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Professional problem-solving practice in physics and engineering relies on mathematical sense
making—reasoning that leverages coherence between formal mathematics and conceptual understanding.
A key question for physics education is how well current instructional approaches develop students’
mathematical sense making. We introduce an assessment paradigm that operationalizes a typically
unmeasured dimension of mathematical sense making: use of calculations on qualitative problems and use
of conceptual arguments on quantitative problems. Three assessment items embodying this calculation-
concept crossover assessment paradigm illustrate how mathematical sense making can positively benefit
students’ problem solving, leading to more efficient, insightful, and accurate solutions. These three
assessment items were used to evaluate the efficacy of an instructional approach focused on developing
students’mathematical sense making skills. In a quasi-experimental study, three parallel lecture sections of
first-semester, introductory physics were compared: two mathematical sense making sections, one with an
experienced instructor and one with a novice instructor, and a traditionally taught section, as a control
group. Compared to the control group, mathematical sense making groups used calculation-concept
crossover approaches more often and gave more correct answers on the crossover assessment items, but
they did not give more correct answers to associated standard problems. In addition, although students’
postcourse epistemological views on problem-solving coherence were associated with their crossover use,
they did not fully account for the differences in crossover approach use between the mathematical sense
making and control groups. These results demonstrate a new assessment paradigm for detecting a typically
unmeasured dimension of mathematical sense making and provide evidence that a targeted instructional
approach can enhance engagement with mathematical sense making in introductory physics.
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I. INTRODUCTION

When solving problems, the work of professional
physicists and engineers relies on reasoning that leverages
coherence between formal mathematics and conceptual
understanding [1–6]—a form of reasoning which has been
described as mathematical sense making [7–11]. For this
reason, proficiency with mathematical calculations and
conceptual reasoning in isolation, though necessary, may
not be sufficient to prepare students for the complex,
challenging problems they will face in their future work.
To better specify the nature of mathematical sense making
and its status in the physics curriculum, previous research
has shed light on some aspects of students’ struggles and
successes with mathematical sense making in specific
instances [7,9,10,12–22] and demonstrated approaches to

assessing specific aspects of mathematical sense making
[20–24]. Though this work has been illuminating, there is
still much that is unknown about (i) how to assess different
dimensions of mathematical sense making and (ii) how
effectively different forms of physics instruction foster
mathematical sense making.
In this paper, we propose a novel assessment paradigm

of calculation-concept crossover that highlights one
dimension of mathematical sense making identified in
the literature and distinguishes it from common physics
education research (PER) assessment approaches. We
instantiate this paradigm through three assessment ques-
tions, each one probing this dimension of mathematical
sense making in students’ problem-solving practice in a
different way. Using these assessments, we compared the
learning outcomes of two approaches to teaching intro-
ductory physics, a “traditional” approach and a “math-
ematical sense making” approach. The results show that an
instructional approach designed to foster mathematical
sense making—in conjunction with other PER-based active
learning strategies—can produce problem-solving benefits
detectable by targeted assessments.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 16, 020109 (2020)

2469-9896=20=16(2)=020109(24) 020109-1 Published by the American Physical Society

https://orcid.org/0000-0001-5292-6188
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.16.020109&domain=pdf&date_stamp=2020-07-30
https://doi.org/10.1103/PhysRevPhysEducRes.16.020109
https://doi.org/10.1103/PhysRevPhysEducRes.16.020109
https://doi.org/10.1103/PhysRevPhysEducRes.16.020109
https://doi.org/10.1103/PhysRevPhysEducRes.16.020109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Our primary aim is to demonstrate a new assessment
paradigm that highlights a previously unmeasured dimen-
sion of mathematical sense making. Our secondary aim is to
show that this dimension can be successfully nurtured
through an instructional focus on mathematical sense mak-
ing. To our knowledge, these assessment results are the first
comparison of mathematical sense making outcomes for
different, semester-long instructional approaches in large-
lecture classroom settings.

II. THE CALCULATION-CONCEPT CROSSOVER
ASSESSMENT PARADIGM AND HOW IT DIFFERS
FROM EXISTING ASSESSMENT APPROACHES

A. How mathematical sense making crosses the
boundaries of typical assessment assumptions in PER

One central assumption underlying assessment in PER is
that students take different approaches to answering quan-
titative and qualitative questions. Quantitative questions are
typically interpreted as probes of students’ calculation
skills (which include the conceptual analyses needed to
set up the equations correctly and interpret the solution
physically), while qualitative questions are commonly
interpreted as uncovering “functional knowledge” [25] or
“conceptual understanding.” Comparing student perfor-
mance on these two question types has been illuminating
for PER, yielding the fundamental result that students can
have greater difficulties in answering qualitative problems
that instructors and researchers view as equivalent to
or even simpler than analogous quantitative problems
[25–27]. Along similar lines, Kim and Pak [28] found
little relation between the number of quantitative problems
solved in a physics course and performance on the
Mechanics Baseline Test, which includes qualitative prob-
lems. On the whole, these findings can be interpreted as
pointing to a lack of coherence between students’ con-
ceptual and calculation knowledge or skills, with students,
on average, having weaker conceptual understanding and
relatively stronger calculation skills.
Although students may commonly take different

approaches to answering quantitative and qualitative ques-
tions, the notion ofmathematical sensemaking suggests that
this separation need not always hold. We hypothesize that
coherence between formal mathematics and conceptual
understanding can promote the more expansive use of
conceptual and computational problem-solving approaches.
In the rest of this subsection, we use examples from prior
research to illustrate different ways in which mathematical
sense making can expand the connections between con-
ceptual and calculational approaches when answering
qualitative or quantitative questions.
Sometimes quantitative questions can be answered with

a conceptual argument, sidestepping a standard calculation.
Consider the following task: write an expression for the
acceleration of a falling ball experiencing air resistance.

This could be calculated by writing out Newton’s 2nd law,
Fnet ¼ −mgþ fðvÞ ¼ ma [where acceleration upward is
positive and fðvÞ is the force of air resistance], and then
solving for a. However, Sherin [12] found that 3rd-semester
physics students could instead use their conceptual reason-
ing to generate equations without a first-principles deriva-
tion and calculation. These students immediately wrote
down the equation aðtÞ ¼ −gþ fðvÞ=m, which expressed
their conceptual idea that an “upward acceleration” from air
resistance opposed a “downward acceleration” from grav-
ity. Although there is only one mathematical step separat-
ing these two approaches, Sherin argued that these two
solution methods use distinctly different reasoning.
Specifically, Sherin described his students’ reasoning as
employing the opposition symbolic form, which combines
the mathematical symbol template □-□ with the concep-
tual schema of two influences in opposition. By plugging in
mathematical expressions representing the two influences,
gravity and air resistance, students were able to express
their conceptual idea of two accelerations in opposition. By
this interpretation, symbolic forms facilitated mathematical
sense making by tying the structure of equations (here, one
term subtracted from another term) to an intuitive con-
ceptual interpretation (here, one influence opposing another
influence). This is one way in which mathematical sense
making can be indicated when students answer quantitative
(or symbolic) questions with conceptual arguments rather
than standard calculations.
On the other hand, students can also use formal math-

ematics and calculations to inform and enrich their solutions
to qualitative questions. For instance, Schwartz, Martin, and
Pfaffman [29] investigated whether prompting a mathemati-
cal solution would help children aged 9–11 discover the
factors determining whether a balance scale with objects on
both sides would tip to the left or the right. Compared to a
control group, prompting the use of math in their explan-
ations helped the children better recognize the two key
physical concepts, mass and distance from the pivot point,
and, in some instances, even identify something like torque
(mass×distance) as the explanatory physical property. Here,
the precision of mathematics led students to identify a more
complete set of properties governing physical balance.
Along similar lines, Sherin [13] found that two undergradu-
ate physics students spontaneously used a calculation to
resolve a conceptual tension between two competing intu-
itions on a qualitative question. The question presented a
block traveling at an initial speed v0 sliding on a rough
surface before coming to rest; students were asked how the
block’s mass would affect the distance traveled. The
students articulated two opposing conceptual effects: a
greater mass would (i) decrease the sliding distance by
increasing the force of friction and (ii) increase the sliding
distance by increasing the block’s inertia. To determine the
result of these two competing effects, the students then used
Newton’s 2nd law to calculate the block’s acceleration.
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During their calculation of the final answer, a ¼ μg, them’s
cancelled out. The students interpreted this mathematical
cancellation as the two conceptual effects canceling out,
making the block’s acceleration—and, therefore, the dis-
tance traveled—independent of the mass. Here, both the
final result and intermediate steps of a calculation helped
students advance their conceptual understanding on a
qualitative problem. The students’ mathematical sense
making here consisted of (i) leveraging the mathematical
precision of a calculation to resolve a debate between two
conceptual arguments and (ii) associating conceptual mean-
ing with the “guts” of the intermediate equations and
operations, specifically the cancellation of the m’s.
In an experimental demonstration of how calculations and

conceptual arguments can cross the boundary between
qualitative and quantitative problems, Singh [30] found
that student performance on qualitative questions can be
improved when an isomorphic quantitative problem is given
beforehand. Written responses and one-on-one discussions
indicated that the calculations used on the quantitative
problems sharpened students’ conceptual arguments on
the subsequent qualitative problems.
Although students may typically reserve calculations for

quantitative questions and conceptual arguments for quali-
tative questions, these examples indicate how mathematical
sense making may be evidenced by a more expansive use of
these two approaches. Next, we introduce an assessment
paradigm that captures this kind of “crossover” reasoning.

