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Increasing student retention (successfully finishing a particular course) and persistence (continuing
through a sequence of courses or the major area of study) is currently a major challenge for universities.
While students’ academic and social integration into an institution seems to be vital for student retention,
research into the effect of interpersonal interactions is rare. We use network analysis as an approach to
investigate academic and social experiences of students in the classroom. In particular, centrality measures
identify patterns of interaction that contribute to integration into the university. Using these measures, we
analyze how position within a social network in a Modeling Instruction (MI) course—an introductory
physics course that strongly emphasizes interactive learning—predicts their persistence in taking a
subsequent physics course. Students with higher centrality at the end of the first semester of MI are more
likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting
individual student’s persistence based on centrality measures are fairly high—up to 75%, making the
centrality a good predictor of persistence. These findings suggest that increasing student social integration
may help in improving persistence in science, technology, engineering, and mathematics fields.
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I. BACKGROUND AND MOTIVATION

Increasing the retention of students in a particular course
and their persistence in continuing through a sequence of
courses or their major area of study has always been a big
challenge for universities. While postsecondary enrollment
has increased tenfold since the 1950s, the institutional
graduation rate remained at a constant 50% level for most
of the past half century, increasing only about 10% over the
past two decades (see Fig. 1 for details). In the mid-1990s,
the focus of policy makers has moved to the issues of
choice, affordability, and persistence. Still, almost half of
first-time students who leave their initial institution by the
end of the first year never come back to college [2].
One way to approach this problem is to examine student

academic and social integration using the tools of social
network analysis (SNA). The basic premise linking net-
works to persistence is that students’ communities and
interactions likely influence whether they remain in a
particular class, major or in school overall. Network
analysis allows us to gain insight into these communities,

as well as how they evolve over time. In particular, SNA
can be used to identify patterns of interaction that contrib-
ute to integration within a classroom and at the university
level, and provide quantitative measures to evaluate their
importance. It supplies a methodology to assess the
structure and quality of interpersonal interactions, both
academic and social. For example, centrality measures can
reveal students’ status within the community, while assor-
tativity coefficients can provide information about their
tendency to associate with people of similar background,
race, or gender—a manifestation of homophily.
Understanding how embeddedness within the social

and academic network of an institution affects students’
persistence and retention is crucial for improving their
experiences. While students’ integration seems to be
essential, the implementation of effective practices to
prevent losing students is rare. Developing network meth-
odologies for studying retention and persistence among
university students—a nascent research area—is a step in
this direction [3,4].
We address students’ persistence at Florida International

University (FIU)—a large,Hispanic-serving institution. FIU,
as is typical for urban universities in major cities, is a
commuter school—only 8% of students live in “college-
owned, college-operated, or college-affiliate” housing [5].
Among factors that affect student integration into the social
and academic environment of the university, one can dis-
tinguish between external (e.g., families, neighborhoods,
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work settings) and internal (e.g., learning groups within a
classroom, residence halls) communities [6]. The importance
of the classroom as a focal point of interaction is especially
pronounced at commuter schools. In particular, introductory
courses are likely to strongly influence student persistence. In
other words, student success in introductory courses in their
first and second years are critical for their continual pursuit of
science, technology, engineering, and mathematics (STEM)
degrees, including physics [7,8].
In our study, we analyze how students’ positions within a

social network in an introductory mechanics Modeling
Instruction (MI-M) course predicts their persistence in the
MI sequence [i.e., whether they take the subsequent
electricity and magnetism Modeling Instruction (MI-EM)
course]. We also look at the associations between
persistence and centralities at the beginning of the
second semester. Modeling Instruction is a guided-inquiry
interactive-engagement method of teaching. It organizes
instruction around building, testing, and applying a handful
of scientific models that represent the core content of
physics. Instead of relying on lectures and textbooks, MI
emphasizes students’ construction of conceptual and math-
ematical models in an interactive learning community. It is,
therefore, an important case for studying the effects of
building communities on promoting persistence [9].
The paper is organized as follows. We start with a brief

overview of persistence studies at the university and
classroom levels in Sec. II. We then present our theoretical

framework (Sec. III), followed by a section on methodol-
ogy (Sec. IV). In particular, the description of the develop-
ment of the SNA survey is described in Sec. IVA, a short
introduction to social network analysis is given in
Sec. IV B, and data analysis methodology in Sec. IV D.
We then move to a discussion of the overall findings. In
Sec. V we look at the MI social networks, and, in Sec. VI,
we present the analysis of the relationship between central-
ity measures and persistence. We conclude with a dis-
cussion and potential future research directions in Sec. VII.

II. PERSISTENCE IN BRIEF

A. Persistence and integration

Although research on undergraduate persistence was
conducted as early as the 1930s [10], it was the publication
of Spady’s sociological model of student dropout in higher
education [11], followed by Tinto’s student integration
model [6], that started the current dialogue on undergradu-
ate persistence. In his paper, Spady identified factors that
play a part in student social integration and can affect their
decision to drop out of school as academic potential,
normative congruence, grade performance, intellectual
development, and friendship support. He then conducted
an empirical study that implicated formal academic
performance as the predominant factor for student
attrition [12,13].
Tinto, on the other hand, suggested that student persistence

was linked to both formal and informal academic experi-
ences, as well as social integration. As part of his model, he
proposed three principles of effective persistence: (1) institu-
tional commitment to students, (2) educational commitment,
and (3) social and intellectual community. In order to be
effective, student persistence programs must (1) assure that
institutional goals always have a direct or indirect relation-
ship to student success and achievement, (2) commit to the
education of all, not just some, of the students, and, finally,
(3) help students feel that they are valued and full members
of the social and educational communities [6,14]. Based on
the work of Tinto and his followers, increasing students’
integration should be one of the prime targets to increase their
persistence.
Astin went a step further and reframed the relationship

of persistence and involvement into one spectrum, saying,
“if we conceive of involvement as occurring along a
continuum” from least to most involvement, “the act of
dropping out can be viewed as the ultimate form of
noninvolvement … dropping out anchors the involvement
continuum at the lowest end” [15]. He identified different
forms that involvement may take, such as students’ place of
residence, dedication to academic studies, student-faculty
interaction, and participation in extracurricular activities
(with special focus on student government, honors pro-
grams, and athletics), and found that each of these forms
impacts persistence in its own way.

