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We present a method to infer the complete connectivity of a network from its stable response dynamics.
As a paradigmatic example, we consider networks of coupled phase oscillators and explicitly study their
long-term stationary response to temporally constant driving. For a given driving condition, measuring the
phase differences and the collective frequency reveals information about how the units are interconnected.
Sufficiently many repetitions for different driving conditions yield the entire network connectivity (the
absence or presence of each connection) from measuring the response dynamics only. For sparsely
connected networks, we obtain good predictions of the actual connectivity even for formally under-

determined problems.
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A central issue in current multidisciplinary research is to
understand the relations between network structure and
network dynamics [1,2]. Given an idealized model of the
dynamics of the individual units and of their interactions,
what can we tell about features of the collective dynamics
depending on the network connectivity, say, a regular
lattice, a random network, or some more intricately con-
nected network [1-3]? For many biological systems, such
as networks of neurons, interacting proteins or genes, and
ecological foodwebs [4—11], however, important aspects
of the network structure are largely unknown such that
inverse methods may prove useful. For instance,
Refs. [10,11] show recent advances relating functional
and structural properties in neuronal networks using (pas-
sive) observation of the dynamics. Originally, the inability
to infer details of the connectivity of neural systems has led
to the common notion of “effective connectivity” [12].
More generally, it is still not well understood how we can
infer details of the connectivity of a network, e.g., the
presence and absence of individual links, from controlled
measurements of its dynamics.

Here we follow this reverse perspective for networks
exhibiting stable dynamics using a complementary ap-
proach: Applying external driving signals to actively mod-
ify the dynamics, the measured response in comparison to
the original, undriven dynamics depends on both the driv-
ing and the network connectivity. Thus, evaluating the
collective response dynamics in dependence on the driving
signals, we obtain information about the network connec-
tivity. We assume that the network is strongly connected
[13] (i.e., every unit can directly or indirectly communicate
with every other) such that each unit may respond to
driving signals applied to any other units in the network.
Apart from this, the network connectivity is completely
arbitrary.

As an explicit example, we here consider networks of
coupled phase oscillators, a paradigmatic model that has
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been successfully used to understand collective dynamical
phenomena in engineering, physics, chemistry, biology,
and medicine [14-20]. Here the stationary response to
any phase-locked dynamics reveals information about the
specific connectivity. We explicitly show that and how,
given a network of N units, each experiment (consisting
of driving and measuring) provides N restrictions onto the
network connectivity that is defined by N? coupling
strengths. Exploiting this, we reveal the entire network
connectivity by repeatedly performing measurements of
the dynamics only, under N independent driving condi-
tions. Furthermore, assuming that real networks are sub-
stantially more sparsely connected than all to all, we
extend the method to reliably predict the entire connectiv-
ity of the network even by a number of experiments that is
much smaller than the number of units in the network.
The oscillators are coupled on a directed network of
unknown connectivity with their dynamics satisfying

N
bi= it Jyfiild; = &) + Lim M
=

where ¢;(7) is the phase of oscillator i at time 7, w; is its
natural frequency, J;; is the coupling strength from oscil-
lator j to i (J;; = 0 if this connection is absent), and f;; are
smooth coupling functions. We drive one or more oscilla-
tors i in the network by temporally constant input signals
I i €{1,..., N}, that can be positive, negative, or zero
(meaning that oscillator i is not driven). Here the index m
specifies the driving condition. If the network is not driven,
we have m = 0, and all input signals are identically zero:
I;p=0. We define the in-degree k; :=|{J; # 0|j €
{1, ..., N}}| as the number of incoming links to oscillator i.

Given driving condition m, consider the stationary dy-
namics on a phase-locked attractor that satisfies ¢, (1) —
¢ ;m(t) = A;j . independent of time. The collective fre-
quency (), satisfies
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forall i € {1,..., N}. The undriven (/;, = 0) network has =1

collective frequency (.

