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We discuss an investigation of student difficulties with the corrections to the energy spectrum of the
hydrogen atom for the intermediate field Zeeman effect using degenerate perturbation theory (DPT). The
investigation was carried out in advanced quantum mechanics courses by administering free-response and
multiple-choice questions and conducting individual interviews with students. We find that students share
many common difficulties related to relevant physics concepts. They had difficulty with mathematical
sense making in this context of quantum mechanics, which requires the ability to interpret the implications
of the degeneracy in the unperturbed energy spectrum and how the Zeeman perturbation will impact the
splitting of the energy levels. Many of the common student difficulties arise from challenges in
mathematical sense making and applying linear algebra concepts incorrectly in this novel context of
quantum mechanics. We describe how the research on student difficulties was used as a guide to develop
and evaluate a Quantum Interactive Learning Tutorial (QuILT), which strives to help students develop a
functional understanding of the concepts necessary for finding the corrections to the energy spectrum of the
hydrogen atom for the intermediate field Zeeman effect using the DPT. We also discuss the development
and validation of the DPT QuILT focusing on these issues and its in-class evaluation in the undergraduate
and graduate courses.
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I. INTRODUCTION

Quantummechanics (QM) is challenging even for upper-
level undergraduate and graduate students, and students
often struggle to make connections between mathematics
and QM concepts in this abstract, nonintuitive, and novel
context (e.g., see Refs. [1–22]). There have been a number
of prior research studies aimed at investigating student
reasoning in QM [23–34] and using the findings as
resources for improving student understanding [35–43].
Guided by research studies conducted to identify student
difficulties with QM and findings of cognitive research, we
have been developing a set of research-based learning tools
including the Quantum Interactive Learning Tutorials
(QuILTs), which strive to help students develop a solid
grasp of QM [44–56]. However, there has been relatively
little research that focuses on student understanding of
advanced topics in quantum mechanics, e.g., degenerate
perturbation theory (DPT) [57–59]. The only prior work in
this area has focused on investigating and improving
student difficulties with fundamental concepts with DPT

in the context of a three-dimensional Hilbert space [59] and
in the limiting cases of the strong and weak field Zeeman
effects [58]. In the limiting cases of the strong and weak
field Zeeman effect, one can use further the approximation
method to determine the first order perturbative corrections
and there is no need to explicitly diagonalize the perturba-
tion matrix in each degenerate subspace of the unperturbed
Hamiltonian. Here we discuss an investigation of student
difficulties with mathematical sense making in a physical
situation in the context of DPT involving the intermediate
field Zeeman effect for the hydrogen atom. Unlike the case
for the strong and weak field Zeeman effects, for the
intermediate field Zeeman effect, one cannot use the limits
to simplify the problem and one must explicitly diagonalize
the perturbation Ĥ0 in each degenerate subspace of Ĥ0

before finding the perturbative corrections. This need for
explicit diagonalization makes the intermediate field
Zeeman effect problem technically more challenging. We
also describe the development and validation of the
research-based QuILT that uses student difficulties as
resources and strives to help students learn to apply
mathematical concepts in linear algebra correctly to find
the corrections to the energy spectrum of the hydrogen
atom for the Zeeman effect.
Prior research suggests that students often have difficulty

applying mathematical concepts in the context of a concrete
physical problem. In particular, students have difficulty

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH 15, 010113 (2019)

2469-9896=19=15(1)=010113(14) 010113-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevPhysEducRes.15.010113&domain=pdf&date_stamp=2019-02-19
https://doi.org/10.1103/PhysRevPhysEducRes.15.010113
https://doi.org/10.1103/PhysRevPhysEducRes.15.010113
https://doi.org/10.1103/PhysRevPhysEducRes.15.010113
https://doi.org/10.1103/PhysRevPhysEducRes.15.010113
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


connecting and applying mathematics correctly in physics
contexts (e.g., see Refs. [60–64]). Mathematical sense mak-
ing in the context of solving physics problems can often be
more difficult than when solving equivalent mathematics
problemswithout the physics context [60–64]. Sinceworking
memory is constrained to a limited number of chunks and
students’ knowledge chunks pertaining to a concept are small
when they are learning and developing expertise in physics,
use of mathematics in physics can increase the cognitive load
during problem solving, especially if students are not profi-
cient in mathematics [65], and students may struggle to
integrate mathematical and physical concepts. Thus, sense
making while focusing on solving a physics problem is often
challenging and students sometimes make mathematical
mistakes that they otherwise would not make if the physics
context was absent [60–64].
One QM concept that involves mathematical sense

making in a physical situation is degenerate perturbation
theory (DPT) in the context of the Zeeman effect for the
hydrogen atom. We investigated student difficulties with
finding the first-order corrections to the energies of the
hydrogen atom for the Zeeman effect using DPT and used
the research as a guide to develop learning tools to improve
student understanding.
The hydrogen atom has played a significant role in the

development of quantum mechanics. Specifically, the
discrete energy levels observed by spectroscopists for
the hydrogen atom led Bohr to propose his model with
quantized energy levels. Schrödinger proposed the wave
model of particles involving the Schrödinger equation
which explains features of the hydrogen atom well. The
fine structure of the hydrogen atom is the combined effect
of the relativistic correction and the spin-orbit interaction
since the two components produce the same order of
magnitude corrections to the energies compared to the
unperturbed energies of the hydrogen atom. These fine
structure corrections to the energies are smaller by a factor
of α ≈ 1=137 squared, where α is the fine structure
constant. The Zeeman effect represents the shift in the
energy spectrum of the hydrogen atom due to the presence
of a magnetic field. The shift in the energy spectrum due to
the Zeeman effect is proportional to the strength of the
magnetic field. The intermediate field Zeeman effect,
which we will call the general case of the Zeeman effect
(since it is more general than the strong or weak field
Zeeman effect), is the focus here. It is the case in which the
corrections to the energy spectrum due to the fine structure
and Zeeman terms are comparable. While the Bohr model
accurately explained the observed unperturbed energy
levels of the hydrogen atom, it cannot explain or describe
the observed energy shifts due to fine structure and Zeeman
terms. Only the quantum mechanical treatment using the
Schrödinger equation explains that the observed shifts are
due to the fine structure and Zeeman terms. Spectroscopists
can also identify the energy spectrum of the hydrogen atom

under different conditions, e.g., in an external magnetic or
electric field. Generally speaking, the interactions of the
hydrogen atom with the external magnetic or electric field
create shifts and splitting in the energy spectrum.
Here, we focus on the approximate solutions to the time-

independent Schrödinger equation (TISE) for the inter-
mediate field Zeeman effect using perturbation theory.
While the solution for the TISE for the hydrogen atom

with Coulomb potential energy can be solved exactly, the
TISE for the hydrogen atom involving the Zeeman effect
must include the fine structure correction term and cannot
be solved exactly. The solution for the TISE for the
hydrogen atom with Coulomb potential energy gives the
unperturbed energies E0

n ¼ −13.6 eV=n2, where n is
the principal quantum number. Since the fine-structure
term and, in general, the Zeeman term are significantly
smaller than the unperturbed term in the Hamiltonian,
perturbation theory is an excellent method for computing
the corrections to the energies and comparing the theoreti-
cal results with experiments. The high degree of symmetry
of the potential energy of the unperturbed Hamiltonian for
the hydrogen atom leads to degeneracy in the energy
spectrum of the hydrogen atom and DPT must be used
to find the perturbative corrections for the Zeeman effect.