FIG. 1. Graduation rates in 1996 and 2008 (a) by gender and
(b) by ethnicity. The 4-year graduation rates increased by about
6%, compared to 4% increase of the 6-year graduation rates, for
both males and females. By ethnicity, only the increase in 4-year
graduation rate for Hispanics (25.3%) and Blacks (10.9%) was
substantial [1].
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In the 1990s and 2000s, persistence research becamemore
holistic and adopted a multifaceted interdepartmental under-
standing of how to retain students. This approach invokes a
“cross-departmental institutional responsibility” for persist-
ence “via wide-range programming” that brings together the
otherwise-disparate parts of an institution, including admis-
sions officers, instructors, the financial aid office, academic
services, and student affairs [16]. To help students navigate
these complex elements of an institution, it became clear that
universities must offer accessible support services in a
combination of academic, personal, and social contexts in
order to support students’ persistence [17]. Nora extended
Tinto’s model to incorporate additional factors, including
academic and social integration [8], which was then used to
investigate STEM student persistence at a Hispanic-serving
institution [18].
In the context of improving graduation rates of under-

represented minorities, a recent study has found that
Hispanic students’ “sense of belonging was positively
related to persistence” in STEM majors, implying that
“greater levels of academic and social integration may be
related to higher levels of retention” [19]. However,
quantitative research on students’ academic and social
integration, as well as practical implementations of these
findings, are not very common and “the really difficult
work of shaping institutional practice … has yet to be
tackled” [20].
The use of social network analysis, which offers “a new

perspective in which integration is expressed as a function
of individual social ties” from students to their peers and
instructors, while also incorporating individual background
characteristics, makes quantitative research of integration
possible [21]. Thomas used this approach to study the link
between integration and persistence and found a nuanced
relationship between students’ social ties and their GPA,
goal commitment, and persistence. His work was followed
up by several researchers who found a connection between
social ties and multiple outcomes, including sense of
community and academic performance, which we note
explicitly appear as distinct elements within Tinto’s inte-
gration model [22,23]. Eckles and Stradley reported that
“factors such as athletic participation, membership in a
fraternity or sorority, religion, and ethnicity … were not
individually significant” and found that students’ persist-
ence from year 1 to year 2 was instead influenced by their
friends’ persistence [24]. They went on to argue that “those
variables have been significant in the past because they
represent strong social connections among like students.
They have in effect been working as proxies for social
networks … membership in such a society puts students in
a dense social network that exposes them to more students
choosing to stay.” Hence, it is not only integration in the
general sense that matters to a student’s persistence, but
integration with other persisting students.

B. Classroom as an interaction hub

Tinto identifies the importance of the classroom, saying
that “what we do not yet know, or at least have not
adequately documented, is how involvement is shaped
within the context of differing institutions of higher
education by student educational experiences. … we have
yet to explore the critical linkages between involvement in
classrooms, student learning, and persistence.” He argues
that although researchers have not ignored the classroom,
their findings remain disconnected from those of the field
of student persistence: “The two fields of inquiry have gone
on in parallel without crossing” [7].
For many individuals, especially new students who have

not yet formed connections in the community, the class-
room is a place where connecting with others happens. That
is even more the case for nonresidential students who have
to manage a number of tasks outside of college and the time
they spend in class is the only time they spend on campus.
Thus, the importance of the classroom experience as a
means for improving student persistence must not be
understated.

III. THEORETICAL FRAMEWORK

With his model, Tinto approached the issue of attrition
from a sociological point of view, emphasizing the impor-
tance of integrating new students into the life of the
institution, both socially and academically. It was noted
by Tinto that “social and academic life are interwoven
and … social communities emerge out of academic
activities that take place within the more limited academic
sphere of the classroom, a sphere of activities that is
necessarily also social in character” [7]. However, with
the exception of a few studies [21,22,25], persistence at the
classroom level remains an open question. In our study, we
want to take a fine-grained approach and look precisely at
this problem. From a methodological point of view, Tinto
suggested that SNA might be a well-suited approach to
study the in-class and out-of class interaction: “… we
would be well served by … network analysis and/or social
mapping of student interaction patterns. … they will shed
important light on how interactions across the academic
and social geography of a campus shape the educational
opportunity structure of campus life and, in turn, both
student learning and persistence” [7].

A. MI introductory physics classroom

Given the emphasis on social integration in the persistence
literature, physics education researchers have responded
by developing active learning courses that take into account
modern theories of learning and evidence-based reform
[26–29]. Modeling Instruction, in particular, shows tremen-
dous promise to increase student outcomes on exams,
concept inventories, and attitudes toward physics [30,31].
Moreover, while affective outcomes, like self-efficacy,
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continue to suffer, MI can reduce—and sometimes
eliminate—the negative impact on physics self-efficacy
when compared to traditional, lecture-based courses
[32,33]. One of the most prominent features of MI that sets
it apart from lecture-based courses is its adherence to the
principle that academic and social interactions between peers
and instructors enhance learning.
This principle manifests itself in the classroom through

solicited and unsolicited interactions between students and
their peers, as well as their instructors, be they a faculty
member, a teaching assistant, or a learning assistant. The
number of peer-to-peer interactions in MI courses was
found to be much higher than in traditional, lecture-based
courses. In particular, SNA reveals that networks reported
by students in MI sections a few weeks into the semester
have a higher density than those reported in traditional
sections at the end of the semester (see Table IV in Sec. V
and Table I in Ref. [9] for details). In fact, by the end of the
semester every student in the MI section had an academic
connection with at least one peer, whereas the majority
of students in the lecture-based course did not report a
single connection [9]. The low level of student interactions
in traditional courses indicates that it is difficult to get
statistically significant results on the effect of interactions
in such courses. This further motivates us to examine
student integration in MI courses.

