of

subscripts on a ket. Some students opted for choice
(b) alone, which argued that jþiy is jþi in the y basis.
Other students argued that both (a) and (b) were true, with
choice (a) correctly defining jþiy as an eigenstate of Sy.
Choices (a) and (b) are mutually inconsistent if you also
recognize that jþi is not also an eigenstate of Sy. However,

FIG. 1. Q4 from Table I, repeated here for convenience. When
considering whether changing basis involves relabeling the state
vector, students may either (a) not relabel; (b) relabel by adding a
subscript to the ket; (c) relabel by using a new symbol inside the
ket. The correct answer is (a).
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both choices are consistent if one believes that a subscript
on a ket indicates the basis used to represent the state.
The idea that the subscript on a state vector denotes basis

arose in the interviews as well. After concluding that a ket
need not have a subscript added after changing basis, one
student also concluded that the x subscript on jþix was
optional, while another suggested that Sx and Sy were the
same matrices expressed in different bases. Note that the
notation for a ket does not indicate basis choice, but there
are other contexts where subscripts are used to indicate
basis, such as in matrix representations [39].
The second argument students used for relabeling a state

after changing basis was not that it was simply useful (or
required) notation, but that the state vector written in the
new basis was somehow distinct from the original state
vector. Here we refer to the “state vector” as a distinct
concept from the physical system it describes. Hence this
line of reasoning belongs here, under broad idea (iii), as
opposed to under broad idea (ii), because either we could
not assume from context that the student believed the
physical system had been altered, or alternatively, the
student made it clear they did not believe anything had
changed physically.
Students making the argument that the state vector

somehow changed appeared to consider the choice of basis
as part of the identity of the state vector. Interviews
illuminated this reasoning element. Comparing the vector
(temporarily labeled jki) resulting from a change of basis to
the original vector (labeled jui), one student argued that

They are the same vector when they are both expressed
in the same basis...jki in the i basis is just jui.

This student identified being “expressed in the same basis”
as part of what it means to be “the same vector.” Another
made a similar claim:

It’s still different components even though it’s the same
vector. It isn’t jui [the original vector] because jui is in
a different basis

This student argued that a vector written in two different
bases can no longer be identified by the same symbol (jui)
because of the different axes and values used to describe it,
even if they both describe the same unaltered physical
system. They focused on the difference in representation
rather than the fact that both versions represented the same
physical system.
Broad idea (iii)—that changing basis can involve

relabeling the state vector—can be distinct from broad
idea (ii)—that the physical system has been altered. As an
example, one student who opted to give the ket a new label
in Q4 nonetheless argued that it described the original
quantum state in response to Q5 (not consistent with broad
idea (2)):

It’s the same state, but it is just represented in a different
coordinate system. (it looks different but its the same.)

This student argued convincingly that the physical system
has not been altered by the change of basis. Their response
is consistent with broad idea (iii), because they elected to
give the ket a new label [choice (c)], but inconsistent with
broad idea (ii), because they argued the state was the same.
For this student, the change in representation (the fact that
the state vector “looks different”) was sufficient for them to
choose to relabel the ket in Q4. (Because the student
distinguished the state from its representation, we believe
they used the word state to refer to the “physical system.”)

B. Methods for changing basis (RQ2)

Analysis of question Q7 from interviews and several years
of quiz and exam data from three different institutions have
shown that students use a variety of approaches to change the
basis of a state in the spin-½ context. It is possible to
correctly change basis using various methods, including
projection (i.e., inner products), algebraic manipulation, or
substitution. All three of these methods arose in the data.
Often, the most mathematically efficient method is to

use orthogonal projection. This method produces the
coefficients a� for the state in the new basis, jψi ¼
aþjþin þ a−j−in, by calculating the inner products a� ¼
nh�jψi (Fig. 2). More directly, the new representation can
be found by operating with the identity 1 ¼ Σijaiihaij on
the state jψi, where jaii are the eigenstates in the desired
basis, but this first step is often skipped.
The remaining two methods are more algebraically

intensive and were more subject to error for students.
Both methods involve algebraic manipulation and substi-
tution but are distinguished by which step is first in the
process. The algebraic manipulation method involves
treating the new basis states as a system of equations in
order to solve for jþi and j−i in terms of jþin and j−in.
Finding these representations allowed students to insert
them into the given state and then combine like terms.