B. The calculation-concept crossover
assessment paradigm

The calculation-concept crossover assessment paradigm
(Fig. 1) highlights problem-solving approaches that deviate
from those typically assumed in qualitative and quantitative
assessment. Calculation-concept crossover occurs when a
calculation is used on a qualitative question and a con-
ceptual argument is used on a quantitative question.
We intend for calculation-concept crossover to supple-

ment, not replace, the typical assessment approaches in

PER. Many quantitative questions in physics require a
calculation to reach the answer, and many qualitative
questions can be efficiently answered with a purely con-
ceptual argument. These typical solution approaches are
captured by the useful, existing assessment methods
structured to (i) evaluate students’ ability to solve quanti-
tative problems with correct calculations (e.g., Ref. [31]),
and (ii) assess conceptual understanding through qualita-
tive questions (e.g., Refs. [32–34]). However, the calcu-
lation-concept crossover paradigm highlights the existence
of productive, alternative solution approaches, which
are typically not distinguished through these existing
assessments methods. We contend that these crossover
approaches represent mathematical sense making, because
they demonstrate coherence between the realms of quali-
tative and quantitative problems rather than restricting
certain problem-solving approaches to certain prob-
lem types.
In prior work on quantitative problem-solving assess-

ments, we have distinguished the type of mathematical
sense making embodied in calculation-concept crossover
from those aspects already attended to by PER-based,
quantitative problem-solving assessments [11]. Indeed, the
existing research in quantitative problem solving already
attends to connections between mathematical manipula-
tions and conceptual reasoning, such as in emphasizing
an initial conceptual analysis to guide the subsequent
calculations [35–37] and final answer checks, which can
include conceptual interpretations of the mathematical
result (though this is not the only type of answer check)
[20,21,23]. What calculation-concept crossover highlights
is that conceptual arguments are not only useful for
checking a calculated mathematical solution; they can
also be used to reach a mathematical solution in lieu
of a calculation. This possibility is not anticipated by
problem-solving assessment rubrics that explicitly assess
the success of an “equation manipulation step”1 [11].
Therefore, although PER-based problem-solving instruc-
tion and assessments do combine conceptual reasoning
with mathematical calculations, there still exists the stan-
dard expectation that quantitative problem solving requires
a calculation. By presenting the possibility that conceptual
arguments, instead of calculations, can be used to answer
quantitative questions, the calculation-concept crossover
paradigm expands the types of mathematical sense making
attended to in quantitative assessments.
The calculation-concept crossover paradigm in Fig. 1

differs in two ways from typical approaches to studying and

FIG. 1. Though typical assessment approaches link calculations
to quantitative questions and conceptual arguments to qualitative
questions, a paradigm for assessing mathematical sense making
can search for calculation-concept crossover.

1To be fair, problem-solving rubrics are designed to avoid
penalizing students for alternative solution paths or skipping
steps if they were not needed by the student. However, these
rubrics do present calculations as the default solution approach
that one can skip and do not explicitly recognize conceptual
arguments as a possible approach one can use instead of a
calculation.
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assessing mathematical sense making in the literature.
First, it can operate with standard questions of the kind
typically found on homework and exams. By contrast,
most mathematical sense making studies, including
our own, use specially crafted prompts—such as asking
students to describe the meaning of a mathematical result
[24], explain the different ways that a graph “makes
sense” [22], check the validity of a quantitative answer
[21,23], or construct novel equations from their under-
standing [12,38]. While certainly informative, these types
of questions probe for mathematical sense making in ways
that could be disconnected from the typical quantitative
and qualitative prompts seen in a physics course and from
the typical problem-solving practices students engage
with in those courses. Second, our assessment of math-
ematical sense making relies solely on students’ written
answers to exam questions. This differs from common
analyses and assessments of mathematical sense making
that rely on verbal discourse captured through observa-
tions of student discussions [9,10,17,18] or in one-on-
one interviews [7,15]—which can include follow-up
questions to probe student thinking further. Because
students’ written answers on homework and especially
on timed exams provide less rich information about
students’ thinking, there is a danger that mathematical
sense making might go undetected even when present. We
present a study showing that students’ use (or not) of a
crossover approach can be reliably coded from their
written exam responses. In summary, we aim to detect
mathematical sense making in students’ actual problem-
solving practice in their physics course by analyzing their
written exams solutions.

C. Operationalizing “calculation” and “conceptual
argument” approaches

Designing problems and evaluating the responses within
the calculation-concept crossover paradigm requires an
operationalization of two problem-solving approaches:
calculations and conceptual arguments.
We take calculation approaches to yield solutions based

upon formal mathematical manipulation rules and the
numerical (or symbolic) answers they produce. As dis-
cussed above, calculations are commonly viewed as a
necessary step for answering quantitative questions—the
“execute the solution” step of standard problem-solving
paradigms, known colloquially as the “chug” part of “plug
and chug.” Again, as previous PER work in quantitative
problem solving has shown, the calculations that arise in
expert problem solving are not disjoint from conceptual
understanding; conceptual understanding of the physical
situation leads to the generation of the appropriate
equations used in a calculation. The key operational
feature we use to identify a calculation is whether explicit
mathematical manipulations are used to produce the final
answer.

By contrast, we take conceptual argument approaches to
be those which reach a solution through physical concepts
and or mathematical concepts. Use of physical concepts
involves reasoning about physical entities and the processes
between them. For example, a student could reason that
pushing down on a piston adiabatically will increase the
energy of the gas inside, because the piston does work on
the gas by exerting a force over a distance. Use of
mathematical concepts involves reasoning about physical
quantities and functional relations between them, as rep-
resented in equations. For example, one could reason that if
the voltage in a circuit were doubled and the total resistance
were halved, then Ohm’s law, I ¼ V=R, would predict that
the current would quadruple. Again, although this answer is
consistent with a mathematical calculation and draws on
mathematical ideas of proportionality and multiplication,
we operationalize this response as a conceptual argument to
distinguish it from a calculation approach where one
explicitly plugs in the values, performs the algebraic or
arithmetic manipulations, and arrives at the answer that the
current is quadrupled. Instead, in a conceptual argument,
the mathematical expression indicates the proportional
relationships that are used directly to make an argument
for the final answer. Prior research has carefully distin-
guished between physical concepts and mathematical
concepts for understanding physical systems [39]. Here,
however, we group both together as “conceptual,” since
both contrast with the mathematical manipulations used for
calculations.
These operational definitions of calculation and con-

ceptual argument approaches to solving a problem lead to
three clarifying points. First, calculations may rely on
conceptual knowledge and conceptual arguments may rely
on calculations. How problem-solving approaches are
coded relies ultimately on the primary warrant for the
answer. For example, in determining the acceleration of an
object, one might employ a conceptual analysis to identify
the forces in this situation before executing an explicit
calculation with Newton’s 2nd law. This would be coded as
a calculation approach, not a conceptual argument, since
the conceptual analysis is used in the service of the
calculation that produces the final answer. By contrast,
consider this hypothetical exam answer: “Since the forces
acting to the left sum to 20Nþ 40N ¼ 60N and the forces
acting to the right sum to 30Nþ 30N ¼ 60N, these two
forces cancel out and there is no acceleration in the
horizontal direction.” Even though calculations of forces
are involved, this approach would be coded as a conceptual
argument, since the mathematical expressions are used in
the service of a conceptual argument that is used to produce
the final answer. A calculation approach to this problem
would compute the net force and use Newton’s 2nd law to
compute the acceleration explicitly. In summary, because
physics equations are both representations of the concep-
tual relations between quantities and tools for mathematical
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manipulations [40], the presence or absence of mathematics
alone cannot be used to categorize the approach. A
classification of calculation or conceptual argument reflects
how the mathematics is used in the overall problem-solving
approach. Similarly, the presence or absence of conceptual
reasoning alone cannot be used to categorize the approach.
The crux of the categorization relies on whether the
concepts were used to support a calculation or whether
the concepts themselves were used to construct an argu-
ment for the final answer.
The second clarifying point is that incorrect approaches

can also be classified as calculation or conceptual argu-
ment. Incorrect calculations that incorrectly model the
physical system or contain errors in the mathematical
manipulations are still calculation approaches. Incorrect
conceptual arguments still embody a conceptual argument
approach distinct from calculations.
The third clarifying point is that our coding scheme

highlights new aspects of coherence seeking between
qualitative and quantitative reasoning by backgrounding
others. We do not distinguish between different routes
to a calculation, such as generating equations from an
initial conceptual analysis versus seeking an equation that
includes the variables given in the problem. Although a
complete assessment of problem-solving skills should
make this distinction, previous research has already
distinguished and studied these different approaches to
calculation [41,42]. Our aim here is to explore a new
dimension of mathematical sense making in physics assess-
ment, the use of calculation-concept crossover approaches.

III. THREE ASSESSMENTS OF
CALCULATION-CONCEPT CROSSOVER

Next, we describe the problem-solving benefits of
calculation-concept crossover and detail three crossover

assessment items designed to illustrate these benefits
(summarized in Table I). Informed by the prior literature,
we will hypothesize what calculation and conceptual
argument approaches students will take. These examples
will illustrate how calculation-concept crossover is distinct
from other assessment goals and why it is a worthwhile
physics problem-solving behavior to study. We then present
the results of an empirical classroom study showing how
these assessments were used to measure the mathematical
sense making outcomes of two different approaches to
teaching introductory physics.

A. Using calculations on a qualitative question:
Reliability and precision

1. The nature and benefits of this crossover reasoning

Consider a typical, qualitative circuit question with three
identical bulbs, shown in Fig. 2:
What happens to the brightness of bulbs A and B when

the switch is closed?

TABLE I. The three types of questions for assessing calculation-concept crossover used in this study, the type of crossover approach
probed by each one, and the potential benefits of these crossover approaches.

Question
type

Crossover
type

Typical
approach

Crossover
approach

Potential benefit of using
the crossover approach

Qualitative
judgment

Using calculations on
a qualitative question

Conceptual
argument

Explicit calculation that
describes qualitative
behavior

Calculations may increase
accuracy when conceptual
understanding is weak or
imprecise.

Isomorphic
calculations

Using a conceptual
argument on a
quantitative question

Multiple
calculations

Conceptual comparison of
multiple scenarios

Conceptual arguments,
specifically noticing a
conceptual similarity across
scenarios, efficiently sidesteps
repeated calculations.

Cued
symbolic
evaluation

Using a conceptual
argument on a
quantitative question

Calculation Inferring physical behavior
from functional
dependencies
between variables

Conceptual arguments can
detect errors in symbolic
solutions derived by
calculation.

FIG. 2. A typical, qualitative circuit question (from Engelhardt
and Beichner [43]).
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Studies of student reasoning on similar qualitative circuit
questions have identified common invalid conceptual argu-
ments. Students may overgeneralize the rule that parallel
branches in a circuit are independent, which could lead them
here to incorrectly conclude that the brightness of bulb B will
not change [44]. Additionally, students may use local,
sequential reasoning to conclude, for instance, that the bright-
ness of bulb A will not change because the current does not
reach the switch until after it has passed through bulb A.
The mathematical machinery of calculations can provide

precision not easily achieved through a conceptual argu-
ment. For example, when the switch is closed, bulb B
receives a smaller fraction of the total current in the circuit
—but the total current increases because the circuit’s
equivalent resistance decreases. Even if students identify
these two effects of closing the switch, it may be difficult to
work out which competing effect has a larger magnitude
through a conceptual argument. Prior work has shown that,
in cases with two competing effects that are underdeter-
mined by conceptual arguments, students commonly claim
that the effects exactly compensate, causing no overall
change [45–52]. Here, calculating the power dissipated in
each bulb directly is a more precise approach. Even though
the question requires only a qualitative determination of
how the brightness of the bulbs change, the mathematical
machinery of the calculation determines which of the
competing effects wins out. As with Sherin’s students,
taking a calculation approach, if well practiced and reliable,
can help students avoid conceptual errors and complicated
conceptual arguments.