B. Persistence model

Social network research has shown that individual
beliefs and behaviors are shaped by social connections
and likely do not result from personal attributes alone
[34,35]. To capture the factors that affect persistence at the
classroom level, we propose a simplified version of Tinto’s
Model Linking Classrooms, Learning and Persistence [7].
Figure 2 provides a depiction of three categories of factors
that we consider. In addition to individual attributes (e.g.,
gender, race, major) and classroom context (e.g., traditional
lecture vresus active engagement), we also include the
in-class community. The classroom social system may alter
students’ persistence through better access to resources
resulting from interacting with instructional staff and other
students (“knowledge access”), peer influence, and/or
social and emotional supports. Students who are highly
sought by others can be viewed as having high prestige,
either academically or socially (or both). Such individuals
may hold information or resources that other students deem
useful. They may also have personalities that attract others,
providing emotional support or becoming academic or
social “role models.” Individuals with positive attitudes
towards sciences—individuals who are excited and pas-
sionate about the subject—may get other students more
interested and engaged in the course. On the other hand,
students who are not necessarily resourceful but who are
perceived by others as “strong personalities” can draw
them away from sciences by expressing lack of interest in

the subject matter. Shared beliefs are developed through
interaction and exposure to the beliefs of others [36]. Peer
interactions are necessarily affected by the levels and types
of social capital that students possess, especially in a
collaborative setting [37]. In a classroom with emphasis
on peer interaction as the process by which learning occurs,
such as Modeling Instruction, a social network perspective
offers a valuable lens for investigating the association
between peer interactions and students’ persistence [28].

IV. METHODOLOGY

A. SNA survey

To collect social network data we have developed a
pencil and paper survey that was administered in the
introductory mechanics MI course (Fall 2014, Fall 2015)
and in the electricity and magnetism MI course (Spring
2015, Spring 2016). The survey was given every 3–4 weeks
throughout the semester. Students were asked the following
question:

Name the individual(s) (first and last name) you had a
meaningful classroom interaction* with today, even if
you were not the main person speaking or contributing.
(You may include names of students outside of the group
you usually work with)
*A classroom interaction includes but is not limited to
people you worked with to solve physics problems and
people that you watched or listened to while solving
physics problems.

In the pilot data collection (Fall 2014), we used a
simplified version of the survey that consisted of the
question followed by a blank space where students were

FIG. 2. Simplified Model Linking Classrooms, Learning and
Persistence. The three categories of factors that may affect
students’ persistence are individual attributes, classroom context,
and in-class community.
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supposed to write names of their peers. Starting in Spring
2015, we switched to a version of the survey that included a
roster with names of all students enrolled in the course in a
randomized order and of the instructional staff. Moreover,
since not all interactions are equally meaningful, we
decided to introduce a weighted version of the question
about interactions, as shown in Fig. 3. It has been noted that
“knowing that someone else has valuable expertise is
important, but their knowledge is really helpful only if
they are accessible” [38]. Thus, it is important to go beyond
just the number of ties one has in the network and look also
at their “quality.”
Since all interactions listed are considered “meaningful”

(by the phrasing of the SNA question), in our context the
quality of ties is represented by the frequency of their
occurrence—if student A reported daily meaningful in-class
interactions with student B, we considered it to be more
important (of “higher quality”) than a one-time interaction.
To express the importance of ties in the languageof networks,
we assigned a numeric value to the frequency of interaction
by weighting them from 0 to 3 for any given pair of students,
with weight 0 being assigned to an unreported interaction.
For example, if student A reported having an in-class
interaction with student B every day, wAB ¼ 3, and if
student B did not mention student A on a survey, wBA ¼ 0.
Because of the intrinsically interactive nature of the

relational data, it is of particular importance to define the
network boundaries. Not including some relevant nodes or
ties may affect the properties of both the entire network and
those of each individual node. In our case, the exogenously
determined boundaries are defined by the enrollment in the
Modeling Instruction course.

B. Quantifying social integration

SNA uses the notion of nodes (in our case students
enrolled in MI-M) and edges (the interactions identified by
students on the survey) to represent the network. From a

graph theoretic perspective, the relative importance of
nodes within a graph is determined using centrality
measures. Evaluating the centrality of nodes in the network
helps us to understand the network and its participants (see
Fig. 4) and to answer the question: “Who are the most
important nodes in a network?” [39].

1. Centrality measures

There are various measures of centrality that quantify the
importance of nodes and edges. In this paper we will focus
on three groups of measures: node-level centralities (such
as directed degrees), the whole network measures (such as
betweenness and closeness), and measures that bridge a gap
between these two extremes (such as eigenvector). A brief
description of these measures for an unweighted network,
followed by a short introduction to centrality normaliza-
tion, is presented below (see, e.g., Refs. [40–42]).
Degree (also called total degree) centrality is the number

of edges directly connected to a given node. It can be
thought of as a measure of connectivity. In the case of a
directed network, i.e., a network that takes into account the
origin of an edge, one can define two directional measures
of degree centrality: indegree—the number of ties directed
to the node (can be interpreted as popularity)—and
outdegree—the number of ties that the node directs to
others (can be interpreted as sociability or influence):

C←
D ðiÞ ¼

Xn
j¼1

xji; C→
D ðiÞ ¼

Xn
j¼1

xij:

where xji is 1 when there is a tie from node j to node i and 0
otherwise (sum of all i’s incoming ties) and xij is 1 when
there is a tie from node i to node j and 0 otherwise (sum of
all i’s outgoing ties).
Eigenvector centrality goes beyond the node in question

and looks also at the centrality of the nodes connected to it.
It is defined as the sum of a node’s connections to other

FIG. 3. An excerpt from the SNA survey that was given starting
in the Spring 2015 semester.