II. BACKGROUND

Below, we discuss the basics of DPT with which many
students struggled and the development and validation of
the QuILT, which strives to help students learn about DPT
in the context of the Zeeman effect. Via the QuILT, students
are provided guidance and support to determine a good
basis for finding the perturbative corrections to the energies
for the Zeeman effect, which includes corrections due to
both the fine structure and Zeeman terms, and to calculate
the perturbative corrections using that basis. For a given Ĥ0

and Ĥ0, a good basis consists of a complete set of
eigenstates of Ĥ0 that diagonalizes Ĥ0 in each degenerate
subspace of Ĥ0 [66].

A. Basics for DPT

Perturbation theory is a useful approximation method
for finding the energies and the energy eigenstates for a
system for which the TISE is not exactly solvable. The
Hamiltonian Ĥ for the system can be expressed as the sum
of two terms, the unperturbed Hamiltonian Ĥ0 and the
perturbation Ĥ0, i.e., Ĥ ¼ Ĥ0 þ Ĥ0. The TISE for the
unperturbed Hamiltonian, Ĥ0ψ0

n ¼ E0
nψ

0
n, (where ψ0

n is
the nth unperturbed energy eigenstate and E0

n is the nth
unperturbed energy), is exactly solvable. The energies can
be approximated as En ¼ E0

n þ E1
n þ E2

n þ…where Ei
n for

i ¼ 1, 2, 3.. are the ith order corrections to the nth energy of
the system. In PT, the first-order correction to the nth
energy is
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E1
n ¼ hψ0

njĤ0jψ0
ni; ð1Þ

and the first-order correction to the nth unperturbed energy
eigenstate is

jψ1
ni ¼

X
m≠n

hψ0
mjĤ0jψ0

ni
E0
n − E0

m
jψ0

mi; ð2Þ

in which fjψ0
nig is a complete set of eigenstates of the

unperturbed Hamiltonian Ĥ0. If the eigenvalue spectrum of
Ĥ0 has degeneracy, the corrections to the energies and
energy eigenstates are only valid provided one uses a
good basis.

B. Background for DPT involving the Zeeman effect

For a hydrogen atom in an external magnetic field, one
can use the DPT to find the corrections to the energy
spectrum. Using standard notations, the unperturbed
Hamiltonian Ĥ0 of a hydrogen atom is

Ĥ0 ¼ p̂2

2m
−

e2

4πϵ0

1

r
; ð3Þ

which accounts only for the interaction of the electron with
the nucleus via Coulomb attraction. The solution for the
TISE for the hydrogen atom with Coulomb potential energy
gives the unperturbed energiesE0

n ¼ −13.6 eV=n2, where n
is the principal quantum number. The perturbation is

Ĥ0 ¼ Ĥ0
fs þ Ĥ0

Z; ð4Þ

in which Ĥ0
Z is the Zeeman term and Ĥ0

fs is the fine structure
term. The Zeeman term accounts for the potential energy of
the magnetic moments due to the orbital and spin angular
momenta in the external magnetic field. The Zeeman term is
given by

Ĥ0
Z ¼ μBBext

ℏ
ðL̂z þ 2ŜzÞ; ð5Þ

in which B⃗ext ¼ Bextẑ is a uniform, time independent
external magnetic field along the ẑ direction, μB is the
Bohrmagneton, and L̂z and Ŝz are the operators correspond-
ing to the z component of the orbital and spin angular
momenta, respectively. The fine structure term includes a
relativistic correction for the kinetic energy and the spin-
orbit coupling, and is expressed as

Ĥ0
fs ¼ Ĥ0

r þ Ĥ0
SO: ð6Þ

Here,

Ĥ0
r ¼ −

p̂4

8m3c2
ð7Þ

is the relativistic correction term and

Ĥ0
SO ¼ e2

8πϵ0

1

m2c2r3
S⃗ · L⃗ ð8Þ

is the spin-orbit interaction term (all notations are standard).
We note that the unperturbed Hamiltonian is spherically

symmetric since ½Ĥ0; ˆL⃗� ¼ 0. Therefore, for a fixed n, Ĥ0

for the hydrogen atom is diagonal when any complete set of
orthogonal states is chosen for the angular part of the basis
(consisting of the product states of orbital and spin angular
momenta). Thus, so long as the radial part of the basis is
always chosen to be a stationary state wave function RnlðrÞ
for the unperturbed hydrogen atom (for a given principal
quantum number n and the orbital angular momentum
quantum number l), which we will assume throughout, the
choice of a good basis amounts to choosing the angular part
of the basis appropriately, i.e., ensuring that the perturba-
tion is diagonal in each degenerate subspace of Ĥ0.
Therefore, we focus on the angular part of the basis (or
angular basis) to find a good basis and the corrections to the
energies for the perturbation Ĥ0 corresponding to the
intermediate field Zeeman effect in the hydrogen atom.
For the angular basis for each n, states in the “coupled”
representation jn; l; j; mji are labeled by the quantum
numbers l, s, j, and mj (in addition to n) and the total

angular momentum is defined as J⃗ ¼ L⃗þ S⃗ (all notations
are standard and s has been suppressed from the states
jn; l; j; mji since s ¼ 1=2 for the electron is a fixed value
for a hydrogen atom). States in the coupled representation
are eigenstates of L̂2, Ŝ2, Ĵ2, and ĴZ. On the other hand,
for each n, states in the “uncoupled” representation
jn; l; ml; msi are labeled by the quantum numbers l; ml,
and ms (in addition to n), in which all notations are
standard. States in the uncoupled representation are eigen-
states of L̂2, Ŝ2, L̂Z, and ŜZ.
An angular basis consisting of states in the coupled

representation forms a good basis for the fine structure term
Ĥ0

fs since with this choice of the angular basis, Ĥ0
fs is

diagonal in each degenerate subspace of Ĥ0. On the other
hand, a basis consisting of states in the uncoupled repre-
sentation forms a good angular basis for the Zeeman
perturbation Ĥ0

Z (in this case, first order PT yields the
exact result since ½Ĥ0; Ĥ0

Z� ¼ 0). Therefore, for the inter-
mediate field Zeeman effect, in which Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z and

Ĥ0
fs and Ĥ0

Z are treated on equal footing (we will use the
notation Ĥ0

fs ≈ Ĥ0
Z to denote that the energy corrections

corresponding to Ĥ0
fs are comparable to Ĥ0

Z), neither a basis
consisting of states in the coupled representation nor a basis
consisting of states in the uncoupled representation forms a
good angular basis to find perturbative corrections for the
hydrogen atom placed in an external magnetic field. The
following procedure describes how to determine a good
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angular basis to find the first order corrections to the energy
spectrum for the intermediate field Zeeman effect:

(i) choose an initial basis consisting of a complete set of
eigenstates of Ĥ0 (e.g., one is free to choose an
angular basis consisting of states in the coupled
representation or a basis consisting of states in the
uncoupled representation or any other basis),

(ii) write the Ĥ0 and Ĥ0 matrices in the chosen basis,
(iii) identify Ĥ0 in each degenerate subspace of Ĥ0,
(iv) diagonalize the Ĥ0 matrix in each degenerate sub-

space of Ĥ0 to determine a good basis, and
(v) recognize that the first-order corrections to the energy

spectrum are the diagonal matrix elements of the Ĥ0

matrix as given by Eq. (1) in the good basis.