2. Assessment item: qualitative judgment question

In our study, we used the following qualitative judg-
ment question to investigate whether introductory physics

students will use calculations to precisely answer a quali-
tative question. The qualitative judgment question is
embedded within a set of associated standard questions
(Table II). For this qualitative judgment question (part d),
the correct answer is that the overall mechanical energy of
the system increases during the explosion.
Conceptual arguments (typical approach).—There are

two different valid conceptual arguments. In terms of
physical entities, one could reason about the energy transfer
processes: the chemical potential energy of the explosive is
released, doing mechanical work on the two masses and
thereby increasing the mechanical energy of the system.2

Another argument uses the mathematical concepts in the
kinetic energy equation: because the mass of the system is
effectively halved while the speed doubles, the kinetic
energy will increase because the proportional dependence
of KE on speed is greater than the dependence on mass
(KE ∼ v2 vs KE ∼m). However, as with the circuit ques-
tion described previously, students may also use invalid
conceptual arguments. A student could overgeneralize a
commonly stated rule: the law of conservation of energy
states that energy is always conserved, so the mechanical
energy stays the same. Also, a compensation argument
could be used to incorrectly conclude that the total
mechanical energy stays the same, because the amount

TABLE II. The qualitative judgment question and associated standard questions.

Assessment type Question text

Two identical masses, each of massm ¼ 50 g, are fastened to each other with a bit of plastic explosive.
We’re going to launch it into the air and detonate the explosive at the highest point. (Ignore air
resistance throughout this problem.)

Associated standard
questions

(a) Suppose we launch the pair of masses at an angle θ ¼ 60° above the horizontal, from a spring gun.
The spring has a spring constant of k ¼ 1000 N=m, and we compress it x ¼ 10 cm (sin 60 ¼ 0.87;
cos 60 ¼ 0.5). Find the maximum height of the pair of masses, taking its initial height to be 0.

(b) At exactly that instant, when it’s at the highest point, we detonate the explosive. And it so happens
that the instant after the explosion, one mass (A) is not moving at all. Find the velocity of the other
mass (B).

(c) Find the distance between the masses A and B when they hit the ground.
(e) Sketch a graph of the vertical and horizontal components of the velocity for mass B from the time of
launch to the time it hits the ground. Explain your reasoning. You don’t need to make precise
calculations, just show the shape of the graph in your sketch.

Qualitative judgment
question

(d) During the explosion, mass B speeds up while mass A comes momentarily to rest. Does the overall
mechanical energy of the two-mass system increase, decrease, or stay the same during that
explosion? Explain.

2This reasoning is correct for the class of problems where the
explosion increases the speeds of both blocks in the center-of-
mass frame without changing the speed of the center of mass in
the rest frame, as in this problem. Without this condition,
chemical potential energy can be used to decrease mechanical
energy, such as when a rocket uses its engine to slow down.
Because the assessment item only asks about this case and no
other, we did not demand that students explicitly describe this
special condition to be considered correct in their reasoning.
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of kinetic energy lost by mass A could be exactly balanced
out by the gain in KE of mass B.
Calculation (crossover approach).—A calculation can

offer precision and safety from common conceptual argu-
ment errors. Here, because the qualitative judgment ques-
tion is embedded in a series of quantitative problems,
numerical results from previous parts can be used to
explicitly calculate the pre-explosion and post-explosion
kinetic energies. From part (b), the speed of masses A and B
is 5 m=s immediately before the explosion and vA ¼ 0 and
vB ¼ 10 m=s immediately after the explosion. Calculating
the overall kinetic energy before and after the explosion
shows that it increases from 1.25 to 2.5 J. Because the
change in gravitational potential energy is negligible
immediately before and after the explosion, the overall
mechanical energy increases.
Either a conceptual argument or a calculation alone is

sufficient to reach the correct qualitative answer. Although
much of the problem invites calculations and supplies the
quantitative values needed to calculate the change in
energy, we predict that introductory physics students will
tend to use conceptual arguments, because the question is
phrased qualitatively. Here, the crossover approach is
calculation, which we argue indicates mathematical sense
making through an expanded domain of use for calcula-
tions. Because we do not tell students what approach to
take, their spontaneous choices show both their knowledge
and disposition for mathematical sense making during
physics problem solving in their courses. Activation of
formal calculations on qualitative problems is one of the
benefits of mathematical sense making that we propose is
not well attended to in typical instruction and assessment.
We also predict that the use of conceptual arguments alone
will be more prone to error than calculation, given the
incorrect arguments predicted.
Although our assessment goal is to highlight crossover

approaches, the deeper reason for valuing these approaches
is that coherence between multiple approaches provides
reliable problem solving through redundancy. Although we
predict that calculation approaches will be more accurate
on this problem, checking for coherence between calcu-
lations and conceptual arguments will provide the best
safety net against errors. Mathematical sense making
allows problem solvers to check their own solutions by
answering the question in multiple ways and making sure
that calculations and conceptual arguments cohere.

B. Using conceptual arguments on quantitative
problems: Finding efficient insights by leveraging

conceptual structure

1. Nature and benefits of this crossover reasoning

Wertheimer [53] asked 6th-grade students to solve
arithmetic problems of this type: ð283þ 283þ 283þ
283þ 283Þ=5 ¼ ? Although students could solve the
problem correctly because they had learned addition and

long division, some used an explicit mathematical calcu-
lation, even though a more efficient conceptual argument
invoking an understanding of addition and division can be
used here. Similarly, some physics problems that invite
quantitative calculation may be answered more efficiently
and effectively with a conceptual argument. Kuo, Hull,
Gupta, and Elby [15] illustrated this same phenomenon in
introductory physics through the following problem:
Suppose you are standing with two tennis balls on the

balcony of a fourth-floor apartment. You throw one ball
down with an initial speed of 2 meters per second; at the
same moment, you just let go of the other ball, i.e., just let it
fall. What is the difference in the speeds of the two balls
after 5 seconds—is it less than, more than, or equal to
2 meters per second? (use g ¼ 10 m=s2 and neglect air
resistance)3

In contrast to calculating the speeds of each ball after 5 s
to find that the difference in speeds is 2 m=s, some students
found an alternative argument: the difference in speeds after
5 s will be the same as the initial difference, 2 m=s, because
both objects gain the same amount of speed over 5 s. Even
though the formal calculation will yield the correct result,
this conceptual argument provides an elegant, insightful
answer that bypasses the need for a calculation.
Another example of conceptual approaches leading to

efficiency and insight comes when solving a series of
isomorphic questions. Consider the following pair of
problems:
Linear momentum collision: A block of mass 1.4 M is

initially traveling at a speed v0 when it collides with another
block of mass 3.7 M which is initially at rest. After the
collision, the two blocks stick together, traveling at the same
speed. What is the final speed of the two-block system?
Angular momentum collision: A solid disk of mass

1.4 M and radius R is initially rotating at an angular speed
of ω0 when it collides coaxially with another solid disk of
mass 3.7 M and radius R, which is initially at rest. After the
collision, the two disks stick together, rotating at the same
speed. What is the final angular speed of the two-disk
system?
A common conceptual structure exists for these two

problems. Initially, the (angular) momentum is all in the
object of mass 1.4M. After the totally inelastic collision, the
final (angular) speed of the two-object system can be
calculated. For the first problem, the final speed of the two-
block system can be calculated to be 0.275v0. Although a

3Although the final question is actually phrased qualitatively
(“is the answer less than, more than, or equal to 2 meters per
second?”), the conceptual argument approach here still illustrates
the effective insights that can be afforded through conceptual
argument. Although conveying the benefits of conceptual argu-
ment, we recognize that this would only be an exact example of
calculation-concept crossover if the question was solely phrased
to require a precise, numerical answer (“What is the difference in
the speed of the two balls after 5 seconds?”).
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similar calculation can be done to find the final angular
speed of the two-disk system, by noticing the common
conceptual and numerical structure of these two problems,
the solution of the linear momentum problem can be
directly mapped onto the angular momentum one without
additional calculation, giving the answer 0.275ω0. As in the
case of Wertheimer’s arithmetic problem and Kuo et al.’s
kinematics problem, a conceptual argument pointing out
the isomorphism between problems here provides an
efficient, elegant way to avoid explicit calculations on a
quantitative problem.

2. Assessment item: isomorphic calculation questions

In our study, we investigate whether students make
conceptual arguments on quantitative problems with iso-
morphic calculation questions about a block on a ramp
(Table III). For the isomorphic calculation questions (parts
b and c), the correct answer is the same as the answer to part
a: mg sin θ.
Calculation (typical approach).—For all three questions,

the correct calculation uses Newton’s 2nd law to calculate
the forces parallel to the surface the ramp. The forceF on the
block directed up the ramp is due to the tension in the string
or static friction. The force down the ramp is the component

of gravity on the block parallel to the ramp, mg sin θ. Since
the block stays in place, its acceleration is zero. Newton’s
2nd law, ΣF ¼ ma, yields F ¼ mg sin θ.
Conceptual argument (crossover approach).—After part

(a), subsequent questions can be answered by pointing out
the conceptual isomorphism between the questions: in all
cases, the component of the block’s weight down the ramp
is balanced by a force pointing up the ramp. Therefore, if
the answer for the up-the-ramp force in part (a) is
F ¼ mg sin θ, then the answer to subsequent parts must
also be mg sin θ. Instead of performing an identical calcu-
lation repeatedly, this conceptual argument leverages the
isomorphism between problems to efficiently obtain the
solution.
We predict that introductory physics students will tend to

use calculations here. When questions are asked one at a
time, students can focus on answering each one separately
rather than seeking coherence across questions [54].
However, the calculations here are standard enough that
we predict that conceptual arguments, though more insight-
ful, will not be more accurate than calculations.
Again, the deeper reason for valuing these crossover

approaches is that access to multiple approaches provides
more reliable problem solving through redundancy. The
conceptual argument here provides a direct check of the

TABLE III. The isomorphic calculation questions and associated standard question.

Assessment
type Question text

A block of mass M sits on a ramp of angle θ.
Associated
standard
question

(a) First, suppose the block is frictionless and is held in place by a light string extended parallel to the surface of the
ramp, as shown here. Write an expression for the magnitude of the tension in the string.

Isomorphic
calculation
Questions

(b) Instead of a peg, we have the cord connect over a pulley to another block. The second block is just the right mass
so that the first block remains at rest. Write an expression for the magnitude of the tension in the string.

(c) Now, suppose there’s no string, but the block stays in place because of friction (with coefficient of static friction
μ) between the block and the ramp. Write an expression for magnitude of the friction force by the ramp on the
block.
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calculations, and vice versa. While we focus on the cross-
over approaches because they demonstrate an insight and
because we expect them to be less common in students’
thinking, the ultimate goal is for students to be able to
provide self-checks through multiple convergent problem-
solving approaches.