FIG. 4. In each of the networks, X has higher centrality than
Y according to (a) indegree, (b) outdegree, (c) eigenvector,
(d) closeness, and (e) betweenness.
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nodes weighted by their degrees and it measures the
influence of a node in a network. It is given by an
eigenvector of an adjacency matrix A corresponding to
the greatest eigenvalue λmax. That is,

AT ~CE ¼ λmax
~CE:

Here, A is the adjacency matrix representation of a graph,
such that aij ¼ 1 if a node i is connected to a node j by an

edge and 0 if it is not. Then, ~CE is a vector containing the
centralities of all nodes in the network.
Directed degree as well as eigenvector centrality are

relatively intuitive and easy to calculate. They are local
measures, and the network outside of the vicinity of a
node—i.e., outside the “ego network”—has no direct
influence on them [43]. To assess the effect of the entire
network on a given node, one needs a global, system-
dependent measure, that will also account for the impact
of the nondirectly connected nodes. The following two
centralities serve this purpose.
Betweenness quantifies the number of times a node acts

as a bridge along the shortest path linking two other nodes
(the geodesic). It captures the importance of a position
within a whole network and can be interpreted as a measure
of how much control over the flow of information, and as a
consequence how much influence over the entire network,
a node has. When there is only one path connecting two
nodes or if a node falls on all geodesics connecting two
nodes, then it has complete control over the communication
between the two other nodes. If, however, a node lies on
some but not all geodesics connecting two other nodes, its
potential for control is more limited and is proportional to
the number of geodesics that a node lies on. Betweenness is
given by

CBðkÞ ¼
Xn
i≠j≠k

dijðkÞ
dij

;

where dijðkÞ is the number of shortest paths linking node i
to node j that pass through node k, and dij is the number of
shortest paths linking node i to node j.
Finally, closeness is a measure of how near an individual

is to all other nodes in a network. It emphasizes a node’s
independence—a node that is close to many other nodes
can easily reach others without having to rely much on
intermediaries, thus gaining easy access to information or
resources in the network. It is defined as the inverse of the
sum of distances from all other nodes:

CCðiÞ ¼
�Xn
j¼1

dij

�−1
;

where dij is the geodesic connecting node i to node j.
When there is no path between two nodes, the total number
of nodes is used in the formula instead of the path length.

2. Different size networks

To compare measures between different graphs, one
needs a measure from which the effect of network size has
been removed. To do so, we have to transform all the values
to fall within the [0, 1] by dividing them by the highest
possible value for each measure [40]. Since in a network of
size n a given node can be in direct contact with at most
n − 1 other nodes, the normalization factor for directed
degrees is 1=ðn − 1Þ. That is,

½C←=→
D �norðiÞ ¼ C←=→

D ðiÞ
n − 1

:

Similarly, since closeness is based on a distance of a given
node from n − 1 other nodes, it is given as

Cnor
C ðiÞ ¼ ðn − 1ÞCCðiÞ:

For betweenness, the normalization factor is given by the
maximum value that CBðkÞ can take, which is
½ðn − 1Þðn − 2Þ�=2 [true for a star graph, see Figs. 4(a)
and 4(b)]. Therefore,

Cnor
B ðkÞ ¼ 2CBðkÞ

ðn − 1Þðn − 2Þ :

C. Demographics

Data collection for this study occurred at a large public
research university over two semesters of a MI-M course
(Fall 2014, Fall 2015) and two semesters of a MI-EM
course (Spring 2015, Spring 2016), spanning three sections
of MI-M and three sections of MI-EM (see Table I for
details). The sections were taught by two instructors
(denoted in Table I as A and B, both physics education
researchers) accompanied by teaching assistants (graduate
students in physics education) and learning assistants

TABLE I. Student enrollment and teaching staff for the MI
courses in numbers. There was one section of MI-M in Fall 2014,
one section of MI-EM in Spring 2015, two sections of MI-M in
Fall 2015, and two sections of MI-EM in Spring 2016. All
instances of section A we taught by one instructor and all
instances of section B were taught by another instructor. The
learning assistants (LAs) and teaching assistants (TAs) varied
from semester to semester.

Fall 2014 Fall 2015 Spring 2015 Spring 2016

Section A A B A A B
Instructors 2a 1 1 1 1 1
Students 73 73 74 74 76 68
TAs 2 1 2 2 1 2
LAs 3 3 3 2 2 3

aThere was one instructor teaching the course in Fall 2014 and
one faculty member who visited the class throughout the
semester.
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(high-achieving undergraduate students who have taken the
course previously).
Because of its structure, there is a well-defined plan to

follow for the Modeling Instruction courses. Instructors use
well-developed resources and have weekly preparation
meetings with the entire instructional staff to assure the
consistency of teaching the core concepts [44].
In each semester we collected SNA data five times

throughout the duration of the course. The response rates
on all surveys but one were 78% or more (see Table II).
Therefore, we disregarded the survey with an unusually low
return (43%) from the analysis. Moreover, to prevent the
low response rate on the last survey, we rescheduled the
data collection starting in Spring 2015 onward [45]. As a
result, the fifth data collection in Fall 2015 took place
around the same time during the semester as the fourth
collection in Fall 2014 (fourth week of November). Thus,
in our analysis we are using SNA4 (the last valid survey)
from the Fall 2014 semester and SNA5 for Fall 2015.
Because of a limited capacity of the MI classroom (up to

80 students per section), students enroll in the course in the
order they sign up for it. If the number of students exceeds
the number of available spots, a lottery system is utilized
in order to distribute permits fairly. The total number of
students enrolled in the MI-M was 220, 96 of which were
female and 124 were male, and 218 for MI-EM (82
females, 136 males). Both sections of MI were taken by
148 students (64 females, 84 males) while a second
semester of physics in a more traditional arrangement
was taken by 13 students from MI-M (6 females, 7 males).
The ethnicity distribution is provided in Table III.