III. METHODOLOGY FOR INVESTIGATING
STUDENT DIFFICULTIES

Student difficulties with the corrections to the energies of
the hydrogen atom for the Zeeman effect using DPT were
investigated using five years of data involving responses
from 64 upper-level undergraduate students and 42 first-
year graduate students at the University of Pittsburgh to
open-ended and multiple-choice questions administered
after traditional instruction in relevant concepts. The under-
graduates were in an upper-level undergraduate QM course,
and graduate students were in a graduate-level QM course.
Additional insight was gained concerning these difficulties
via responses of 13 students during a total of 45 h of
individual interviews using the “think aloud” protocol in
which they were asked to answer the questions aloud that
were posed without being disturbed [67]. Only at the end,
they were asked to clarify any issues. Students were
provided with all relevant information discussed in the
introduction and background section and had lecture-based
instruction in relevant concepts. Similar percentages of
undergraduate and graduate students displayed difficulties
with DPT.
We first analyzed responses of 32 undergraduates on

questions related to DPT in the context of the Zeeman effect
for hydrogen atom administered in the two previous years.
Then, we examined the difficulties that 32 undergraduate

and 42 graduate students had with identifying a good basis
for the Zeeman effect in the following three years as part of
an in-class quiz after traditional lecture-based instruction.
In all questions, students were told that the radial part of the
basis is chosen to be the stationary state wave function
RnlðrÞ. The following question is representative of a series
of questions that were posed after traditional lecture-based
instruction on relevant concepts and after students had
engaged with the QuILT (the operator Ĥ0, in Q1, is a proxy
for the operators Ĥ0

r, Ĥ
0
SO, Ĥ

0
fs, Ĥ

0
Z, and Ĥ

0
fs þ Ĥ0

Z that were
listed individually in five separate questions on the pretest
after traditional, lecture-based instruction and post-test after
engaging with the QuILT):

Q1. A perturbation Ĥ0 acts on a hydrogen atom with the
unperturbed Hamiltonian Ĥ0 ¼ − ℏ2

2m∇2 − e2
4πϵ0

ð1rÞ. For
the Hamiltonian Ĥ, circle ALL of the representations
that can be chosen as the angular part of a “good” basis
and explain your reasoning. Assume that for all cases,
the principal quantum number is restricted to n ¼ 2.
(i) Coupled representation,
(ii) Uncoupled representation,
(iii) Any arbitrary complete orthonormal basis con-

structed with linear combinations of states in the
coupled representation with the same l (i.e., states
with different l values are not mixed),

(iv) Any arbitrary complete orthonormal basis con-
structed with linear combinations of states in the
uncoupled representation with the same l (i.e., states
with different l values are not mixed),

(v) Neither coupled nor uncoupled representation.

Options iii and iv were administered to probe whether
students realize that a good basis for a spherically sym-
metric operator (Ĥ0

r) consists of any arbitrary complete
orthonormal basis with the same l. Additionally, options iii
and iv were designed to probe whether students realize that
if the coupled representation forms a good basis, then it is
not generally the case that any arbitrary complete ortho-
normal basis constructed with linear combinations of states
in the coupled representation also forms a good basis. We
note that options iii and iv were given without the condition
of the same l in one year of the study and that there was no
difference in student performance based upon whether the
wording of the question included the same l or not for Ĥ0

SO

and Ĥ0
fs.

In order to find the first-order corrections to the energies,
one must first choose a good basis. Q1 focuses on the bases
that form a good basis for the perturbation Hamiltonian
for the intermediate field Zeeman effect with Ĥ0 ¼ Ĥ0

fsþ
Ĥ0

Z, as well as the operators Ĥ0
fs and Ĥ0

Z individually.
Knowledge of the bases that form a good angular basis for
the individual perturbation operators Ĥ0

fs and Ĥ0
Z can be

helpful when determining a good basis for the intermediate
field Zeeman effect with the perturbation Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z.

The unperturbed Hamiltonian Ĥ0 is spherically sym-
metric with unperturbed energies only dependent on n and
therefore options i, ii, iii, and iv in Q1 all form a complete
set of angular parts of the eigenstates of Ĥ0. Therefore, one
must consider which set of angular basis states in Q1 also
diagonalizes the given Ĥ0 in the degenerate subspace of Ĥ0.
Since the given degenerate subspace of Ĥ0 corresponds to
n ¼ 2, a good angular basis is one in which the perturbation
matrix is also diagonal in that subspace.
In each degenerate subspace of Ĥ0, the fine structure

term Ĥ0
fs is diagonal if the basis is chosen to consist of states

in the coupled representation (option i in Q1) and the
Zeeman term is diagonal if the basis is chosen to consist of
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states in the uncoupled representation (option ii in Q1), but
not vice versa. Therefore, for the intermediate field Zeeman
effect, in which the perturbation is Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z, neither

a basis consisting of states in the coupled representation nor
a basis consisting of states in the uncoupled representation
forms a good basis and option v in Q1 is the correct answer.
In order to determine a good basis for the intermediate field
Zeeman effect, one may first choose an initial basis
consisting of states in either the coupled or uncoupled
representation and then diagonalize the perturbation Ĥ0 ¼
Ĥ0

fs þ Ĥ0
Z in the n ¼ 2 degenerate subspace of Ĥ0. Thus,

students must first express either the Ĥ0
fs or Ĥ

0
Z matrix in an

initial basis in which it is not diagonal in the degenerate
subspace of Ĥ0. Then, they must be able to diagonalize the
perturbation Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in the degenerate n ¼ 2 sub-

space of Ĥ0 and be able to find the corrections to the energy
spectrum.
Below, we discuss some common difficulties with

corrections to the energy spectrum of the hydrogen atom
for the Zeeman effect found via research that interfere with
students choosing a good basis and using DPT correctly in
this context. We then discuss how the difficulties were used
as a guide in the DPT QuILT to help students find the
corrections to the energy spectrum due to the intermediate
field Zeeman effect.