C. Using conceptual arguments to detect errors
in quantitative solutions

1. Nature and benefits of this crossover reasoning

A third benefit of coherence between formal mathematics
and conceptual reasoning is the ability to detect errors in
quantitative solutions. Physicists often view symbolic
answers as superior to numerical answers, because a
symbolic answer explicitly represents relationships between
the quantities. Similarly, students are able to “[map] math-
ematics tomeaning” in physics problem solving [18]. This is
oneway that students can check their answers in quantitative
problem solving. Some common checks compare the units,
signs, and magnitude of the mathematical answer to one’s
conceptual understanding of the system. With directed
instruction, students can also engage in analyzing the
limiting or special cases of a symbolic expression in terms
of the expected physical behavior [20,23].
Here, we investigate a particular conceptual argument:

evaluating the functional dependencies of a symbolic
expression against the expected physical behavior. One
way to assess this conceptual argument is to see if students
spontaneously perform this comparison when obtaining a

symbolic answer to a quantitative problem. However, a
student’s behavior on classroom tasks may depend largely
on time constraints, their expectations about “what the
professor wants,” and other such factors. Partly for this
reason, here we aim to directly assess calculation-concept
crossover skill instead of proclivityþ skill by engineering a
problem that explicitly cues students toward the crossover
approach, rather than looking for its spontaneous use.

2. Assessment item: cued symbolic evaluation question

Instead of first asking students to calculate a symbolic
solution to a quantitative problem, we ask them to evaluate
the solution to a quantitative problem without performing
the relevant calculation (Table IV). Rather than searching
for a spontaneous evaluation of symbolic expressions, this
cued symbolic evaluation question directly asks for it. By
disallowing calculations and explicitly requesting an evalu-
ation of an expression first, this item tests students’ skill at
using conceptual reasoning to debunk an incorrect, pro-
posed solution. We label this as a crossover approach,
because we do not allow students to use a calculation to
evaluate a quantitative solution.
This question is not a novel assessment; it is common to

ask students to check whether a symbolic answer is
plausible. We include it here (i) to frame this existing
prompt as being aligned with the calculation-concept
crossover paradigm and (ii) to include an assessment in
this study that is more continuous with existing assess-
ments of mathematical sense making.

TABLE IV. The cued symbolic evaluation question and associated standard problem.

Assessment type Question text

A uniform rod of length L (¼1.00 m) and massM (¼1.80 kg) is hanging vertically from a frictionless
pivot at its top end. A bullet of mass m (¼400 g) strikes the rod at the center of the rod and gets
embedded in it (See figure). Right at the instant before the bullet hits the rod, the velocity of the
bullet was entirely horizontal (and perpendicular to the rod) and the magnitude of the bullet’s
velocity was v (¼100 m=s). You can imagine that the rod with the embedded bullet would rotate
about the pivot. The moment of inertia of the rod about the pivot is 1

3
ML2.

Cued symbolic
evaluation question

(a) Solving for the angular speed of the rod with the embedded bullet immediately after the collision, a
student comes up with this answer: ω ¼ 3Mv=2mL. Is that a plausible answer? Explain your
reasoning to her without solving for that angular speed yourself.

Associated standard
question

(b) Now solve for the angular speed of the rod with the embedded bullet immediately after the
collision.
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Conceptual argument (crossover approach).—Here,
two valid conceptual arguments (in our dataset) correctly
lead to rejection of the proposed equation for angular
speed. Both involve comparing the mathematical expres-
sion to expected physical outcomes. One pathway is to
reject the mathematical dependencies as not reflecting the
physical dependencies of the system. For example, a larger
rod mass should resist the motion more, yet the proposed
mathematical equation says that angular speed ω increases
as the rod’s mass M increases. Similarly, a larger bullet
mass m will cause the rod to move faster after the collision,
but the proposed equation says that the angular speed
decreases as the bullet’s mass increases.
The other pathway is to compare speeds before and

after the collision. Because vf ¼ ωL=2 ¼ 3M=4mv and
3M=4m > 1, this equation implies that the speed of the
bullet increases after the collision, which violates both
conservation of momentum and common sense. As a
distinguishing example of our coding scheme, this com-
parison involves mathematical manipulations, but it is
not coded as a calculation. It is coded as a conceptual
argument, because the symbolic result is used in service of
a conceptual argument that determines the final answer:
“no, this answer is not plausible.”
Although dimensional analysis is a commonly pre-

scribed method for checking the consistency of a symbolic
solution, dimensional analysis cannot detect the errors in
this expression since it has the correct units.

IV. MATHEMATICAL SENSEMAKING
INSTRUCTION TO FOSTER COHERENCE

BETWEEN CALCULATIONS AND
CONCEPTS

A. A mathematical sense making
instructional approach

We hypothesized two impedances to crossover
approach use in introductory physics. First, developing
the knowledge and skills to leverage the coherence between
calculations and concepts across qualitative and quantita-
tive problems is difficult. Second, typical instructional
approaches may not emphasize this coherence, leading
to formation of epistemological views that calculations and
conceptual reasoning are distinct. In introductory physics
courses, this epistemological messaging could arise in
several ways: quantitative and qualitative questions can
be seen as separate kinds of problems; quantitative calcu-
lations can be perceived to be “real” physics, time con-
straints caused by content coverage demands restrict the
time needed for students to engage in deep coherence
seeking between calculations and conceptual reasoning,
and so on. Indeed, as Hammer [55] documented, students
immersed in these instructional environments can view
physics as consisting of disconnected pieces and problem
solving as formula selection and manipulation, views that

likely impede the development of calculation-concept
crossover and other flexible problem-solving approaches.
This study presents results from a mathematical sense

making (MS) instructional approach, developed to help
combat the content-based and epistemological challenges
to seeking coherence during physics problem solving.
We hypothesized that the MS instruction was a better
instructional approach for fostering the coherence-seeking
and problem-solving flexibility that mark mathematical
sense making. To investigate this hypothesis, we conducted
a quasi-experimental classroom study using the three
calculation-concept crossover assessments described ear-
lier to compare learning outcomes of the mathematical
sense making instruction to those of a more traditionally
taught course. In doing so, we had two goals. Our primary
goal was to demonstrate a novel assessment approach for
highlighting underexamined and typically unmeasured
aspects of physics learning. In particular, we investigated
the usefulness of the calculation-concept crossover assess-
ment paradigm for characterizing dimensions of math-
ematical sense making in introductory physics. Our
secondary goal was to characterize student thinking in
the mathematical sense making courses, to see if this
approach could produce measurable benefits when com-
pared to traditional instructional methods. We see these
dual goals as mirroring those of other PER-based assess-
ments. For example, the introduction of the Force Concept
Inventory highlighted the, at the time, unmeasured con-
ceptual learning goals for Newtonian physics [32]. At the
same time, the Force Concept Inventory was used to
demonstrate the benefits of active-engagement pedagogy
over traditional approaches [56].
The mathematical sense making instruction draws on

common pedagogical techniques from educational
research for conceptual and epistemological development.
For example, the large lecture incorporates peer-instruc-
tion-style clicker questions and peer discussion [26,57].
Instructors use the clicker questions to generate student
discussion of ideas. Importantly, for problems where
responses do not converge to the correct answer, the
instructor will elicit explanations for the two or three most
popular choices. The classroom motto is to figure out not
only why the right reasoning is right, but also why the
wrong explanations are wrong. This aims to give students
experience with resolving inconsistencies in the service of
developing more coherent understandings. Additionally,
the instruction focuses on developing students’ epistemol-
ogies for coherence seeking between calculation and
conceptual reasoning; the instruction in the mathematical
sense making course contains explicit epistemological
messaging along these lines, as described in more detail
by Redish and Hammer [58]. To provide a feel for this
curriculum in action, descriptions of two course elements
used to foster mathematical sense making are available
in Ref. [59].
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B. Predictions of mathematical sense making students’
performance on crossover assessments

In this study, we pose our three crossover assessment
items to students in a control (CTRL) lecture section and
mathematical sense making lecture sections of the same
physics course. The control class emphasized conceptual
understanding and quantitative problem solving of the type
typically emphasized in end-of-chapter textbook problems,
with class discussions in lecture arising from student
questions. There was no clear indication of PER-based
instructional methods being used in the control class.
Overall, our prediction is that the mathematical sense
making instruction fosters coherence between calculations
and concepts, coherence that does not automatically
develop through standard instructional approaches, and
therefore the mathematical sense making students will use
more crossover approaches than the control students do.
Moreover, we interpret calculation-concept crossover

approaches as indicating both knowledge and epistemo-
logical stances supporting mathematical sense making. On
the one hand, calculation-concept crossover indicates that
students have developed knowledge and skills that support
fluency with each reasoning approach and the flexibility to
apply them for different reasoning tasks. On the other hand,
the flexibility illustrated by calculation-concept crossover
reveals epistemological stances that support coherence and
integration. Therefore, we predict that the mathematical
sense making instruction will support greater crossover
approach use, in part, through epistemological sophistica-
tion, so students in the mathematical sense making course
will express epistemological views that more strongly favor
coherence between mathematics and concepts in problem
solving (i.e., a stronger MS epistemology).
If these two predictions are correct, we will also test

whether surveyed epistemologies can completely explain
the greater use of crossover approaches in the mathematical
sense making sections. One reason for this test is to see
whether epistemological surveys can completely capture
the benefits of the mathematical sense making instruction.
For the proposed crossover assessments to provide an
instrumental benefit, it is important that surveyed episte-
mologies are not sufficient for explaining effects measured
by crossover assessments. If they contain no additional
information beyond that obtained in epistemological sur-
veys, crossover assessments, though theoretically interest-
ing, do not add any additional power for resolving
differences between course outcomes over (easier to score)
epistemological surveys.
For each of the three crossover problems, we also

investigate specific predictions about whether use of cross-
over approaches increases the correctness of students’
answers:
Qualitative judgment question (exploding blocks).—In

light of the common conceptual reasoning errors possible,
we find it reasonable to predict that, compared to CTRL

instruction, the MS instruction will increase correctness on
this tricky qualitative problem by increasing calculation use
(the crossover approach) on this problem. As with Sherin’s
students, the calculation may bring increased precision.
Isomorphic calculation questions (ramps).—Because

these types of problems can be solved with simple calcu-
lations, the predicted increase in conceptual arguments (the
crossover approach) used by the MS students will demon-
strate insight and efficiency, but perhaps not increased
accuracy.
Cued symbolic evaluation question (ballistic pendu-

lum).—Even though the item tells students not to use
calculations, we predict that, compared to CTRL students,
MS students will use conceptual arguments for evaluating
mathematical expressions more often, leading to more
correct evaluations.