D. Data analysis methodology

To investigate relationships between students’ central-
ities, gender, ethnicity, major of study, final grade, and
their persistence in MI, logistic regression modeling was
used. Our outcome variable was persistence through the MI
introductory course sequence as measured by student’s
enrollment (i.e., 1) or lack thereof (i.e., 0) in MI-EM during
the subsequent semester. To avoid confounding factors,
we performed multiple logistic regression. All significant
variables for the simple linear regression analysis were
incorporated into the expanded model. The comparison
of the fit of simple and multiple linear regression models
was performed using the likelihood ratio test, with the null
hypothesis stating that the simple model is a better
predictor of persistence. The variance inflation factor
(VIF) was examined for each of the predictor variables
to test the multicollinearity within the model. Variables
with a VIF greater than 2.5 were excluded from the final
model [46]. Finally, the mutual information approach was
used to find the most significant split into the predicting and
nonpredicting categories for each of the centrality measures
and the chi-square test was used to verify significance of
this split [47]. For the statistical analysis we used the R
statistical programming language [48], and for network
analysis we used the igraph package [49]. To adjust the
false discovery rate the Benjamini-Hochberg procedure was
implemented [50]. We considered results with p < 0.05 as
significant.
Starting in Spring 2015, we provided students with a

roster of all students enrolled in the class as they responded
to the survey. This led to nearly doubling of the number of
reported ties per person. In order to aggregate networks
from two different semesters, we need them to be similar in
terms of various characteristics (see Sec. V for details).
In Fall 2014 we asked students about interactions “today,”
while on the Fall 2015 survey interactions with weight 3
were defined as “everyday in-class interactions.” Thus, we
decided to include in our analysis for the latter only ties
with weight 3 so as to compare ties of approximately equal
meaning. It is important to note that this step still yielded
about 22% more interactions than was reported in Fall
2014, which is reflected in network characteristics, e.g.,
slightly higher density, lower average path length, and
diameter (see Table IV for details).

E. Handling missing data

The SNA data collection took place in the classroom, at
the end of a class. As a result, none of the surveys has a
100% response rate since on any given day some of the
students were not present and others had to leave the
classroom before the end of class. Response rates for all
the surveys are presented in Table II.
One way to avoid missing values when calculating

centralities is to include in a network only those students
who either took a given survey or were listed by their peers

TABLE II. Response rates to the Fall 2014 and Fall 2015 SNA
surveys. The unusually low return on survey SNA5 from Fall
2014 was likely due to the optional nature of the review session
class when the data collection took place. These data were
therefore disregarded from the analysis.

Collection Fall 2014 Fall 2015 (Sec. A) Fall 2015 (Sec. B)

SNA1 95 97 96
SNA2 92 86 84
SNA3 78 79 89
SNA4 80 83 80
SNA5 43* 79 86

TABLE III. Students’ ethnicity distribution. For each group, the
first column gives the overall number of students enrolled and the
second column gives the average percentage of students between
the three sections.

N Mean (%)

Asian 14 6.4
Black 22 10.0
Hispanic 156 71.0
White 22 10.0
Other or NA 6 2.7
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and then to impute all missing centralities. Another way is
to treat all students enrolled in the course as members of a
network on each collection and calculate centralities for all
of them based on the available data. With this approach
students’ whose names did not appear in a given collection
will naturally have assigned centrality values correspond-
ing to “isolates” (disconnected members of a network). It is
important to note that changing a centrality for one node
can have an effect on centralities of many or all other
members of the network, depending on the measure in
question. Imputation fills in the missing values without
changing values already calculated. While it can be a good
approach for handling interdependent missing data when
the fraction of unavailable data is small, in our case the
missing data account for about 20% of the data and there
is a risk that imputation would significantly change the
properties of the network. At the same time, centrality
scores are fairly robust to random missingness. For exam-
ple, for small networks (40–75 nodes) the level of missing
data that does not affect the overall structure is up to 35%
for directed degrees and about 20% for closeness and
betweenness [51]. The missingness in our network data
falls within these thresholds and therefore no imputation
was used.

V. MODELING CLASSROOM NETWORK

In our analysis we considered six classroom networks:
SNA4 from Fall 2014, SNA5 from Fall 2015 (sections A
and B) and SNA1 from Spring 2015 and Spring 2016
(sections A and B). Centrality measures were calculated
separately for each of these sections and then the resulting
indices, together with student demographics, as well as
information about grades and persistence, were aggregated
into two data sets—one for Fall and one for Spring. To
justify the aggregation of data from three different sections,
we took a closer look at the properties of each network
(see Table IV for details).

A. Network density

For graph densities, we expected that, as the semester
progresses, students would get better acquainted with one
another and, as a result, the number of reported ties, and

therefore also the network density, would systematically
increase, leading to faster information transmission and
greater access to resources and peer support (see, e.g.,
Ref. [42]). Based on our theoretical framework, students
embedded in dense classroom networks should be more
likely to persist due to an overall greater exposure to the
advantages of peer learning as well as broader range and
accessibility of available knowledge resources and social
and academic support. For a directed network, density is
defined as

Δ ¼ l
nðn − 1Þ ;

where l is the number of all ties in a network and
nðn − 1Þ is the number of all possible directed ties
between n nodes, and it takes value between 0 and 1
[40]. The changes of the network density throughout
the semester for each section are presented in Fig. 5. One
can see that not only the overall trend for all graphs is
positive, indicating that the density within each section

FIG. 5. The changes in network density for each section as a
function of time. The x axis is rescaled to account for the
adjustment on the data collection schedule. The solid lines
represent a line of best fit for each section (R2

F14 ¼ 0.65,
R2
F15A

¼ 0.76, R2
F15B

¼ 0.83).

TABLE IV. Comparison of network characteristics for the Fall 2014 (SNA4), Fall 2015 (SNA5, two sections),
Spring 2015 (SNA1) and Spring 2016 (SNA1, two sections): network size (n), density (Δ), outdegree centralization
(C→

d ), closeness centralization (Cc), average path length (L), diameter (D), transitivity (Tr), and reciprocity (ρ↔).

n Δ C→
d Cc L D Tr ρ↔

F14 80 0.05 0.093 0.021 4.6 12 0.42 0.58
F15Sec: A 78 0.07 0.088 0.029 3.2 9 0.31 0.42
F15Sec: B 80 0.07 0.087 0.088 3.7 9 0.35 0.46

S15 79 0.06 0.069 0.038 4.2 12 0.44 0.59
S16Sec: A 80 0.07 0.107 0.054 3.6 10 0.37 0.48
S16Sec: B 74 0.06 0.117 0.065 2.7 9 0.41 0.48
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indeed increased, but also the densities on last collections
are comparable. The slightly lower density for Fall 2014
is most likely due to a different format of the survey. For
the Spring data the densities were more uniform with
MΔ ¼ 6.37 × 10−2 (SDΔ ¼ 0.01 × 10−2).