IV. STUDENT DIFFICULTIES

Students had some difficulties with DPT in general (not
restricted to the context of the Zeeman effect only). For
example, when students were asked to determine a good
basis for finding the corrections to the energies of the
hydrogen atom, many students did not even realize that
DPT should be used. Other students knew that they had to
use DPT to find the corrections to the wavefunction, but
they did not use DPT to find the first-order corrections to
the energies. These students often incorrectly claimed that
they did not need to use DPT since no terms in E1

n ¼
hψ0

njĤ0jψ0
ni “blow up.”

In the context of the intermediate field Zeeman effect,
some students only focused on the Zeeman term Ĥ0

Z when
asked to determine a good basis for finding the corrections
to the energies of the hydrogen atom. In particular, they did
not take into account the fine structure term Ĥ0

fs (omitted it
altogether) and focused only on the Zeeman term as the
perturbation. If the fine structure term Ĥ0

fs is neglected, then
one can determine the exact energies for Ĥ0 þ Ĥ0

Z and
there is no need for perturbation theory since ½Ĥ0; Ĥ0

Z� ¼ 0.
However, the fine structure term should be considered
when determining the corrections to the unperturbed
energy spectrum.
As noted, to probe students’ understanding of a good basis

for the corrections to the energy spectrum due to the
intermediate field Zeeman effect, students were asked

question Q1. In the context of the intermediate field
Zeeman effect, in which the perturbation is Ĥ0 ¼ Ĥ0

fsþ
Ĥ0

Z, students struggled to realize that neither a basis consisting
of states in the coupled representation nor a basis consistingof
states in the uncoupled representation forms a good basis for
the perturbative corrections to the hydrogen atomplaced in an
externalmagnetic field. The results are summarized inTable I.
We note that students were permitted to select more than one
option in question Q1, and therefore, the sum of the
percentages for all of the options on the pretest and post-
test is greater than 100%. Table I shows that only 44% of
undergraduate students and 33% of graduate students cor-
rectly identified that option v in Q1 is the correct answer for
the Zeeman effect. Additionally, 16% of undergraduate and
17% of graduate students did not provide any answer to the
multiple-choice question Q1 after traditional lecture-based
instruction in relevant concepts.
Below, we discuss student difficulties that hinder their

ability to select the representation that forms a good angular
basis in Q1 and find the corrections to the energy spectrum.
In this section, we focus on the qualitative results found
primarily from student responses during the think-aloud
interviews.

A. Difficulty understanding why diagonalizing
the entire Ĥ0 matrix is problematic when Ĥ0

and Ĥ0 do not commute

More than half of the interviewed students (62%) did not
realize that when the initially chosen basis is not a good
basis and the unperturbed Hamiltonian Ĥ0 and the per-
turbing Hamiltonian Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z do not commute, they

must diagonalize the Ĥ0 ¼ Ĥ0
fs þ Ĥ0

Z matrix only in the
degenerate subspace of Ĥ0. When presented with a similar
system and asked to determine the first order corrections to
the energies, one interviewed student who attempted to
diagonalize the entire Ĥ0 matrix justified his reasoning by

TABLE I. The percentage of students who chose the listed
options as representations to form a good basis for the perturba-
tion Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z and the unperturbed Hamiltonian Ĥ0 and the

percentage of students who did not select any option in Q1 on the
pretest and post-test for undergraduate students (N ¼ 32) and
graduate students (N ¼ 42). The correct answer (option v) is in
boldface text.

Undergraduate students Graduate students

Option Pretest (%) Post-test (%) Pretest (%) Post-test (%)

i 28 3 29 17
ii 22 0 17 17
iii 16 3 12 10
iv 13 0 12 10
v 44 97 33 83

Blank 16 0 17 0
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incorrectly stating, “We must find the simultaneous eigen-
states of Ĥ0 and Ĥ0.” This student, and many others, did not
realize that when Ĥ0 and Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z do not commute,

we cannot simultaneously diagonalize Ĥ0 and Ĥ0 ¼ Ĥ0
fs þ

Ĥ0
Z since they do not share a complete set of eigenstates.

Students struggled with the fact that if Ĥ0 and Ĥ0 ¼ Ĥ0
fs þ

Ĥ0
Z do not commute, diagonalizing Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z pro-

duces a basis in which Ĥ0 is not diagonal. Also, since Ĥ0 is
the dominant term and Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z provides only small

corrections, we must ensure that the basis states used to
determine the perturbative corrections in Eqs. (1) and (2)
remain eigenstates of Ĥ0.

B. Incorrectly claiming that both the coupled and
uncoupled representations are good bases

Many students had difficulty identifying a good basis for
perturbative corrections for the intermediate field Zeeman
effect. For example, in Q1, 22% of undergraduates and
29% of the graduate students correctly identified that the
good angular basis for the fine structure term Ĥ0

fs is a basis
consisting of states in the coupled representation (option i)
and also correctly identified that the good angular basis for
the Zeeman term Ĥ0

Z is a basis consisting of states in the
uncoupled representation (option ii in Q1). However, after
correctly identifying the good angular basis for the two
perturbations individually, some of these students did
not realize that neither the coupled nor the uncoupled
representation (option v in Q1) forms a good angular
basis for the Zeeman effect in which the perturbation is
Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z. One interviewed student incorrectly

claimed that “the coupled are a good basis for Ĥ0
fs and

uncoupled are a good basis for Ĥ0
Z, so both coupled and

uncoupled form a good basis for Ĥ0
fs þ Ĥ0

Z.” This student
and others with this type of response incorrectly thought
that since a basis consisting of states in the coupled
representation (option i in Q1) forms a good basis for
the fine structure term Ĥ0

fs and a basis consisting of states in
the uncoupled representation (option ii in Q1) forms a good
angular basis for the Zeeman term Ĥ0

Z, a good basis for the
perturbation consisting of the sum of these two perturba-
tions is a basis consisting of states in either the coupled or
uncoupled representation.