FIG. 2. Student work showing the start of the projection method
of finding a change of basis. The student began by writing the
inner products and expanding into matrix notation.
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Alternatively, students attempted calculation by substi-

tuting the new basis states (e.g., jþin ¼ 1ffiffi
3

p jþi þ i
ffiffi
2

pffiffi
3

p j−i
and j−in ¼

ffiffi
2

pffiffi
3

p jþi − i 1ffiffi
3

p j−i) directly into the generic

representation (jψi ¼ ajþin þ bj−in) in order to rewrite
the state in terms of the basis of Sz (Fig. 3). This step alone
leaves the state in terms of unknown variables a and b.
Almost all students using this method went on to compare
the new coefficients for jþi and j−i with the original state
to get a system of equations, which could be solved to find
a and b.
Neither the algebraic manipulation nor the substitution

methods are generalizable to the context of continuous
wave functions. Furthermore, in the context of spins, the
amount of work required by these methods meant many
students left their answer incomplete. Some got stuck after
inserting the definition of the new basis kets into the
generic representation. Others identified the system of
equations but failed to solve it or attempted to solve it
but made errors in the algebra.
The methods discussed so far will all lead to correct

answers (when carried out correctly). The remaining
“incorrect” methods included some that were only appli-
cable for special cases, such as when there are no complex
phase terms. Since Q7 included a complex phase in the
relation between the basis states, the use of these methods
resulted in incorrect answers for students. Two of the three
incorrect methods involved finding the probabilities of
measuring �ℏ=2 along the n direction by calculating
jnh�jψij2 instead of finding the probability amplitudes.
Students then either (a) used the results of the probabilities
as the values of the coefficients a and b or (b) took the
square root of the result to use for the coefficients.
Although taking the square root of the probabilities may
happen to work in special cases, it does not account for any
negative or complex phase associated with the coefficients.
The last incorrect method involved swapping the

subscripts on the new basis states (e.g., rewriting

jþin ¼ 1ffiffi
3

p jþi þ
ffiffi
2
3

q
j−i as jþi ¼ 1ffiffi

3
p jþin þ

ffiffi
2
3

q
j−in).

Students then substituted these for the j�i in the given
state and then rearranged the result in terms of j�in.

Although this works in some special cases (e.g., for finding
j�i in the basis of Sx), it does not work in general.

C. Representation of states, coefficients,
and inner products (RQ3)

In the preceding sections, we categorized the ways
students interpreted the effect of changing basis and the
methods they used to do so. Several additional survey
questions rounded out the study by probing student think-
ing about the mathematical structure of a state, and the
notation and meaning associated with inner products. We
summarize our findings from these questions here.
Q10 asked students to “represent a general state jψi in

the Sx basis.” A correct answer to this question can be
broken into two steps. Step one is to recognize that the state
jψi can be written as a superposition of the Sx basis states,

jψi ¼ ajþix þ bj−ix: ð3Þ
Step two is to connect the unknown coefficients (a and b)
with inner products between the state and the basis states
(xh�jψi). Some students completed both steps correctly
(e.g., Fig. 4), some students only completed step one, and
others gave other responses.
Only half of the students who completed step one by

writing Eq. (3) also completed step two by providing inner

FIG. 3. Student work showing an alternative correct method for finding the representation of a state in a different basis. In this method,
the student substitutes the new basis states into the generic representation. Subsequent combining of like terms allows the student to
compare the expression to the original state and solve for a and b.

FIG. 4. A student’s written response when asked to write the
general form of a state in the Sx basis. Here the student uses two
unknown variables, a and b, and connects the coefficients to the
appropriate inner products.
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product expressions for a and b. Students who did not
express the variables a and b as inner products either
simply noted they were coefficients or invoked the nor-
malization condition. Generating the form of a basis
expansion [e.g., Eq. (3)], or at least acknowledging that
the current state can be connected to another basis
representation, is an important element of changing basis
using projection. However, our results show that students’
production of a generic basis expansion does not guarantee
an explicit connection of coefficients to inner products.
Students also did not connect coefficients to inner

products on question Q8, which asked students to discuss
the meaning of the coefficients for a state with numerical
coefficients (as opposed to the generic basis expansion
from Q10). Most students connected the coefficients
explicitly to probabilities, with a subset specifying that
the coefficients were probability amplitudes that needed to
be squared. Other students included that the coefficients
showed that the state was normalized. No students sponta-
neously discussed the mathematical meaning of the coef-
ficients as basis expansion coefficients.
To further probe the connection between the coefficients

and projection, students were asked to discuss the meaning
of the expression yhþjψi and the symbols that make it up
(Q9, from the same survey as Q10 above). Responses about
the expression as a whole included connections to prob-
ability or specifically to the coefficient or probability
amplitude of the jþiy state, as shown in the two examples
below.