B. Centralization

While density describes the general level of cohesion in
a graph, centralization describes the extent to which this
cohesion is organized around particular focal points. In
other words, centralization measures how much variation
there is in the centrality scores among nodes. It is calculated
by looking at the differences between the centralities of the
most central node and those of all other nodes and then
finding the ratio of the actual sum of differences to the
maximum possible sum of differences. High centralization
values (close to 1) indicate that there are dominating nodes
in the network while low values (close to 0) indicate
relatively equal distribution on centrality measures among
nodes [40]. A summary of outdegree (C→

d ) and closeness
(Cc) centralizations for all surveys is presented in Table IV.
These summaries indicate fairly uniform distributions for
both measures. The corresponding values for the remaining
centralities are similarly low and comparable.

C. Diameter and average path length

Another way to compare network cohesion is through the
network diameter and average path length. Diameter is the
length of the longest path between two nodes. It provides
information about the span of a network. The average path
length, on the other hand, is the shortest path between two
nodes, averaged over all pairs of nodes. It is an indicator of
how close together nodes are to one another [40]. Both
diameter and average path length are considered to be very
robust measures of network topology [52]. The average
path length will be bounded above by the diameter and is
usually much shorter than the diameter. This holds in our
case. When normalized by the network size, both measures
for each network are comparable, with ML=N ¼ 0.36
(SDL=N ¼ 0.04) and MD=N ¼ 0.13 (SDD=N ¼ 0.02)

D. Reciprocity and transitivity

Reciprocity is a tendency of pairs of nodes to form
mutual connections between each other. Transitivity, on
the other hand, refers to the extent to which the relation
between two nodes is transitive, i.e., two connected nodes
have a common neighbor (“a friend of my friend is also my
friend”) [40]. Both measures take values from the interval
[0,1]. As shown in Table IV, in the case of the MI networks
both reciprocity and transitivity are relatively high at the
beginning and at the end of the semester (MTr ¼ 0.38,
SDTr ¼ 0.05 and Mρ↔ ¼ 0.49, SDρ↔ ¼ 0.05). That is
likely due to the nature of the MI structure (i.e., working
in groups of three, sitting at tables of six).

VI. ANALYSIS AND RESULTS

The leading research questions for our study were as
follows:
(1) How does students’ position within a social network

in an MI-M course, which strongly emphasizes
interactive learning, impact their persistence in
taking a subsequent physics course?

(2) Does participation in the Fall MI course tell us
something about students’ position within the class-
room network at the beginning of the Spring MI
course?

A. Centrality as a predictor of persistence

In our analysis, we are interested in the effect of student
embeddedness within the classroom network on their
persistence in the MI sequence. In our preliminary study,
we looked at the networks without the instructional staff as
we were interested mainly in the peer-to-peer interactions
[25]. However, since the instructors can also be a source
of both academic and social support, in our model we
decided to take into account the effect on instructors on
the network. Thus, we consider two cases: (1) all network
interactions as reported and (2) interactions between
students excluding the instructional staff. Using the
Wilcoxon rank-sum test we found no evidence for sta-
tistically significant differences between the two population
medians (i.e., with and without instructors) for one out of
five centralities we considered—the outdegree. However,
the predictive power for all of them remained unchanged,
regardless of whether the instructional staff was excluded
or not.
For the simple logistic regression models, i.e., persist-

ence ∼ centrality, the independent variable is continuous
and the dependent variable is binary (true or false). As
shown in Table V, we found statistically significant positive
correlations for persistence in MI with directed degrees, as
well as closeness.
To determinewhether our simple models can be improved,

we considered multiple logistic regression models for all
statistically significant centrality measures, with a student’s

TABLE V. Estimates for the simple logistic regression for
persistence as predicted by various centrality measures (persist-
ence ∼ centrality). We consider networks with and without
instructional staff (full and student network, respectively).
Significant adjusted p values are marked with an asterisk.

Centrality Full network Student network

Indegree 23.84** 21.93**

Outdegree 14.99** 15.91**

Eigenvector 1.22 0.43
Betweenness 6.35 −2.59
Closeness 8.64*** 6.96**

***p < 0.001, **p < 0.01, *p < 0.05.
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gender, ethnicity, academic plan (declared major), and
a final grade considered as additional predictors, i.e., per-
sistence ∼ centralityþ genderþ ethnicityþmajorþ grade.
To account for other factors as possible predictors, we used
a backward elimination regression approach. In particular, to
fit the bestmodels to our dataweused thestep function inR,
relying on Akaike’s Information Criterion. Starting with a
full model, including all candidate variables, and using a
comparison criterion to test the removal of variables (i.e.,
removing the variable that leads to the best improvement in
the model and repeating until no further deletion can be
performed), we ended up with two-predictors models. We
found that only grade made a statistically significant differ-
ence in the model fits. Table VI summarizes the results of the
logistic regression.However, whenwe compared the fit of the
full models (i.e., models with both predicting variables) to
the fit of themodels with a grade as a sole predictor, we found
that grade alonegave a significantly better fit only for indegree
[χ2ð1Þ ¼ 0.31, adjusted p ¼ 0.62]. Full models remained
better fits for outdegree [χ2ð1Þ ¼ 4.56, adjusted p ¼ 0.048]
and closeness [χ2ð1Þ ¼ 8.25, adjusted p ¼ 0.007]. The
variance inflation factor indicates the lack of collinearity
between grade and both outdegree (VIF ¼ 1.00) and close-
ness (VIF ¼ 1.01).
Finally, to optimize the correlation and to determine the

predictability threshold for centralities, we used the mutual
information. Table VII shows the threshold values for
each centrality measure and its significance level, as well
as probabilities of successfully inferring the persistence
based on a given centrality.