C. Incorrectly claiming that a good basis
does not exist for the Zeeman effect

In Q1, some students who correctly identified that the
good angular basis for the fine structure term Ĥ0

fs is a basis
consisting of states in the coupled representation and
also correctly identified that a good angular basis for the
Zeeman term Ĥ0

Z is a basis consisting of states in
the uncoupled representation correctly chose that neither
the coupled nor the uncoupled representation forms a good

basis for the perturbation Ĥ0 ¼ Ĥ0
fs þ Ĥ0

Z (option v in Q1)
but then used incorrect reasoning to do so. Two common
examples are as follows:
Some students incorrectly argued that since neither an

angular basis consisting of states in the coupled represen-
tation nor a basis consisting of states in the uncoupled
representation forms a good basis, a good basis does not
exist for this case. They struggled to realize that the coupled
representation or the uncoupled representation were not the
only two possibilities for the angular part of the basis. One
interviewed student with this type of reasoning had
difficulty understanding the meaning of options iii and
iv in Q1, stating: “I don’t know what a linear combination
of coupled or uncoupled states is. I thought there were just
coupled states or uncoupled states.” This student and others
with this type of reasoning did not realize that a good basis
could be constructed from a linear combination of states
in the coupled representation (or equivalently a linear
combination of states in the uncoupled representation).
Some students had difficulty realizing that any linear

combination of states from the same degenerate subspace
of Ĥ0 are also eigenstates of Ĥ0. For example, one student
who correctly identified that neither the coupled nor the
uncoupled representation forms a good basis for the
Zeeman effect argued that “no good basis exists since
we cannot diagonalize a part of the Ĥ0 matrix (Ĥ0 matrix in
the degenerate subspace of Ĥ0) without affecting the Ĥ0

matrix.” This student and others who provided similar
incorrect reasoning claimed that by diagonalizing Ĥ0 in the
degenerate subspace of Ĥ0, the Ĥ0 matrix would no longer
be diagonal. However, due to the degeneracy, ANY linear
combination of states from the same degenerate subspace
of Ĥ0 are eigenstates of Ĥ0. Therefore, diagonalizing Ĥ0 in
the degenerate subspace of Ĥ0 determines the special linear
combination that forms a good basis.

D. Incorrectly claiming that the choice of the initial
basis affects corrections to the energy spectrum

Of the students who correctly identified that a good basis
for the Zeeman effect will consist of a special linear
combination of states in the coupled representation
(or, equivalently, a special linear combination of states in
the uncoupled representation), many did not realize that the
first order corrections to the energy spectrum would be the
same regardless of the initial choice of the basis. Since
neither a basis consisting of states in the coupled repre-
sentation nor a basis consisting of states in the uncoupled
representation forms a good basis, a good basis cannot
easily be identified at the onset. In order to determine a
good basis and the first order corrections to the energy
spectrum due to the Zeeman effect, one can initially choose
a basis consisting of states in the coupled representation
and then diagonalize Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in each degenerate

subspace of Ĥ0. However, one could also initially choose a
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basis consisting of states in the uncoupled representation
and then diagonalize Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in each degenerate

subspace of Ĥ0 to determine a good basis and the first order
corrections to the energy spectrum due to the Zeeman
effect. Regardless of the choice of the initial basis, after
diagonalizing Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in each degenerate subspace

of Ĥ0, the first order corrections to the energy spectrum due
to the Zeeman effect will be the same in any good basis.
Many students thought that the first order corrections to the
energies depended on the initial choice of basis. Therefore,
if one chooses a basis consisting of states in the coupled
representation then the first order corrections in this case
would be different than those obtained had a basis con-
sisting of states in the uncoupled representation been
chosen as the initial basis. However, it does not make
sense experimentally that the observed perturbative cor-
rections would depend upon the choice of basis. Lack of
appropriate connection between physics and mathematics
in the context of DPT for the Zeeman effect sheds light on
the difficulty students have in mathematical sense making
in QM. It also sheds light on the physics epistemology
pertaining to whether one should get the same perturbative
corrections in experiments regardless of the choice of initial

basis or whether the initial choice of basis should impact
what is experimentally measured values of energies.

E. Making computational mistakes while attempting to
diagonalize the entire eight-dimensional Ĥ0 matrix
instead of diagonalizing the two separate 2 × 2

submatrices of the block diagonal matrix Ĥ0 = Ĥ0
fs + Ĥ

0
Z

When asked to determine the first order corrections to the
energies for the intermediate field Zeeman effect for the
n ¼ 2 degenerate subspace of Ĥ0, some students correctly
identified that one can initially choose either a basis
consisting of states in the coupled representation or a basis
consisting of states in the uncoupled representation and
then diagonalize Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in each degenerate sub-

space of Ĥ0. For example, in a basis consisting of states in
the coupled representation (jn; l; jmji), the perturbation
matrix Ĥ0 ¼ Ĥ0

Z þ Ĥ0
fs corresponding to the n ¼ 2 sub-

space is given below [in which γ ¼ ðα=8Þ213.6 eV,
α ¼ e2=4πϵ0ℏc, β ¼ μBBext, and the basis states are chosen
in the order j2; 0; 1

2
; 1
2
i, j2; 0; 1

2
;− 1

2
i, j2; 1; 3

2
; 3
2
i, j2; 1; 3

2
;− 3

2
i,

j2; 1; 3
2
; 1
2
i, j2; 1; 1

2
; 1
2
i, j2; 1; 3

2
;− 1

2
i, and j2; 1; 1

2
;− 1

2
i]:

Ĥ0 ¼ −

2
66666666666666664

5γ − β 0 0 0 0 0 0 0

0 5γ þ β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ þ 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

ffiffi
2

p
3
β 0 0

0 0 0 0
ffiffi
2

p
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ þ 2
3
β

ffiffi
2

p
3
β

0 0 0 0 0 0
ffiffi
2

p
3
β 5γ þ 1

3
β

3
77777777777777775

However, when finding the corrections to the energy
spectrum, some students attempted to diagonalize the
entire 8 × 8 Ĥ0 matrix in the n ¼ 2 degenerate subspace
of Ĥ0. While this approach is correct, it is easier to
diagonalize the 8 × 8 Ĥ0 matrix by diagonalizing Ĥ0 only
in the block diagonal subspaces with smaller dimensions
than the initial 8 × 8 Ĥ0 matrix, i.e., the two separate 2 × 2
matrices

−

"
γ − 2

3
β

ffiffi
2

p
3
βffiffi

2
p
3
β 5γ − 1

3
β

#

and

−

"
γ þ 2

3
β

ffiffi
2

p
3
βffiffi

2
p
3
β 5γ þ 1

3
β

#
:

In general, an expertlike approach to diagonalizing the Ĥ0

matrix involves diagonalizing Ĥ0 in the block diagonal
subspaces with smaller dimensions and mathematical
mistakes are less likely using this approach. However,
many students did not realize that in order to determine a
good basis, one can diagonalize these block diagonal
subspaces in order to diagonalize the entire Ĥ0 matrix in
the degenerate subspace of Ĥ0. In other words, they
struggled with the fact that to diagonalize Ĥ0 in the n ¼
2 degenerate subspace of Ĥ0, one can diagonalize the two
separate 2 × 2 matrices instead of diagonalizing the entire
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Ĥ0 matrix in the n ¼ 2 subspace and obtain the linear
combination of the states in the coupled representation that
forms a good basis for finding the perturbative corrections
for the Zeeman effect.