V. METHOD

A. Participants

Participants were undergraduate students enrolled in a
first-semester calculus-based introductory physics course,
taken mostly by engineering majors, at a large, public,
research university. Over 15 weeks, the weekly class time
consisted of 2.5 h of lecture in a large lecture hall led by an
instructor and a 50-min discussion section led by a teaching
assistant (TA). 347 students across three course sections
consented to have their data used in this study. Consent
rates were relatively low for the CTRL section (56%) as
compared to two mathematical sense making sections
taught by physics education researchers (94%).

B. Design

Because of large enrollment, students at this university
were split between three different sections of the course,
each with a separate lecture instructor, discussion sections,
homework assignments, and midterm exams. The control
class was taught by a theoretical physicist. One class using
the mathematical sense making curriculum was taught by a
senior physics education researcher (MS). Both of these
instructors had taught in this department for at least ten
years and were regarded as excellent instructors. Another
class using the MS curriculum was taught by a junior
physics education researcher, who was teaching a large
lecture course for the first time (MS-nov), though they had
taught smaller courses using research-informed instruc-
tional methods. The two mathematical sense making
classes used the same lecture materials and homework
assignments. The instruction in the CTRL course was not
affected by this study. The CTRL instructor taught as they
normally would. (Note: we are using “they” as the gender-
neutral pronoun for all instructors).
The primary comparison of interest is between CTRL

and MS groups, demonstrating what can be achieved by
two experienced instructors, each using their respective
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teaching approaches. A comparison between the MS-nov
and CTRL groups is of secondary interest, to investigate
possibilities for first-time, large-lecture instructors to
accomplish the novel goals of the mathematical sense
making curriculum.
The key assessments occurred at two points. A set of

crossover assessments were included on a common final
exam, co-designed by the three instructors. Each of the
three free-response problems included one crossover
assessment item—qualitative judgment, isomorphic calcu-
lation, or cued symbolic evaluation—as a subpart, attached
to associated standard problems. The test also contained 10
multiple-choice items, which are not included in our
analysis. Students in all three instructional groups took
the 2-h final exam simultaneously. As described below, we
separately coded students’ responses to the crossover items
and to the associated standard problems.
In addition, a modified expectations survey (MPEX2)

[60] was given during the last week of class. This survey
contained 29 items, most from the MPEX2 and some
created to target the mathematical sense making curricu-
lum’s explicit goals. We took 15 items from this survey
related to math-concept coherence and seeking coherence
during problem solving to construct an MS epistemology
score. Students completed the survey online, outside of
class. There was no systematic presurvey given. See
Supplemental Material at [61] for the 15 items used to
construct the MS epistemology score.

C. Coding scheme for crossover assessments
and the associated standard problems

For the associated standard problems, calculation prob-
lems were coded only on whether students used the correct
approach. Approaches that correctly plugged problem-
specific values into appropriate equations were coded as
correct, even if arithmetic errors led to incorrect final
answers. Because some subparts of each problem were
related, answers that correctly utilized incorrect values
calculated in previous subparts were coded as correct, to
avoid multiple penalties for initial errors. For the problem
requiring graphs, the graphs were coded as correct if they
correctly represented the qualitative behavior.
For each of the three crossover assessments, we coded

for (i) the approaches taken and (ii) correctness. The next
subsections describe the specific coding scheme for each
problem. If a student used multiple approaches, as least one
approach correctly leading to the final answer was suffi-
cient to be coded as correct. See Supplemental Material at
[61] for a more detailed discussion of the coding scheme,
examples of coded student work, and details on how
disagreements between coders were resolved.

1. Qualitative judgment question (exploding blocks)

For the qualitative judgment problem, there were
approach codes for both calculation and conceptual

argument. Solutions that were coded as calculation (the
crossover approach here) included plugging numerical or
symbolic values into a mathematical expression and then
performing mathematical manipulations to compute values
that determined the answer. The conceptual argument code
indicated justifications for a final answer that did not use an
explicit calculation, either by reasoning about physical
quantities or reasoning about mathematical dependencies
using relevant equations. Since calculation and concept use
were independent, a student could be coded as attempting
both or attempting neither.
Solutions were coded as correct if they indicated that the

mechanical energy increased and gave a correct justifica-
tion. The correct calculation involved correctly calculating
the kinetic energies before and after the explosion. Correct
conceptual arguments argued that (i) the chemical energy in
the explosive was converted to mechanical energy, (ii) the
explosion did work on the masses, increasing their kinetic
energy, or (iii) halving the mass and doubling the speed
would lead to an increase in mechanical energy since
kinetic energy depends more strongly on speed than mass
(since KE ∼m and KE ∼ v2).

2. Isomorphic calculation questions (ramps)

For the isomorphic calculation problem, we again coded
for calculations and conceptual arguments. Calculation
required producing a mathematical expression and per-
forming manipulations to determine the final answer.
Simply writing a mathematical expression or describing
a calculation in words was not sufficient to be coded as
calculation. The conceptual argument (crossover approach)
stated that the situation was isomorphic to a previous
problem, so the answer should be the same as before. As
there were two isomorphic calculation questions, the cross-
over code on this quantitative question was given when
students used a conceptual argument for at least one part.
Solutions were coded as correct if the correct expression

for the relevant force was given, mg sin θ, and if either the
calculation or conceptual argument was correct. Students’
correctness score was the sum of their correctness on the
two isomorphic calculation questions.

3. Cued symbolic evaluation question
(ballistic pendulum)

Because the cued symbolic evaluation question explic-
itly directed students not to perform a calculation, we were
stricter in when we gave a conceptual argument code than
we were in the qualitative judgment question (exploding
blocks). We coded an approach as conceptual argument
(crossover approach) only when the student evaluated the
given expression against the expected physical behavior.
More specifically, an approach was conceptual when (i) the
direct and/or inverse proportional dependences in the given
expression were tested against the expected physical
behavior, or (ii) the speeds before and after collision were
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compared and tested against the expected physical behav-
ior. Again, the conceptual code is the crossover code here,
since the standard version from which this question is
adapted is quantitative (i.e., “calculate the symbolic
expression”).
Solutions were coded as correct if the given math-

ematical expression for angular speed was deemed
implausible and a correct approach was taken. A correct
use of proportional dependence would reject the given
expression because the proportional relations between the
rod’s mass or the bullet’s mass and final angular speed
are incorrect. A correct speed comparison would reject
this expression because it says that the (linear or angular)
speed increased after collision, a physical impossibility.
These two conceptual approaches were the only two
approaches found to correctly debunk the proposed
expression.

4. Interrater reliability

The coding scheme was initially generated by three
of the authors by examining a small subset of student
responses. Then, after initially using another small set of
student responses to calibrate their coding, the first and
second authors coded 45% of students’ responses to all
three crossover problems and the associated standard
problems, distributed proportionally across the data col-
lected from the three instructional groups. After this
initial round, a second round of coding broke down the
approach and accuracy of the crossover problems in
greater depth, as reported in the coding scheme. In this
second round, the first and second authors recoded a
subset of student responses (20% of the total data
corpus4). After each round of coding, the authors dis-
cussed disagreements and modified the coding scheme to
resolve those disagreements. After these two rounds of
coding and discussion, the first author then coded all
remaining responses. For all results presented, the coders
reached an average of 95% agreement on all codes before
discussion (average κ ¼ 0.85; lowest code agreement ¼
88%, lowest code κ ¼ 0.75).

VI. RESULTS

The subsequent analysis excludes the 23 students
(5 CTRL students, 15 MS-nov students, and 3 MS
students) who did not attempt all three crossover prob-
lems, leaving 324 students (CTRL n ¼ 72, MS n ¼ 134,
MS-nov n ¼ 118). The exclusion of these 23 students
did not change the overall patterns of significance in
the results.

A. Mathematical sense making supports use
of calculation-concept crossover approaches

Figure 3 shows the percentage of calculation-concept
crossover approaches used by the three instructional groups.
Our primary comparison of interest is between the MS
and CTRL groups. The MS group used more crossover
approaches than the CTRL instructional group on all three
crossover assessments: qualitative judgment (exploding
blocks), χ2ð1;N¼206Þ¼7.25, p ¼ 0.007 isomorphic cal-
culation (ramps), χ2ð1;N¼206Þ¼16.5,p<0.001, and cued
symbolic evaluation (ballistic pendulum) χ2ð1; N ¼ 206Þ ¼
12.8, p < 0.001. This confirmed our main prediction for all
three crossover assessments: MS instruction better supported
the calculation-concept crossover when solving physics
problems compared to CTRL instruction.
The MS-nov group partially matched our predictions for

the mathematical sense making curriculum, using more
crossover approaches than CTRL students on two of the
three crossover assessments: isomorphic calculation (ramps),
χ2ð1;N¼190Þ¼12.0, p<0.001, and cued symbolic evalu-
ation (ballistic pendulum), χ2ð1;N¼190Þ¼6.52, p ¼ 0.01.
The MS-nov group’s use of crossover approaches did not
differ from the CTRL group’s on qualitative judgment
(exploding blocks), χ2ð1; N ¼ 190Þ < 0.01, p > 0.90.

B. Differences in correctness on crossover assessments
matched differences in crossover approach use

for predicted problems

Turning to the correctness on each of the three cross-
over assessments (Fig. 4), mathematical sense making
students generally outperformed CTRL students on the
two predicted crossover assessments: qualitative judgment
(exploding blocks) and cued symbolic evaluation (ballistic
pendulum). The MS group outperformed the CTRL
group on both of these problems: qualitative judgment

FIG. 3. Percentage of calculation-concept crossover approaches
used in the three instructional groups on the crossover assess-
ments. Error bars represent �1 SEM, calculated from the
binomial distribution.