B. Persistence as an indicator of centrality

To establish whether a student’s position within the
network at the beginning of the Spring semester is
correlated with participation in MI in a preceding Fall
semester, we used the network data from the first collection
of the Spring 2015 (one section) and Spring 2016 (two
sections) semesters. All three collections took place at the
same time during the semester (i.e., week 3).
Initially, we looked at taking any section of MI-M as an

independent variable (a binary yes or no predictor),
i.e., centrality.Spring ∼ persistence. Using simple linear
regression, we found slightly positive correlation with
persistence only for closeness [Fð1; 216Þ ¼ 8.95, adjusted
p ¼ 0.012, adjusted R2 ¼ 0.04]. Because of a collinearity
between persistence and section or instructor variables,
we could not simply control for their effect in our model.
Thus, to provide additional scrutiny, we expanded the
participation variable to account for the section that
students took. That revealed the significance of
closeness [positive correlation, Fð2; 145Þ ¼ 88.6, adjusted
p < 0.001, adjusted R2 ¼ 0.54] and betweenness [negative
correlation, Fð2; 145Þ ¼ 4.51, adjusted p ¼ 0.036,
adjusted R2 ¼ 0.05]. The number of students who
switched sections between semesters was low (N ¼ 11),
and since it bore no statistical power, we decided to not
control for that factor. Expanding the participation variable
based on the instructor teaching the course (i.e., instructor
A versus B) gave significant positive correlations for
two out of five centralities: outdegree [Fð1;146Þ¼ 6.39,
adjusted p ¼ 0.036, adjusted R2 ¼ 0.04] and closeness
[Fð1;146Þ¼120.1, adjusted p<0.001, adjusted R2¼0.45].
Also, expanding along the year when MI-M was taken (i.e.,
Fall 2014 versus Fall 2015) led to significant correlations:
slightly negative for betweenness [Fð1; 146Þ ¼ 9.05,
adjusted p¼0.012, adjusted R2¼0.05] and positive for
closeness [Fð1; 146Þ ¼ 81.5, adjusted p < 0.001, adjusted
R2 ¼ 0.35]. For all these cases we found no statistically
significant improvement in fits for multiple linear regres-
sion models with students’ demographic and grade infor-
mation included.
Finally, since centralities at the end of the Fall semester

are positively correlated with persistence, it is natural to
ask whether there is any relationship connecting the
centralities themselves between semesters. Specifically,
we wanted to determine whether centralities at the
beginning of Spring semesters can be predicted based
on corresponding centralities at the end of Fall semesters.
To account for other factors as possible predictors, we
again used a backward elimination regression approach
and we ended up with simple, one-predictor models with
centrality alone giving the best fit. Out of five centralities
we considered, three turned out to be statistically signifi-
cant predictors. Table VIII summarizes the regression
results.

TABLE VI. Summary of the likelihood ratio test performed for
the multiple logistic regression models with a student’s final grade
considered as additional predictor (persistence ∼ centrality þ
grade) when compared to the simple models (persistence ∼
centrality). Significant adjusted p values are marked with an
asterisk.

Centrality d.o.f. χ2

Indegree 1 52.9***

Outdegree 1 55.3***

Closeness 1 56.4***

***p < 0.001, **p < 0.01, *p < 0.05.

TABLE VII. The threshold value (θ) for each centrality
measure as determined by maximization of the mutual informa-
tion, its significance level measured by the chi-square test, and the
probability of successfully inferring the persistence based on
centrality (PS). Significant p values are marked with an asterisk.

Centrality θ χ2 PS

Indegree 0.012 18.29*** 72%
Outdegree 0.012 13.36*** 68%
Closeness 0.053 28.48*** 75%
***p < 0.001, **p < 0.01, *p < 0.05.
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VII. DISCUSSION AND CONCLUSION

The use of SNA to study students’ persistence was
proposed by Tinto in the mid-1990s [7]. Thomas took this
approach to explore the role of student social structure (e.g.,
integration) in persistence. He argued that the measures of
centrality provide a unique empirical way to understand
and quantify students’ structural integration into their social
groups. Following Tinto, he suggested that SNA sheds new
light on understanding student integration through individ-
ual’s social ties, i.e., “a dimension that previous operation-
alizations of integration have missed” [21].
As noted earlier, Tinto pointed out that both social and

academic involvement influence persistence: “The manner
in which social and academic involvements (integration)
shape learning and persistence will vary over the course of
the college career and do so in differing ways for different
students inside and outside the classroom” [7]. Our intro-
sequence study looking at students at the beginning of their
college career is put forward to improve the understanding
of the role of social and academic interactions in persist-
ence. To complement our findings, we are currently
employing the SNA methodology to look at students’
experiences at the university in the middle and at end of
their time in college.
The MI physics course is interaction driven, at both

the small and large group levels. The course structure—
group assignments, common exam and lab reports, “board
meetings”—provides many active ways for students to be
involved and make connections with each other. It is thus
an important case to study the effect of involvement and/or
integration on persistence.
In our analysis, we examined data from four semesters

(six sections, three in Fall and three in Spring) taught by
two instructors. To quantify various interpersonal inter-
actions between students, we used centralities—measures
of position within the social network. The first thing
worth noticing is that the SNA measures are robust when
compared between different groups. The network proper-
ties, as well as correlations between centrality measures
and persistence, remained fairly stable between years and

sections. This stability confirms significance of our
results.
Our preliminary work showed a positive correlation for

persistence with directed degrees and closeness, and
negative for betweenness [25]. Building on this, we wanted
to further investigate what information can be gained from
centralities. We also wanted to go one step further and
determine whether centrality at the beginning of the second
semester can be predicted by measures from the end of the
preceding semester.
Answering the first question, we verified that students

with higher centralities at the end of the first semester of an
MI course are in fact more likely to enroll in a second
semester of MI physics. Both students who reported a large
number of interactions and those who were often the
subject of others’ interactions were more likely to register
for the second MI course in the introductory physics
sequence. Node-level measures, i.e., directed degrees,
and one of the whole network-level centralities, i.e.,
closeness, turned out to be positively correlated with
persistence. However, betweenness had no statistically
significant effect. This held true regardless of whether
we included the instructional staff in our analysis or not. We
also tested the impact of other factors, such as student
demographics and final grades, and found grade to be the
only one that made a statistically significant difference.
However, further analysis showed that only for indegree
was grade alone a better predictor. For outdegree and
closeness, models with two dependent variables (i.e., grade
and centrality) gave the best fit.
To explain these findings one needs to understand what