V. METHODOLOGY FOR DEVELOPMENT
OF THE QuILT

A. Development and validation of the QuILT

The difficulties described show that many students
struggle in determining a good basis for finding the
corrections to the energy spectrum for the Zeeman effect.
Therefore, we developed a QuILT [68] that takes into
account these difficulties and strives to help students build a
robust knowledge structure of these concepts. The develop-
ment of the DPT QuILT started with an investigation of
student difficulties via open-ended and multiple-choice
questions administered after traditional instruction to
advanced undergraduate and graduate students and con-
ducting a cognitive task analysis from an expert perspective
of the requisite knowledge [69]. The QuILT strives to help
students build on their prior knowledge and addresses
common difficulties found via research, some of which
were discussed in the previous section.
The QuILT is inspired by Piaget’s “optimal mismatch”

framework as well as the preparation for future learning
framework of Bransford and Schwartz. In Piaget’s optimal
mismatch framework, students are intentionally placed in a
situation in which their current knowledge structures are
inadequate and the students are required to reorganize
existing structures or develop new structures to reconcile
this conflict [70]. Bransford and Schwartz’s preparation for
future learning framework emphasizes that learning occurs
when elements of innovation and efficiency are both
present [71]. Innovation and efficiency describe two
orthogonal components of instruction. Innovation describes
aspects that are new to students, such as new concepts or
new problem-solving skills. Efficiency is a measure of the
structure and organization of the material, as well as how
proficient the student is with the material. Instruction that
incorporates only one of these elements leads to students
becoming disengaged. If instruction is too innovative,
students cannot connect the material with their prior
knowledge and become frustrated. When the instruction
is too efficient, students interact with repetitious material
that does not provide intellectual stimulation and may
become routine experts. However, they will not be able to
transfer their learning to new situations.
In the QuILT, students are presented with innovative

tasks. Whether it be examples, hypothetical conversations,
or calculations, the QuILT strives to help students develop a
deeper understanding by actively working through the
inquiry-based learning sequences. Student difficulties are
incorporated in these examples and conversations to create
a cognitive conflict in which the students are then guided

through additional tasks designed to resolve these issues.
Efficiency is addressed in the QuILT in several ways. First,
the QuILT follows the sequence laid out in the cognitive
task analysis. It is organized in a manner that attempts to
build on the students’ prior knowledge, and each section in
the QuILT builds upon the previous section. Second,
students are provided scaffolding designed to help address
common difficulties, thus reducing the cognitive conflict.
Third, the QuILT progressively reduces the scaffolding to
help students solve problems without any assistance.
Finally, as the students work through the different tasks,
they develop more proficiency at identifying the concepts
and answering the questions.
The development of the QuILT went through a cyclic,

iterative process. The preliminary version was developed
based upon the cognitive task analysis and knowledge of
common student difficulties. Next, the QuILT underwent
many iterations among the three researchers and then was
iterated several times with three physics faculty members to
ensure that they agreed with the content and wording. It
was also administered to graduate and advanced under-
graduate students in individual think-aloud interviews to
ensure that the guided approach was effective, the questions
were unambiguously interpreted, and to better understand
the rationale for student responses. During these semi-
structured interviews, students were asked to think aloud
while answering the questions. Students first read the
questions on their own and answered them without inter-
ruptions except that they were prompted to think aloud if
they were quiet for a long time. After students had finished
answering a particular question to the best of their ability,
they were asked to further clarify and elaborate on issues
that they had not clearly addressed earlier. The next step
involved evaluating the impact of the QuILT on student
learning and determining if the difficulties remained.
Finally, modifications and improvements were made based
upon the student and faculty feedback before it was
administered to students in various QM courses.

B. Structure of the QuILT

The QuILT uses a guided inquiry-based approach to
learning and actively engages students in the learning
process. It includes a pretest to be administered in class
after traditional instruction in DPT. Then, students engage
with the tutorial in small groups in class (or alone when
using it as a self-paced learning tool in homework), and
finally a post-test is administered in class. As students work
through the tutorial, they are asked to predict what should
happen in a given situation. Then, the tutorial strives to
provide scaffolding and feedback as needed to bridge the
gap between their initial knowledge and the level of
understanding that is desired. Students are also provided
checkpoints to reflect upon what they have learned and
make explicit connections between what they are learning
and their prior knowledge. They are given an opportunity in
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the checkpoints to reconcile differences between their
predictions and the guidance provided before proceeding
further.
The DPT QuILT uses a blend of guided inquiry-based

learning sequences involving both qualitative and quanti-
tative reasoning to improve students’ understanding. For
example, the QuILT requires qualitative reasoning while
students reason about hypothetical student conversations
and quantitative reasoning to determine the matrix elements
of the perturbations Ĥ0

SO and Ĥ0
Z in the coupled and

uncoupled representations.

C. Addressing student difficulties via guided learning
sequences in the QuILT

In the guided inquiry-based learning sequences in the
QuILT, students actively engage with examples involving
DPT in which they consider the perturbations Ĥ0

fs, Ĥ
0
Z, and

Ĥ0
fs þ Ĥ0

Z as the perturbation on Ĥ0. In this manner,
students focus on the concepts involved in determining a
good basis for the fine structure and Zeeman corrections to
the energy spectrum of the hydrogen atom separately
before considering Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z. For the unperturbed

Hamiltonian Ĥ0 and the perturbation Ĥ0 ¼ Ĥ0
fs þ Ĥ0

Z,
students learn about (i) why DPT must be used (ii) why
care must be taken to choose a good basis for the Zeeman
effect and (iii) how to find perturbative corrections to the
energy spectrum. Below, we discuss how the QuILT strives
to address student difficulties and help them learn about the
perturbative corrections to the energy spectrum of the
hydrogen atom due to the Zeeman effect using DPT.
Students first work through a warm-up for the tutorial

that strives to help them identify the bases that consist of a
complete set of eigenstates of operator Ĥ0 and the bases in
which the operators Ĥ0

fs and Ĥ0
Z are diagonal in each

degenerate subspace of Ĥ0. In addition, students also work
through examples in which they must determine the matrix
elements of the operators Ĥ0

SO or Ĥ0
Z. For example, they

calculate several diagonal and off-diagonal matrix elements
of Ĥ0

SO and Ĥ0
Z in both a basis consisting of states in the

coupled representation and a basis consisting of states in
the uncoupled representation. Students were asked to focus
on calculating the matrix elements of the operator Ĥ0

SO in
order to help them determine whether a basis consisting of
states in the coupled or uncoupled representation forms a
good basis for the fine structure perturbation Ĥ0

fs. Since the
fine structure term is Ĥ0

fs ¼ Ĥ0
r þ Ĥ0

SO, one must consider
both Ĥ0

r and Ĥ
0
SO when determining a good basis. However,

the relativistic term Ĥ0
r is spherically symmetric with

energy depending on n and l and so Ĥ0
r is diagonal in

each degenerate subspace of Ĥ0 for a basis consisting of
states in the coupled or uncoupled representation for each
fixed n and l. Students were asked to focus on the angular
part of the basis that makes Ĥ0

SO diagonal in each

degenerate subspace of Ĥ0. The warmup strives to help
students learn the prerequisites for finding a good basis for
the hydrogen atom for the Zeeman effect in the context
of DPT.
Helping students identify a good basis for the fine

structure term Ĥ0
fs, the Zeeman term Ĥ0

Z, and Ĥ0 ¼
Ĥ0

fs þ Ĥ0
Z: The QuILT strives to help students learn that

neither a basis consisting of states in the coupled repre-
sentation nor a basis consisting of states in the uncoupled
representation forms a good basis for the intermediate field
Zeeman effect. As part of a guided inquiry-based sequence,
students are asked to evaluate the validity of the following
two statements in a hypothetical student conversation in the
QuILT designed to scaffold students’ learning:

Student 1: Since the coupled representation is a good
basis for the fine structure term and the uncoupled
representation is a good basis for the Zeeman term, both
the coupled and uncoupled representation form good
bases and are equally appropriate to find the first order
corrections to the energies for Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z.