4For the calculation attempt codes on the isomorphic calcu-
lation problems, only 30 responses were coded, because this was
determined to be a simple code to apply. Agreement on this code
was in-line with the average agreement for all other codes.
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(exploding blocks), χ2ð1; N ¼ 206Þ ¼ 8.89, p ¼ 0.003,
and cued symbolic evaluation (ballistic pendulum),
χ2ð1;N¼206Þ¼12.9, p < 0.001. The MS-nov group out-
performed the CTRL group on cued symbolic evaluation
(ballistic pendulum), χ2ð1;N¼190Þ¼7.90, p ¼ 0.005, but
not qualitative judgment (exploding blocks), χ2ð1;N¼190Þ¼
1.18, p ¼ 0.28.
For isomorphic calculation (ramps), we predicted that

there would be no significant difference in correctness
between groups, since crossover approach use (conceptual
argument recognizing the isomorphism between problems)
would not help students be more accurate; the calculation is
relatively straightforward. Results matched this prediction:
On these questions, the CTRL group trended to be more
correct than either mathematical sense making group, but
this difference was not significant when comparing to either
the MS group, tð172.1Þ ¼ 1.35, p ¼ 0.18, or the MS-nov
group, tð188Þ ¼ 1.82, p ¼ 0.07.
One possibility for why the mathematical sense making

groups outperform the CTRL group on the crossover items
might be generally better physics problem-solving skill in the
MS andMS-nov groups. To explore this possible explanation,
we compared the three groups on their mean performance on
the 6 associated standard problems. There was a difference
between the three groups on the total associated standard
problem score, Fð2; 321Þ ¼ 3.03, p < 0.05. To correct for
multiple comparisons, we made pairwise group comparisons
with the Games-Howell procedure. The only significant
pairwise difference was that the CTRL group scored higher
on associated standard problems than the MS-nov students,
p ¼ 0.04, d ¼ 0.38. The MS-nov group’s worse perfor-
mance on the standard problems makes their better perfor-
mance on the cued symbolic evaluation question even more
notable. Similarly, even though there was no significant
performance difference between the MS and CTRL groups

on the standardproblems, theMSstudentsweremore accurate
on the crossover assessments, as predicted. These results
indicate that the benefits of the mathematical sense making
instruction were not detected as “general” problem solving
skills. Rather, there is a particular benefit that is captured by
the calculation-crossover assessments.
Given this conclusion, one follow-up question is whether

MS and MS-nov students outperformed CTRL students on
the crossover questions because they used crossover
approaches more frequently on those items. Notably, the
patterns of significant differences between groups in
correctness in Fig. 4 match the patterns of differences
for crossover approaches used in Fig. 3. On the cued
symbolic evaluation question, the connection is an obvious
one. The results of the coding revealed that only the two
coded crossover approaches, comparing proportional
dependencies to physical behavior or comparing initial
and final speeds, yielded a correct judgment. Therefore,
success on this question is by definition connected to the
coded crossover approach use.
However, the connection between crossover approaches

and correct answers on the qualitative judgment problem
bears closer analysis. In principle, both conceptual argu-
ment and calculation (the crossover approach here) can
yield the correct answer. Figure 5 breaks out the approach
categories coded (calculation only, conceptual argument
only, both calculation and conceptual argument) for the
three instructional groups and indicates what percentage of
solutions taking each approach was correct. The crossover
approach percentage shown in Fig. 3 is the sum of
“calculation only” and “calculation and conceptual argu-
ment” approaches. On this problem, only 19% of con-
ceptual argument approaches were correct. In comparison,
approaches that included a calculation were much more
successful.
A breakdown of the common conceptual argument

errors shows that this low correctness rate comes from

FIG. 4. Percentage of correct solutions of the three instructional
groups on the three crossover assessments and the associated
standard questions. Error bars represent �1 SEM, calculated
from the binomial distribution for binary measures.

FIG. 5. Approaches used on the qualitative judgment question
(exploding blocks)—calculation, conceptual argument, and both
calculation and conceptual argument—along with the percentage
of correct answers produced by each approach.
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misapplications of common explanations in introductory
physics. 49% of students that only gave conceptual argu-
ments concluded that the mechanical energy will remain
the same. The two most common justifications were (i) the
general principle “energy is always conserved” and (ii) a
compensation argument—the energy lost by the stopped
block would be exactly gained by the accelerated block,
leaving the overall mechanical energy the same. 19% of
students that only gave conceptual arguments concluded
that energy would decrease, commonly citing nonmechani-
cal energy released by the system in the explosion (e.g.,
heat, light, sound, deformation, etc.). The remaining errors
were incorrect justifications of the correct final answer or
solutions that left the final answer ambiguous.
This breakdown suggests that the MS group’s increased

use of crossover approaches—here, calculations—and the
higher accuracy of approaches that incorporated a calcu-
lation explain why the MS group was more correct on the
qualitative judgment problem than the CTRL group. To test
this mediation, we performed a 3 × 2 × 2 log-linear analy-
sis, using instruction (CTRL, MS-nov, or MS), crossover
approach use (did or did not include a calculation), and
correctness (correct or incorrect) as the three factors. Log-
linear analysis tests for relationships between multiple
categorical variables. Our analysis used log-linear model
selection, which starts with a completely saturated model,
including all one-way, two-way, and three-way relation-
ships and removes the highest-order relationships that do
not significantly contribute to the fit of the model, one at a
time until all remaining terms contribute significantly to the
model. The final model contains only the highest-order,
significant relationships between factors. In the first step of
model selection, the three-way association was deemed to
not significantly contribute to the fit of the model,
χ2changeð2; N ¼ 324Þ ¼ 1.63, p ¼ 0.44, and was removed.
This indicated that the percentage of correct answers
produced by each approach did not differ by instructional
group. In the second step, the relationship between
instruction and correctness was removed, χ2changeð2; N ¼
324Þ ¼ 326,p ¼ 0.20. This indicated that there was no
direct association between instructional group (CTRL vs
MS vs MS-nov) and correctness. In the final model,
instruction was associated with approach, χ2changeð2; N ¼
324Þ ¼ 12.4, p ¼ 0.002, and approach was associated with
correctness, χ2changeð1; N ¼ 324Þ ¼ 104, p < 0.001, con-
firming that the link between MS group and correct
answers is mediated by crossover approach use. The final
overall model fit did not significantly deviate from the data,
χ2ð4; N ¼ 324Þ ¼ 4.90, p ¼ 0.30.

C. Mathematical sense making supports
explicit coherence seeking

One reason for valuing the different calculation and
conceptual argument approaches to a problem is that

multiple approaches provide a method for self-checking
during problem solving. Demanding that multiple
approaches must converge on the same answer can warn
a problem solver of errors in any one approach. In
addition to looking at crossover approach use, we can
look for such explicit demonstrations of coherence-
seeking through solutions giving both a calculation and
a conceptual argument for an answer. Table V shows the
percentage of approaches that demonstrated this kind of
explicit coherence seeking, omitting the cued symbolic
evaluation question because it prompted students not
to use a calculation. The explicit coherence-seeking
approaches on the qualitative judgment question are just
a renaming of the “calculation & conceptual argument”
approach shown in Fig. 5.
In sum, the patterns of explicit coherence approaches

mirror the patterns for crossover approach use. MS students
gave more explicit coherence-seeking responses than
CTRL students on the qualitative judgment question,
χ2ð1; N ¼ 206Þ ¼ 10.1, p ¼ 0.001, and the isomorphic
calculation question, χ2ð1; N ¼ 206Þ ¼ 7.25, p ¼ 0.007.
The MS-nov group did not display explicit coherence
seeking more than the CTRL group on the qualitative
judgment question, χ2ð1; N ¼ 190Þ ¼ 1.20, p ¼ 0.27, but
they did on the isomorphic calculation questions,
χ2ð1; N ¼ 190Þ ¼ 8.07, p ¼ 0.004. This illustrates the
success of the mathematical sense making instruction for
having students explicitly demonstrate coherence between
calculations and conceptual arguments in their solutions.
Although standard problem-solving paradigms often

include a “check your answer” step at the end, they differ
from our focus on explicit coherence by making calcu-
lations primary and other approaches a secondary check
of that calculation. Our focus on coherence seeking
between calculations and conceptual reasoning places
the emphasis on the coherence rather than the primacy of
one approach over another. This is more descriptive of a
wider range of problem-solving approaches, as an initial
conceptual argument may precede the calculation rather
than follow it.

TABLE V. The percentage of explicit coherence-seeking ap-
proaches (both calculation and conceptual reasoning) used on the
qualitative judgment question and the percentage of students who
gave at least one explicit coherence-seeking solution on the
isomorphic calculation questions. * indicates percentage is
greater than CTRL percentage, p < 0.01.

Explicit coherence approaches

Qualitative
judgment
question

Isomorphic
calculation
questions

CTRL 9.7% 2.8%
MS-nov 15.3% 16.1%*
MS 29.1%* 14.9%*
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D. Associations with problem-solving epistemologies:
MPEX2 results

On top of completing the crossover assessments, 240
students (CTRL: n ¼ 47; MS-nov: n ¼ 94; MS: n ¼ 99)
also completed the modified version of theMPEX2 (leaving
nomore than 2 out of 32 items blank) in the final week of the
course. Before analyzing the results, we selected 15 MPEX
items that were tied to the mathematical sense making
instructional goals of fostering coherence-seeking and
problem-solving flexibility. Favorable responses to these
items had a high reliability (α ¼ 0.82) and were combined
into an MS epistemology score (percentage of favorable
responses, ranging from 0 to 100%). The averages for each
instructional group are shown in Fig. 6.
There was a significant difference between MS episte-

mology scores by instruction, Fð2; 237Þ ¼ 19.6, p <
0.001. Post hoc comparisons using the Games-Howell
test reveal that MS-nov students scored higher than
CTRL students, p < 0.001, d ¼ 0.70, and MS students
scored higher than MS-nov students, p ¼ 0.007, d ¼ 0.44
(Implying, of course, that MS students scored higher than
CTRL students, p < 0.001, d ¼ 1.18). Notably, no CTRL
students had an MS Epistemology score above 60%
whereas 22% of MS-nov students and 43% of MS students
did. This matched our expectation that the mathematical
sense making curriculum would favorably impact students’
epistemologies.
These results suggest one possibility: the increased use

of crossover approaches by the MS and MS-nov students is
explained by their MS epistemology score. That is, the
mathematical sense making instruction impacts both stu-
dents’ problem-solving approaches and their espoused
views on how calculations and concepts should be used
together in problem solving. Therefore, the crossover
assessments, though indicating differences in mathematical
sense making outcomes between instructional groups, may

not measure anything distinguishable from students’ sur-
veyed epistemologies. To see whether this was true, we
tested a model using instructional group to predict cross-
over approach use while controlling for MS epistemology
score. We summed the number of crossover approaches
used by each student, ranging from 0–3. Because the
distribution of crossover approaches used was skewed
toward zero, we used a Poisson-distributed general linear
model with the number of crossover approaches as the
dependent variable and instructional group and MS epis-
temology score as the independent variables. Each stu-
dent’s crossover approach total is modeled through

y ¼ exp½Cþ bMS−novxMS−nov þ bMSxMS

þ bMS−epistemologyxMS−epistemology�;

where y is the number of crossover approaches a student
used, xMS−nov is 1 for students in the MS-nov group and 0
otherwise, xMS is 1 for students in the MS group and 0
otherwise, xMS−epistemology is a student’s MS-epistemology
score (ranging from 0 to 100), and the b’s are the associated
model coefficients for the x’s.
The model is plotted in Fig. 7 and the model coefficients

are shown in Table VI. The model fit for the CTRL group is
only shown for MS epistemology scores from 0% of 60%,
because no CTRL students score outside of this range. The
coefficient for MS epistemology score is significant and
positive. This supported the prediction that epistemological
views favoring coherence between calculations and con-
cepts are associated with crossover approach use. In
addition, compared to CTRL students, MS students used
significantly more crossover approaches even after con-
trolling for MS epistemology score. The difference between
MS-nov and CTRL groups was not significant. This
indicated that even for CTRL and MS students who

FIG. 6. Average MS epistemology score (% of favorable
responses) for each instructional group. Error bars represent
�1 standard error of the mean.