This picks out the probability amplitude of measuring
spin up in the y direction of the state ψ
I associate the probability of finding þℏ=2 in the
y direction with this since I can absolute value and
square.

Other responses to the survey identified the expression
as an inner product, or one that represented a projection
coefficient, but did not provide any interpretation. For
example, one response simply read “yhþjψi is the inner
product of jþiy with jψi.” Students who identified the bra
and ket individually labeled hþjy as related to a “spin up in
the y direction” or as the “bra in the y basis” and labeled jψi
as the “initial quantum state” or “general state ket.”
Finally, returning to Q10, a small number of incorrect

student responses included an application of the Sx oper-
ator. For example, writing an expectation value of Sx or
writing the Sx operator acting on the state (Fig. 5). Course
observations at our institutions and prior literature have
shown that some students connect measurement to acting
an operator on a state Sxjψi (Fig. 5) [1,8]. This response to
Q10 could potentially be due to a conflation between
measurement and changing basis representation, or simply
a belief that the Sx operator should “do something” and a
knowledge that it is connected to the basis states j�ix.

IV. DISCUSSION AND CONCLUSIONS

Basis and change of basis are key concepts in quantum
mechanics with which students associate a variety of ideas
and procedures. Our research has examined a broad range
of data to extract a qualitative picture of student under-
standing of these ideas. Conceptual questions were asked
on free response surveys while procedural questions were
given on quizzes and exams. Interviews included both
kinds of questions to provide additional insight into student
thinking. By categorizing the different methods students
use to change basis and the different ideas they associate
with basis representation, we establish a research base for
the creation of instructional materials.
Investigating students’ ideas about the state following a

change of basis revealed several categories of reasoning.
First is the recognition that changing basis does not affect
the physical system or state vector, possibly because
the student recognizes that basis is merely a choice of
representation, or change of basis is merely a reversible
calculation. Second is the notion that changing basis alters
the physical system (e.g., changing measurement proba-
bilities), potentially due to confusion between change of
basis and measurement. Third is the idea that changing
basis can involve changing the label of a ket to reflect the
basis it is represented in. These lines of reasoning are not
mutually exclusive: we found that students may draw on
two or even all three depending on context. That is,
students’ conceptualizations of the meaning of change of
basis are not always robust.
Although when using bra-ket notation we do not add

subscripts to a ket’s label after changing basis, we can
imagine why students might do so. There are instances in
QM where subscripts are used to indicate choice of basis,
namely, when using matrix notation. Moreover, subscripts
on kets are typically only used to distinguish related basis
states (e.g., jþix from jþiy); they are related to basis.
Students also learn that, by convention, the z subscript
may be omitted from the z basis states j�i, so it is not
unreasonable that they might conclude that any ket labeled
without a subscript is implicitly in the z basis. Subscripts
are also used for a similar purpose in classical physics
contexts such as electricity and magnetism, where sub-
scripts label the components of a vector.
Probing students’ thinking about basis expansion

coefficients revealed that many students connected the

FIG. 5. A student’s written response when asked to write the
general form of a state in the basis of Sx. Here the student equates
a state jψix to the Sx matrix acting on a generic column vector.
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coefficients to measurement probabilities, but that the
connection from coefficients to inner products can be more
subtle. When asked about the expression, yhþjψi, most
students described it as an inner product, but only some
connected it to the expansion coefficient for the jþiy basis
state. Meanwhile, when asked for a generic representation
of a state in a new basis, few students expressed the
components as inner products, even if they did generate the
generic representation [e.g., Eq. (3)]. It is possible that a
more targeted survey question would have been more likely
to prompt students to include inner product expressions
in their answer, but previous research does support a
disconnect between inner products and coefficients [1],
including in a wave function context [9].
Moreover, we found that the labeling of coefficients as

inner products is insufficient to determine whether or not a
student would use projection to carry out a change of basis.
A student might connect xhþjψi to the basis expansion
coefficient a in Eq. (3), which presents jψi in the x basis.
However, the same student might not recognize that the
same relationship holds if the state jψi was initially
expressed in the z basis, possibly because of a belief that
a change of basis changes the state physically.
Analysis of quiz and exam data given as part of regular

coursework revealed the ways in which students found the
representation of a given state in a different basis. An
efficient method for finding the new basis expansion
coefficients involved calculating inner products between
the state and the new basis states. We refer to this method as
projection (or “orthogonal projection”). Some students also
treated the new eigenstates as a system of equations and
attempted to rewrite them, or substituted the new eigen-
states into the generic equation, jψi ¼ ajþin þ bj−in,
and compared to the given state. Both of these latter
solutions involved extended algebra, which led to various
calculation errors or was sometimes abandoned by stu-
dents. Nonetheless, these algebraic approaches may be
appealing for students who are more comfortable working
with systems of equations than with projection.
The projection, substitution, and system of equations