Student 2: I disagree with Student 1. You cannot con-
sider different bases for different parts of Ĥ0. If we
choose the coupled representation, Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z is

not diagonal in each degenerate subspace of Ĥ0 since
Ĥ0

Z is not diagonal in the coupled representation.
Similarly, if we choose the uncoupled representation,
Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z, is not diagonal in each degenerate sub-

space of Ĥ0 since Ĥ0
fs is not diagonal in the uncoupled

representation. Neither of these representations form a
good basis.
Explain why you agree or disagree with Student 1 or
Student 2.

Following this conversation, further scaffolding is pro-
vided through inquiry-based learning sequences which
strive to help students reconcile that student 2 is correct.
Students are also given scaffolding support to help them

determine a good basis and first-order corrections to the
energy spectrum of the hydrogen atom for the Zeeman
effect. The guided inquiry-based sequences in the QuILT
strive to help students learn that neither a basis consisting of
states in the coupled or uncoupled representation form a
good basis. After diagonalizing Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in the n ¼

2 degenerate subspace of Ĥ0, a good basis is obtained
which consists of a linear combination of states in the
coupled (or, equivalently, the uncoupled) representation.
Students are provided checkpoints that allow them to
reconcile any differences between their initial reasoning
and the correct reasoning.
Helping students realize that the initial choice of basis

cannot affect the corrections to the energy spectrum:
The QuILT strives to help students learn that one is free to
choose either an initial basis consisting of states in the
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coupled representation or a basis consisting of states in the
uncoupled representation and then diagonalize the pertur-
bation Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z in each degenerate subspace of Ĥ0

in order to determine a good basis (and the first order
corrections to the energies due to the Zeeman effect). The
following statements from a hypothetical student conver-
sation from a guided inquiry-based sequence in the QuILT
strive to help students learn that the initial choice of basis
cannot change the first order corrections to the energy
spectrum due to the Zeeman effect once a good basis has
been found.

Student 1: Since the diagonal matrix elements of Ĥ0 will
depend on the choice of initial basis, a different choice
of the initial basis in which we diagonalize Ĥ0 in the
degenerate subspace of Ĥ0 will change the first order
corrections to the energies.
Student 2: I disagree with Student 1. After diagonalizing

Ĥ0 in each degenerate subspace of Ĥ0, a good basis is
obtained and the first order correction to the energy will
be the same regardless of which basis, e.g., the coupled
or uncoupled representation, you had initially chosen.
In a good basis, you will end up with the same diagonal
matrix elements of Ĥ0 which are the first order correc-
tions to the energies.
Explain why you agree or disagree with each student.

Students are provided additional scaffolding support to
help them reconcile that student 2 is correct in the
preceding conversation. In a good basis, the diagonal
matrix elements of the perturbation Ĥ0 are the first order
corrections to the energies regardless of the choice of the
initial basis.
Helping students reflect upon the fact that diagonal-

izing the two separate 2 × 2 submatrices of the block
diagonal matrix Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z diagonalizes Ĥ0 in the

n ¼ 2 subspace: In the QuILT, when basis states are
chosen to be states in the coupled representation in an
appropriate order, the Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z matrix is block

diagonal. Students are provided scaffolding support to
help them realize that one is free to choose the initial
angular basis states in any order to construct the matrices
without affecting the first order corrections to the energy
spectrum and that choosing basis states in a certain order
may make determining the first order corrections to the
energy spectrum easier to calculate. In particular, the
QuILT strives to help students learn that in order to
determine a good basis for the Zeeman effect in the
n ¼ 2 subspace, one can diagonalize the block diagonal
matrix Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z by diagonalizing the two separate

2 × 2 submatrices of the block diagonal Ĥ0 ¼ Ĥ0
fs þ Ĥ0

Z

matrix rather than diagonalizing the entire 8 × 8 Ĥ0 ¼
Ĥ0

fs þ Ĥ0
Z matrix if the basis states are chosen in the order

given earlier. The following student conversation regarding
diagonalizing the Ĥ0 ¼ Ĥ0

fs þ Ĥ0
Z matrix in the n ¼ 2

degenerate subspace of Ĥ0 for the Zeeman effect is part
of a guided inquiry-based sequence in which students must
reason about and explain whether each hypothetical stu-
dent’s statement is correct:

Student 1: In the case of n ¼ 2, Ĥ0 possesses an
eightfold degeneracy, which means that in order to find
a good basis for the correction to the n ¼ 2 energy
spectrum, we must diagonalize the entire 8 × 8 Ĥ0

matrix in the n ¼ 2 degenerate subspace of Ĥ0.
Student 2: We must make an effort to diagonalize Ĥ0

only in those block diagonal subspaces with smaller
dimensions in order to diagonalize the entire Ĥ0 matrix
in the degenerate subspace of Ĥ0 to obtain the good
basis set. When I calculate the Ĥ0 matrix for n ¼ 2 in the
coupled representation and the angular basis states are
chosen in the order jψ1i ¼ j2; 0; 1

2
; 1
2
i, jψ2i ¼

j2; 0; 1
2
;− 1

2
i, jψ3i ¼ j2; 1; 3

2
; 3
2
i, jψ4i ¼ j2; 1; 3

2
;− 3

2
i,

jψ5i ¼ j2; 1; 3
2
; 1
2
i, jψ6i¼j2;1;1

2
;1
2
i, jψ7i ¼ j2; 1; 3

2
;− 1

2
i,

and jψ8i ¼ j2; 1; 1
2
;− 1

2
i, I get the block diagonal matrix

Ĥ0 below

Ĥ0 ¼ −

2
66666666666666664

5γ − β 0 0 0 0 0 0 0

0 5γ þ β 0 0 0 0 0 0

0 0 γ − 2β 0 0 0 0 0

0 0 0 γ þ 2β 0 0 0 0

0 0 0 0 γ − 2
3
β

ffiffi
2

p
3
β 0 0

0 0 0 0
ffiffi
2

p
3
β 5γ − 1

3
β 0 0

0 0 0 0 0 0 γ þ 2
3
β

ffiffi
2

p
3
β

0 0 0 0 0 0
ffiffi
2

p
3
β 5γ þ 1

3
β

3
77777777777777775

KEEBAUGH, MARSHMAN, and SINGH PHYS. REV. PHYS. EDUC. RES. 15, 010113 (2019)

010113-10



We will only need to diagonalize the 2 × 2 matrices

−

"
γ − 2

3
β

ffiffi
2

p
3
βffiffi

2
p
3
β 5γ − 1

3
β

#

and

−

"
γ þ 2

3
β

ffiffi
2

p
3
βffiffi

2
p
3
β 5γ þ 1

3
β

#

to obtain the good basis.
Explain why you agree or disagree with each student.