centrality measures mean in the classroom context. Degree-
based measures are concerned with communication activ-
ity. They capture students’ direct interactions with one
another. Indegree helps to identify individuals sought by
others because, e.g., they are knowledgeable, supportive, or
helpful. Outdegree, on the other hand, reveals students who
reach out to others. They might do so because they need
help or because they want to offer help and support. Some
students like discussing their ideas to reaffirm their
knowledge, others learn best from peer-to-peer interactions.
The reasons for interacting with others are plenty.
Understanding how and why students build communities
is essential to improving their experiences in and beyond
the classroom.
Concern with either independence or efficiency leads to

the choice of a measure that captures embeddedness within
the entire network, such as closeness. Students with high
closeness scores have easy access to information from
many sources. They are also—by sheer nature of this
measure—connected to many students and might experi-
ence better social and emotional support. This, in turn, can
help them appreciate all the benefits of having strong
network connections within a classroom. Closeness is
related to degrees of separation. Students who had low

TABLE VIII. Results of the linear regression for centralities
at the beginning of Spring semesters as predicted by cor-
responding centralities at the end of Fall semesters
(centrality.Spring ∼ centrality.Fall). Significant adjusted p val-
ues are marked with an asterisk.

Centrality.Fall B Fð1; 146Þ R2
adj

Indegree 0.13 2.6 0.01
Outdegree 0.37*** 20.6 0.12
Eigenvector 0.11 2.2 0.01
Betweenness 0.21** 11.1 0.06
Closeness 0.36*** 138.9 0.48
***p < 0.001, **p < 0.01, *p < 0.05
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degree of separation from everyone else in the class-
room were more likely to persist in the MI sequence of
introductory physics courses.
Betweenness, on the other hand, depends mainly on the

position within the network. In practice, in order to have
high betweenness it suffices to connect groups that would
otherwise be separate. Students with high betweenness
score are not necessarily connected to many other students,
but their connections are formed in a particular way. Thus,
this measure will only be significant when the throughput
or flow of information is relevant, but not necessarily when
network connections are a source of support (which, e.g.,
implicitly or explicitly encourage students to persist).
We found that students who had a low degree of

separation from others (i.e., a high closeness) and those
that reached out to more peers were more likely to persist.
This is true regardless of their grades in the course, which
provides evidence that persistence through a major, in this
particular context, does not depend solely on doing well
academically, but also on doing well socially. Students’
indegree did not predict their persistence when we took
their grades into account. In other words, whether or not a
student was perceived as a meaningful academic resource
by their peers had no effect on their persistence, so long as
they had high grades in the course.
Knowing the correlation between centralities and persist-

ence leads to a natural question about the likelihood that
students with indices within a certain range will actually
continue their education. To tackle this problem we relied on
the concept of entropy of a random variable. The mutual
information gave us a threshold that optimizes predictability
for each centrality. Then we derived the probability of
correctly inferring the persistence based on centrality.
Identifying students who are less likely to persist is
particularly important when there is still time to take actions
to help them through classroom interventions designed to
further promote integration. Since in order to know students’
grades one has to wait until after the end of the semester and
the SNA data collection took place a couple of weeks before
final exams, in our estimation we decided not to include the
grade, even when it improved the model.
In our proposed model, we hypothesized that demo-

graphic information and the classroom context combined
with centrality measures would predict persistence.
However, with the exception of final grade, we found no
impact of the personal factors in the logistic regression
models. The reason for the unusual absence of this effect
might be the atypical gender and ethnicity distribution for a
science class, with females accounting for 46% of the
population and traditionally underrepresented ethnicities
accounting for 81%. As for the classroom context, all
sections of our study followed the Modeling Instruction
curriculum. Also, we assumed the faculty support and the
teacher-to-student ratio factors to be comparable between
sections since the review session and exams were

coordinated and all students had access to teaching assistants
and learning assistants. While our analysis would benefit
from a comparison with a traditionally taught course, a
previous study found no network development in a non-
interactive classroom [9]. Thus, with the cost of additional
data collection outweighing the potential gains, we decided
to put off surveying non-MI students for the time being.
Wewere also interested in determining whether students’

participation in Fall MI and their position within the
classroom network by the end of the semester can say
anything about their position in the network at the begin-
ning of the following semester. Are students who already
experienced the MI collaborative environment more likely
to make connections? Do they tend to connect with people
they already know from a previous semester? Based on
our analysis, closeness turned out to be the most robust
measure. We found positive correlations for this centrality
regardless of whether we controlled for section, year, or
instructor or if we treated as a variable simply taking the
MI-M course (a binary “yes or no” predictor). In each case
closeness was significantly correlated with the predicting
factor. Moreover, each measure was positively correlated
with its counterpart from the last collection of the Fall
semester. It is also worth noting that ties involving students
who took MI-M accounted for about 90% of all interactions
(78% of which were initiated by returning students), while
connections only between people new to the MI course
constituted less than 10%.
In conclusion, this study suggests that student social

integration influences persistence and predicts their social
integration in following courses (here, in MI-EM which
follows MI-M). Without interventions to help students better
connect to the social fabric of the classroom, we can expect
patterns of success to go unchanged. Nevertheless, it is
important to stress that there is no guarantee that increasing
students’ centrality by encouraging their interactions will
lead to better persistence. Further study is needed to test for
the effect of increasing embededness within the classroom
network through, e.g., structured and purposeful mixing of
students. Our findings, however, suggest that it will help. We
found that different types of social integration are quantified
by different measures of centrality and correlate with
persistence differently—some greatly, some when subject
to specific conditions (instructor, year), and some not at all.
Network analysis is a tool that allows us to study the link
between involvement and persistence in a quantitative,
empirical, and meaningful way. It thus gives an access—
in real time—to predictive data that may be useful to “nip
attrition in the bud” and keep students enrolled and engaged
in STEM fields.
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