FIG. 7. Scatterplot of number of crossover approaches used vs
MS epistemology score, with the model fit plotted for each
instructional group.
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received the same MS epistemology score, MS students
used more crossover approaches. Said another way, MS
epistemology score alone does not explain the increased
use of crossover approaches by MS students. The pattern of
significant results also holds when excluding all students
with MS epistemology scores greater than 60%, testing
only the region of overlap between all three instructional
groups. A model which included an interaction between
MS epistemology score and instruction group was tested,
and the interaction was found to be nonsignificant.

VII. DISCUSSION

The study presented here aims to accomplish two goals.
Our primary goal was to introduce calculation-concept
crossover as an assessment paradigm that highlights one
dimension of mathematical sense making: more expansive
and coherent uses of calculations and conceptual arguments.
At the heart of our paradigm is the rejection of an assumed
dichotomy underlying the design of standard physics
assessments: quantitative questions test calculation skill
and qualitative questions test conceptual understanding.
Unlike previous investigations of mathematical sense mak-
ing, which relied on nonstandard problems or qualitative
analysis of student discourse, the crossover assessments
resemble typical physics problems and can be coded solely
on the basis of students’ written solutions. Importantly, the
crossover assessment measurement was shown to be dis-
tinguishable from standard physics problem solving and an
existing epistemological survey, indicating an instrumental
benefit of calculation-crossover assessment.
The secondary goal of this study was to illustrate how

different pedagogical approaches can lead to different
mathematical sense making outcomes. The mathematical
sense making curriculum investigated here focused on
developing coherence between calculations and conceptual
reasoning, as well as on developing epistemological views
that support such coherence seeking. This two-pronged
focus on coherence changed how students approach pro-
blem solving, increasing the use of calculation-concept
crossover approaches. Overall, these crossover approaches
were more accurate, efficient, and insightful than the com-
mon alternatives. Mathematical sense making instruction

also increased explicit demonstrations of coherence, provid-
ing additional evidence for the coherence-seeking outcomes
of this instructional approach. Compared to the CTRL
group, the predicted effects all bore out exactly for the
MS group and partially for the MS-nov group, showing that
even an instructor teaching a large lecture course for the first
time can achieve some of the positive benefits of the
mathematical sense making curriculum.

A. Considering alternative interpretations
of the instructional comparison results

1. Interpreting impacts of low consent rates
in the control classroom

Compared to the mathematical sense making classes, the
control class had a lower consent rate (56%). Informed
consent was collected from students in the control class at
the beginning and end of the semester, concurrent with pre-
(in-class) and post-MPEX2 (online, at-home) survey ad-
ministration. How does this potential sampling bias impact
the results found? We find no easy answers to this question
and instead share some of our thinking on this issue.
A methodological study [62] found that higher course
grades predicted increased completion rates for a low-
stakes assessment. Such a sampling bias could lead to
under- or overestimates of the differences between the
mathematical sense making and control groups (though
these estimates could just as well accurately represent
population differences). However, we have competing
intuitions about the direction of the likely bias. On the
one hand, we might expect higher-performing students to
have developed a greater fluency with physics ideas, and
this fluency supports seeing and adopting crossover
approaches. On the other hand, success in a traditionally
taught course emphasizing standard physics problems may
not be associated with the inclination to use calculation-
concept crossover, which is distinct from standard quanti-
tative problem-solving methods. Responsibly interpreting
the impact of this low consent rate would require us to have
a better model of how course performance, course expect-
ations, standard problem-solving skills, epistemological
views, and other relevant factors interact with students’
propensity for and skill with crossover approaches. The
potential impact of a sampling bias is another reason to
value future replications of this initial study.

2. The role of students’ physics classroom expectations

One might ask how much of the differences between the
control and mathematical sense making groups stems
from “classroom expectation scaffolding.” In the math-
ematical sense making classes, students learn crossover
reasoning is rewarded; in class discussions and in com-
ments on graded work, the instructors valued student
use of multiple problem-solving approaches and seeking
coherence between them. The grading on midterm exams

TABLE VI. The coefficients of the general linear model with
number of crossover approaches used as the dependent variable
and instructional group and MS epistemology score as the
independent variables.

Factor b SEb Z p

Constant −0.80 0.21 3.83 <0.001
CTRL � � � � � � � � � � � �
MS-nov 0.31 0.23 1.35 0.18
MS 0.57 0.23 2.51 0.01
MS epistemology score 0.0084 0.0027 3.11 0.002
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reflected this, as students could receive some credit for
articulating multiple approaches, seeking coherence (or
noting unresolved incoherence) between these approaches,
and articulating intuitive insights, even if the final answer
or approach was incorrect. On the final exam, which
contained the crossover and standard problem-solving
questions, we find it plausible that students in the math-
ematical sense making courses, on average, had a greater
expectation that crossover approaches—and seeking coher-
ence between calculations and conceptual reasoning more
generally—would be rewarded.
For these reasons, we do not discount the role of class-

room expectations in our results. Instead, we interpret our
findings as indicating what students practice and expect to do
in the mathematical sense making and control courses. That
is, the findings indicate that mathematical sense making
students are more likely to engage in crossover approaches
within their courses, and these crossover approaches are
more likely to yield correct answers on two of the crossover
assessments—the qualitative judgment question (exploding
blocks) and the cued symbolic evaluation question (ballistic
pendulum). Classroom expectations aligned with the math-
ematical sense making curriculum’s explicit focus on
(a) providing opportunities to practice constructing coher-
ence between calculations and conceptual arguments and
(b) fostering physics epistemologies that support crossover
may play a role in supporting crossover use. Differences
between classroom expectations in the different courses is
not a confounding factor, but rather, an inextricable part of
what we are measuring when we measure students’ class-
room-based use of crossover approaches.
From our situated cognition perspective [63,64], the

relevant question for future research is not “how much do
these results indicate differences in classroom expectation
rather than differences in conceptual-mathematical learning,”
but rather “how does what students practice in the control or
mathematical sense making classrooms inform their prob-
lem-solving practices in future educational and professional
contexts?” Investigating the impacts of the control and
mathematical sense making instruction on future problem-
solving practice is a difficult empirical task that will, among
other challenges, require an improved understanding of how
student thinking emerges from complex interactions between
one’s prior educational experiences and the contextual
features of one’s present situation.

B. Implications for assessment in PER

1. Calculation-concept crossover: Articulating a
mathematical sense making assessment goal

Better theoretical models for mathematical sense making
assessment can bring instructional focus toward mathemati-
cal sense making. We present the calculation-concept
crossover as a paradigm that articulates one previously
underexplored dimension of mathematical sense making:
expansive use of calculations and conceptual arguments

across different problem types. This crossover demon-
strates several benefits of mathematical sense making.
First, crossover approaches can lead to greater problem-
solving accuracy when one approach is prone to error—for
example, on the qualitative judgment question (exploding
blocks), students who used a calculation did not fall prey to
common invalid conceptual arguments. Second, crossover
approaches can evidence greater efficiency and insight by
breaking from typical approaches seen in physics class.
However, the larger point of calculation-concept cross-
over is not that students should use one problem-solving
approach or another. Rather, the broader benefit signaled by
the paradigm is the existence of multiple, coherent prob-
lem-solving pathways. Just as engineers employ redundant
systems to avert catastrophic failures, the coherence
between multiple problem-solving approaches provides a
safety net to catch mistakes that might be made through any
one approach.
Calculation-concept crossover may be a productive lens

for expanding teachers’ in-the-moment assessments of and
responses to student reasoning. When students use invalid
problem-solving approaches, instruction is clearly needed
to attend to these errors. However, calculation-concept
crossover brings to light how instruction can support
mathematical sense making, even when students execute
correct problem-solving approaches. When students solve
quantitative problems with correct calculations, instructors
could aim to introduce alternative conceptual arguments,
when productive; when qualitative problems are answered
correctly with conceptual arguments, instructors could
similarly demonstrate how a calculation could produce
similar answers. The paradigm of calculation-concept
crossover can help attune teachers’ attention to the coher-
ence between multiple approaches as a mathematical sense
making-based goal of physics instruction.
The calculation-concept crossover paradigm also has

implications for the design of physics problems. Many
standard physics problems are best suited to one particular
type of problem-solving approach. On the other hand,
crossover assessments must invite productive calculations
and conceptual arguments. Although we expect that some
standard problems will invite students to seek coherence
between different approaches and different components of
their knowledge, many will not, so assessment of student
sense making will require the careful design of new
assessment questions.
Although we believe that it can inform the design of

future assessments, it is important to note that the calcu-
lation-concept crossover paradigm is neither necessary nor
sufficient for designing such problems. The instructors and
researchers who designed the crossover assessments used
in this study did so by drawing on their prior instructional
experience and expertise with mathematical sense making,
not the explicit articulation of calculation-concept cross-
over that was only developed later. Therefore, we do not
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expect that exposing assessment developers to the calcu-
lation-concept crossover in the form of Fig. 1 alone,
without that prior experience and expertise, will be suffi-
cient to guide the development of additional assessment
items. A more direct contribution of the crossover paradigm
is to highlight the mathematical sense making evident in
how students can approach quantitative and qualitative
problems. We also believe that calculation-concept cross-
over could help describe and synthesize the efforts of
researchers and instructors already attending to mathemati-
cal sense making.

2. The mistake in labeling qualitative questions
as “conceptual questions” and quantitative questions

as “calculation questions”

This study expands the discussion around how typical
types of quantitative and qualitative physics assessment
questions should be interpreted and designed. In PER,
it is still standard (and productive) to treat quantitative
questions as assessments of calculation skill and qualita-
tive questions as assessments of conceptual knowledge.
Quantitative problem-solving rubrics are often designed
to assess the quality of the calculation used and are not well
suited to assess purely conceptual approaches. On the
other side, banks of qualitative questions are often explic-
itly labeled as conceptual questions, such as in the Force
Concept Inventory or the Conceptual Survey of Electricity
and Magnetism. In many cases, these classifications are
wholly accurate. On many typical quantitative questions
requiring a precise numerical or symbolic result, calcu-
lations are necessary (e.g., finding the final velocity of a
block sliding down a ramp while experiencing friction,
given the relevant ramp parameters). Similarly, many
qualitative questions require conceptual understanding
(e.g., naming the forces acting on a block sliding down
a ramp while experiencing friction).
Yet, we have shown that these standard interpretations

would not accurately capture students’ reasoning on our
crossover assessments. On the qualitative judgment prob-
lem, the calculation approaches were more likely to yield
correct answers. In these cases, it would an error to interpret
the correct answers as indicating only conceptual under-
standing. Similarly, on the isomorphic calculation prob-
lems, it would be an error to interpret correct answers as
only indicating calculation skill, since many students
reached the correct answer through a conceptual argument.
These interpretations are consequential, because they lead
to different instructional implications. For example, inter-
preting poor performance on qualitative questions as weak
conceptual understanding suggests that conceptually
focused instruction is needed. However, in the paradigm
of calculation-concept crossover, performance can be
improved—at least in some cases—by helping students
see the usefulness of calculations for qualitative problems.