The QuILT strives to help students learn that student 1’s
approach is valid, but student 2 uses a more efficient
approach that is less prone to errors in obtaining a good
basis. Students are asked to summarize in words how to
determine a good basis and the first-order corrections to the
energy spectrum of the hydrogen atom for the Zeeman
effect. Students are then asked to calculate a good basis and
the first-order corrections to the energy spectrum for the
n ¼ 2 subspace. They are provided checkpoints that allow
them to reconcile any differences between their initial
reasoning and the correct reasoning provided in the
checkpoints.

VI. EVALUATION OF THE QuILT

Once the researchers determined that the QuILT was
successful in one-on-one implementation using a think-
aloud protocol, it was administered in graduate and upper-
level undergraduate classes. Both undergraduate and gradu-
ate students were given a pretest after traditional instruction
in relevant concepts in DPT but before working through the
tutorial. The pretests were not returned to the students after
grading. The undergraduates worked through the tutorial in
class for two days and were asked to work on the remainder
of the tutorial as homework. The graduate students were
given the tutorial as their only homework assignment for
the week. After working through and submitting the
completed tutorial, both groups were given the post-test
in class. Students were given enough time in class to work
through the pretest and post-test.
The pretest and post-test results for Q1 are summarized

in Table I and suggest that the QuILT was helpful in
reducing student difficulties with these concepts. In par-
ticular, 83% of the graduate students and 97% of the
undergraduate students correctly identified that a good
basis for the intermediate field Zeeman effect is option v in
Q1. All of these students chose option v in Q1 as the only
correct answer. We note that 10% of the graduate students
incorrectly selected options i, ii, and iv on the post-test,
while an additional 7% of the graduate students incorrectly
selected both options i and ii. We also note that students
were permitted to select more than one option in question

Q1, and therefore, the sum of the percentages for all of the
options on the pretest and post-test is greater than 100%. In
addition, over 80% of the undergraduates and more than
65% of the graduate students provided correct reasoning for
why they chose option v in Q1. For example, the following
was a written response in the post-test, “Neither (coupled
representation or uncoupled representation) work. We must
diagonalize Ĥ0 in the degenerate subspace to find a (basis
consisting of a) linear combination of states (in the coupled
or uncoupled representation).” After engaging with the
QuILT, the majority of the students correctly chose that
neither a basis consisting of states in the coupled repre-
sentation nor a basis consisting of states in the uncoupled
representation form a good basis and displayed correct
reasoning for their answer on the post-test.
As can be seen in Table I, the graduate students and

undergraduate students generally performed at about the
same level on Q1 on the pretest. However, the under-
graduates outperformed the graduate students on the post-
test in identifying the options in Q1 that form a good basis
(p ¼ 0.040). One possible explanation for the undergrad-
uates outperforming the graduate students on the post-test
could be the grade incentive associated with the QuILT. The
QuILT accounted for a larger percent of the undergradu-
ates’ overall course grade and the components of the QuILT
were accounted for differently for the course grade for the
two groups of students. In particular, the post-test for the
undergraduate students was graded for correctness in both
years while the post-test for the graduate students was
graded for completeness in year 1 and for correctness in
year 2. Additionally, the undergraduate students knew that
the material from the QuILT could appear on their
examinations while the graduate students were told by
the graduate instructor that this material was a review of the
undergraduate quantum mechanics and that no material
from the QuILT would appear on their examinations. But
rather, more complex problems on the DPT would appear
on the exams. The fact that the graduate students were
given very small grade incentive to learn the material in the
QuILT may have decreased their motivation to engage as
deeply with the QuILT as the undergraduates and may
explain why the graduate students did not perform as well
as the undergraduate students on the post-test. Another
possible reason for the differences in the post-test scores
may be that undergraduates engaged in collaborative group
learning while working on the QuILT for two class periods,
whereas the graduate students worked on it as a homework
assignment with less collaboration and support.

VII. SUMMARY

Both upper-level undergraduate and graduate students
struggled with finding perturbative corrections to the
hydrogen atom energy spectrum for the intermediate field
Zeeman effect using DPT. Interviewed students’ responses
suggested that some of them held epistemological beliefs
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inconsistent with the framework of QM and struggled with
mathematical sense making in the context of QM in which
the paradigm is novel [22]. After traditional instruction,
some students claimed that different initial choice of the
basis before a good basis has been found will yield different
corrections to the energy spectrum of the hydrogen atom
for the Zeeman effect. These students had difficulty in
connecting experimental observations with quantum theory
and in correctly reasoning that since the corrections to the
energy spectrum can be measured experimentally, different
choices of the initial basis cannot yield different physically
observable corrections to the energy spectrum. Since
students are still developing expertise in QM and the
DPT requires appropriate integration of mathematical
and physical concepts, cognitive overload can be high
while reasoning about these problems [65]. Advanced
students found it challenging to do metacognition [65]
in this context of QM and provided responses that were not
consistent with each other.
Using the common difficulties of advanced students with

the corrections to the energy spectrum of the hydrogen
atom for the intermediate field Zeeman effect, we devel-
oped and evaluated a research-based QuILT which focuses
on helping students reason about and find a good basis for
the Zeeman effect. Since the DPT requires students to apply
advanced mathematical concepts in the context of a
concrete physical problem, students often struggled to
connect and apply mathematics correctly in the physics
context. For example, in order to be able to determine a
good basis and corrections to the energies for the Zeeman
effect, one must have a strong background in linear algebra

and be able to apply it in the context of solving quantum
physics problem involving DPT for the intermediate field
Zeeman effect. Since students’ working memory while
solving these problems involving the Zeeman effect is
constrained to a limited number of “chunks,” cognitive load
may become high and it may become challenging for many
students to be able to do sufficient metacognition without
appropriate guidance and scaffolding support.
The QuILT strives to provide appropriate scaffolding

and feedback using a guided inquiry-based approach to
help students develop a functional understanding of
relevant concepts. The evaluation shows that the QuILT
is effective in improving students’ understanding of the
perturbative corrections to the energy spectrum of the
hydrogen atom for the Zeeman effect. In particular, both
on the written post-test and during interviews, student
responses afforded opportunity to probe their reasoning.
We find that the QuILT helped students reason about DPT
more consistently and be able to reason about why neither
a basis consisting of states in the coupled nor the
uncoupled representation forms a good basis for the
Zeeman effect.
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