methods all lead to the correct answer when executed
properly. One incorrect method that students used was to
calculate the probabilities associated with measurements in
the new basis (i.e., of the Sn observable) and use the square
roots of these probabilities as the new coefficients. We also
found that students articulated the connection between
coefficients and measurement probabilities more often than
describing coefficients in terms of basis expansion or
connecting them with inner products, which may explain
why some students employed this incorrect method for
changing basis.
Inconsistency in student responses over several questions

exemplifies a larger pattern: students may demonstrate the
distinct procedural and conceptual elements of basis and
change of basis in independent contexts without connecting

them together to form a comprehensive understanding. For
example, a student might successfully implement a basis
change calculation and still argue that the state has changed
physically. Another student might articulate the connection
between coefficients in a basis expansion and projection in
one context, but not recognize projection as a method for
changing basis in another. Recognizing projection as a
method is supported by both a connection between coef-
ficients and inner product, and an identification of the state
being the same regardless of which basis it is represented
in. The latter is what allows the inner product to be
calculated regardless of the basis used for the calculation.
As discussed in the next section, instruction could explic-
itly encourage students to make these connections towards
the goal of forming a more robust understanding.

V. INSTRUCTIONAL IMPLICATIONS
AND FUTURE WORK

Our investigation uncovered a range of student thinking
on the meaning of basis and change of basis, and identified
the variety of methods—varying in efficiency, correctness,
and generality—that students employ when changing basis.
There are a number of ideas employed by students that
proved productive. On the other hand, our investigation
also revealed some confusion about notation or physical
interpretation.
Our knowledge of students’ ideas informs a set of

learning goals for instruction targeted at basis and change
of basis, especially in the context of spin-½ systems. These
learning goals are not a set of observed misconceptions that
we believe instruction should correct; in fact, these goals
encourage productive lines of reasoning observed in our
research. By studying the span of student thinking on these
topics, we have identified areas on which instruction should
focus. After instruction, students should be able to
Recognize that changing basis does not change the state

or any associated measurement probabilities. Some stu-
dents described basis as a means of representation akin to
unit or coordinate systems when explaining their correct
answers to questions about change of basis; instruction can
promote these productive analogies. Instruction can also
clarify the distinction between changing basis and making a
measurement, as a conflation between these two concepts
arose in student responses. Viewing change of basis as a
reversible calculation is another useful idea that arose in
student responses, which instruction can emphasize.
Use projection as a method for changing basis. In order

to implement projection for this purpose, and in order to
fully use basis representation as a tool for tackling quantum
mechanical problems, students must connect the inner
products they take for computing measurement probabil-
ities with the coefficients in a basis expansion. Moreover,
they must recognize that the same state may be represented
in any basis. Our results show a variety of challenges
related to these aspects of change of basis, indicating that
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instruction should attend directly to these ideas. Projection
is the most general and usually most efficient method of
changing basis, but students employed a range of pro-
cedural approaches to changing basis. After instruction,
students should be able to identify projection as a preferred
method for changing basis.
Identify the coefficients in a basis expansion (a) physi-

cally as probability amplitudes and (b) mathematically as
inner products. Our results suggest that the connections
between these ideas are important: some students produced
a generic expression for a basis expansion but did not
produce the projection inner products for computing the
expansion coefficients. Instruction should emphasize these
connections, which can also help students recognize that
a state encodes all probabilities at once, contrary to the
idea that a state is associated with just one pair of spin-up
or spin-down probabilities, as arose in some student
responses. Instruction should also clarify the meaning of
subscripts in Dirac notation—students should recognize
that jþi and jþiy are physically different states.

As part of this project, our research team has developed an
instructional tutorial for quantum mechanics targeted at
change of basis in the context of spin-½ systems, as
mentioned in Sec. II. This tutorial draws on our findings
to improve student understanding of change of basis via
analogy to two-dimensional Cartesian space [35,36]. In a
future project we plan to expand our investigation to student
understanding of basis and change of basis in the context of
continuous vector spaces (such as the position basis for a
quantum mechanical particle). Additional research is also
needed to examine how students connect the notion of a
basis with its corresponding measurement operator (i.e.,
observables) as well as student use of Hilbert space
representations other than basis, such as the Bloch sphere.
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