3. Testing calculation-concept crossover
and standard problem solving: An example

of multidimensional assessment

Both the experienced and novice mathematical sense
making instructors’ students used more crossover appro-
aches, gave more correct answers on crossover questions,
and espoused stronger coherence-favoring epistemologies
than the CTRL students. However, the MS-nov students
performed significantly worse on standard quantitative
problems than the CTRL students, whereas the MS
students did not. One obvious question is: for the novice
instructor, did the gains in mathematical sense making
come at the expense of standard problem-solving skills?
This question cannot be fully addressed empirically in

this study. One reason is the lack of a CTRL-nov group in
our study, which would allow for an estimate of the degree
to which lower instructor experience impacts standard
problem-solving skills, independent of the instructional
approach. Yet, even with such a group, there are many
uncontrolled differences across the courses in this study
that are not captured by the labels CTRL, MS-nov, and MS.
Teaching is a complex practice [65] and underspecified
differences between the courses on a variety of instructional
dimensions—such as classroom management strategies,
relationships between students and instructors, or how the
instructors’ teaching styles embody personal values and
beliefs—could all contribute to the differences found
between course sections. Replication studies are needed
to see if this pattern in learning outcomes is robust, given
the possible instructional variations allowed between
CTRL and MS approaches.
Although this study does not settle the question of

whether the MS-nov course represents an instructional
trade-off between different learning outcomes, we note that
assessments investigating multiple dimensions of learning
are what allow this question to be asked in the first place.
Methodologically, we argue that this study embodies an
approach to multidimensional assessment that is necessary
for evaluating the success of instructional approaches on
multiple learning goals. Even when an instructional
approach shows significant gains for one learning goal,
it is important to know its effect on other learning goals,
whether it is positive, negative, or neutral.
Historically, PER has usually emphasized the ways in

which new instructional methods can improve learning for
one learning goal, such as conceptual understanding,
without compromising other goals, such as quantitative
problem-solving skill. For this reason, the idea of trade-offs
between multiple learning goals has not been addressed.
For example, in the case of active learning versus tradi-
tional lecture, meta-analytic studies have shown that active
learning leads to greater learning gains along multiple
course objectives, including better exam scores, better
scores on concept inventories, and lower class failure rates
[66]. In this case, the data suggest that active learning
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approaches are strictly better than traditional lecture on a
variety of educational goals. However, little is known about
the comparative benefits of different active learning envi-
ronments, and as PER investigates these finer-grained
instructional differences, the possibility exists that promot-
ing learning in one direction leads to trade-offs in another.
At some point, instructional decisions may need to rest on
decisions of value: what outcomes do I value more and
what outcomes do I value less. In the case of the two types
of assessments in our study, some instructors may be
willing to risk sacrificing some levels of basic problem-
solving competence for increased mathematical sense
making; others may not. Research assessing multiple
dimensions of learning can illuminate these potential
debates.
Additionally, having multiple types of assessments can

allow for testing of as-of-yet untested empirical questions
that could inform those value judgments. For example, how
do the two dimensions of problem solving investigated in
this study support learning and success in future STEM
courses and careers? How do these problem-solving skills
(along with others) at the introductory level seed students’
trajectories toward expertise? Another key question is
about the effects of these different learning outcomes on
retention and persistence—in physics specifically and
STEM fields more generally. Students wanting to engage
in key disciplinary sense making practices, such as coher-
ence seeking and mathematical sense making, may lose
interest in STEM domains if they are primarily training on
more routine problem-solving competencies [67]. In this
way, early exposure to mathematical sense making may
prove to be more valuable in the long run to students’
educational trajectories. Longitudinal hypotheses like these
often go untested, because they require methodological
power, serious time investment, and, as we argue, multiple
types of assessment.
Although any one assessment highlights a dimension of

learning, relying too heavily on any single assessment may
obscure potential learning along other dimensions. In
addition to assessing the potential learning benefits of an
instructional approach, researchers should also seek to
accurately assess potential trade-offs. This will demand a
nuanced look at instructional comparisons and require
multidimensional assessments. The potential payoff will
be better methodological tools and empirical data for
making informed decisions about instructional goals.

C. Mathematical sense making and
adaptive expertise

At a broader level, this work takes a step towards
understanding adaptive expertise in physics education.
Hatano and Inagaki [68] distinguished routine and adap-
tive expertise: while routine expertise involves using
standard approaches in familiar situations, adaptive exper-
tise allows people to find new solutions to new problems.

This adaptation can involve modification of known pro-
cedures or invention of novel approaches. We contend that
calculation-concept crossover marks adaptive expertise. On
our crossover assessments, students could break from
standard approaches (i.e., calculations on quantitative
problems or conceptual reasoning on qualitative problems)
to find more efficient, effective, and insightful solutions.
Although our crossover assessments are not so far from the
typical problem space of introductory physics, we believe
that students using crossover approaches here demonstrate
adaptability and flexibility that could forecast success in
adapting to new problems in the future.
Schwartz, Bransford, and Sears [69] broke adaptive

expertise into two components: efficiency and innovation
(Fig. 8). Importantly, while both routine and adaptive
experts can behave efficiently in familiar settings, it is
innovation that differentiates these two courses of expertise.
Considering these two dimensions together, Schwartz,
Bransford, and Sears argue that both efficiency and
innovation should proceed together in the development
of adaptive expertise, and they argue that a focus on just
one or the other will not be as successful at helping students
transfer their knowledge to new situations. They hypoth-
esize an optimal adaptability corridor that balances both
efficiency and innovation in instruction.
We can use this efficiency-and-innovation framework to

interpret our study in two ways. In terms of instruction, we
propose that the promotion of student sense making in the
lecture provided important innovation experiences in math-
ematical sense making classrooms (see Ref. [59] for an
example). These opportunities to invent and be innovative
are a key part of the mathematical sense making curriculum
and aim to foster the skills, experience, and dispositions
students

FIG. 8. Two courses of expertise plotted on a 2D space of
innovation vs efficiency (adapted from Schwartz, Bransford, and
Sears [69]).
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will need to be innovative in future settings. While
standard, lecture-based instructional approaches seem to
focus on efficiency, many active-engagement instructional
approaches balance content learning with opportunities for
student innovation and invention. This suggests that many
existing PER-based instructional methods may offer oppor-
tunities to develop adaptive expertise, and it would be an
interesting direction for future research to investigate how
these existing instructional approaches might help foster
that expertise.
In terms of the learning outcomes of this study, we can

map standard problem-solving accuracy as being a measure
of routine efficiency and crossover approach use as being a
measure of innovation (i.e., breaking from more standard
approaches and choosing to use a productive crossover
approach). Figure 9 plots this mapping for the three
instructional groups in our study, where the dotted line
represents equal success on efficiency and innovation
measures. Although this mapping should not be taken
too seriously since the exact percentages depend as much
on the comparative difficulty of the standard and crossover
assessment problems as they do on students’ problem-
solving skill, this cartoon provides a starting point for
thinking about educational possibilities in introductory
physics.
The results of our study may serve as a counterexample

to the common idea that training for adaptive expertise can
only occur after a sufficient amount of routine expertise is
developed. This trajectory is embodied by introductory
teaching that focuses on basic skill development, testing
for their efficient use on familiar problem types, and
saving adaptivity and innovation for future courses that
can leverage this earlier instruction. In this trajectory, the
introductory courses would teach the basic skills, and the

upper-division courses would later provide opportunities
to evolve those basic skills into the adaptive skills that
constitute “thinking like a physicist.” Results from the
control classroom in our study illustrate the expected
outcomes of this “efficiency-before-innovation” model.
By contrast, the results of the mathematical sense making
instruction may indicate that, even in introductory
courses, aiming to balance efficiency and innovation
can be fruitful. The MS group showed higher levels of
crossover approach use than the CTRL group while
demonstrating a comparable level of performance on
the standard problems. Here, the mathematical sense
making instruction illustrates the possibility of effectively
developing “efficiency alongside innovation.”
It might also be hypothesized that the ability to develop

efficiency alongside innovation relies on instructor expe-
rience, but the performance of the MS-nov students serves
as a possible counterexample; namely, the MS-nov group
may indicate that even first-time large-lecture instructors
may be able to balance efficiency with innovation to some
degree. This is indicated by the shorter distance of the MS-
nov group from the dotted line in Fig. 9, representing equal
levels of efficiency and innovation, compared to the
CTRL group.
In this way, mathematical sense making may be able to

provide additional insight into the development of adap-
tive expertise. The results from this study might be
interpreted to suggest that, when aiming to develop
adaptive expertise, training for efficiency before innova-
tion may be taking the long way around. Efficiency
before innovation may miss the opportunity for invention
skill to develop at the same time as skills for efficiency.
Focusing on efficiency with familiar routines may also
result in learners relying on these routines even in the
face of new opportunities for innovation and novel
exploration [70], as they did for students who did not
leverage the isomorphism between problems on the
isomorphic calculation questions. Attempts to help stu-
dents learn the standard procedures may even cue
students to avoid nonstandard methods and, inadvertently,
suppress the search for new, more efficient and elegant
approaches [71], raising potential barriers to future
innovation. Linking mathematical sense making with
adaptive expertise in future research could provide addi-
tional data to clarify the risks and opportunities asso-
ciated with traversing different trajectories toward physics
expertise.

VIII. CONCLUSION

One goal for physics instruction is to foster the
mathematical sense making that students will need in
their educational and professional futures. Success with
this goal requires both innovative instructional approaches
for teaching mathematical sense making and innovative
assessments for measuring the success of that instruction.

FIG. 9. Plot of the study results by innovation vs efficiency. The
dotted line represents a balance of equal levels of efficiency and
innovation. The MS student average is closest to this line whereas
the CTRL student average is furthest from this line.
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We offer calculation-concept crossover as one assessment
candidate that might be used in assessing and further
developing mathematical sense making-focused instruc-
tional approaches, such as the one examined in this study.
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