The driving inputs [;,, effectively change the units’
natural frequencies. Keeping the signal strengths suffi-
ciently small, we structurally perturb the phase-locked
state such that it stays phase-locked and close to the
original, i.e.,

[(Djm = Pim) — (Dj0— bi0)l < 1; 3)

cf. Fig. 1. Such a driving signal results in a phase pattern of
the entire network that depends on the details of the con-
nectivity of that network as well as on the driving signal
itself [21-26].

Now take the differences between the phase-locked
conditions for the driven and the undriven system:

N
D;,, = z Jillfiildjm — dim) — fif(dj0o— dio)] @)
=

where D;,, :=Q,, — Q¢ —1I;,. For sufficiently small
structural perturbations, relation (3) holds, and we approxi-
mate f;;(x) = f;(Aj;0)x + O(x?) and abbreviate the phase
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FIG. 1 (color). Driving induces phase patterns, implicitly de-
fined by (2). The network has N = 16 units, each connected with
a coupling strength J;; = 1/k; to k; = 8 randomly selected
others (J;; = 0 otherwise). (a) Homogeneous frequencies, w; =
1; (b) heterogeneous random frequencies w; € [0.1, 1.1]. The
phase differences A¢; := max;{¢,} — ¢, in the stationary states
are plotted versus i. The responses to three different driving
conditions—(blue O) one unit i =5 driven, I5; = 0.3; (red
O) two units i € {2, 8} driven, I, = Iy, = 0.3; (gray @) all
units driven by a signal of random strength /;3 € [0, 0.3]—are
shown along with the undriven dynamics (X).

where J is the N X N Laplacian matrix given by

. Jiif1i(Qio) for i # j,
Jij =1 =3 Jufi(Bpo) fori=j. (©)
k,k#i

Given one driving condition m, we measure N — 1
independent phase shifts 6, ,, and one collective frequency
(),, to obtain N linearized equations (5) that restrict the
N2-dimensional space of all possible network connectiv-
ities (J ij)ijef1,.n)- This is the maximum number of re-
strictions one can deduce from one experiment. From
repeated measurements under linearly independent driving
conditions, we obtain more and more information about the
connectivity: After performing M experiments [27], the
space of networks is restricted by MN equations

D = Jb, (7)

where 0 = (0, ,,)icq1,.. Ny mef1,..,my is the N X M matrix of
column vectors of phase differences for each experiment
m, and, analogously, D = (D, ,); ,, is the N X M matrix of
the effective frequency offsets. Thus, we are left with an
(N — M)N-dimensional family of possible networks that
are consistent with the M measured data sets. In particular,
this implies that, after M = N experiments, the network
connectivity is specified completely as given by J =
DO~ 1, During reconstruction, we substitute the diagonal
entries of the reconstructed matrix by its off-diagonal sums
according to (6). In all numerical illustrations, we take the
standard Kuramoto model f;; = sin for all i, j and approxi-
mate the prefactors in (6) by f7;(A;;0) = 1. A reliable
reconstruction of the connectivity from measurements of
the collective response dynamics is illustrated in Fig. 2.

This direct method is capable of revealing not only
which links are present and which are absent but also gives
a good quantitative estimate of the actual effective link
strengths J; ;- It has, however, also some drawbacks. The
problem of solving (7) can be ill-conditioned in the sense
that the ratio of the largest and the smallest singular value
of 67 is large, leading to low-quality reconstruction.
Moreover, the direct method might become impractical
when studying real-world networks, which often consist
of a large number N of units and thus would require a large
number M = N of (possibly costly) experiments.

Can we obtain the connectivity more efficiently, even
with M < N experiments? In many networks, such as net-
works of neurons in the brain, a substantial number of
potential links are not present: Each node i typically has
a number k; < N of links. Here we exploit this fact and
look for that connectivity matrix J that has the least num-
ber of links (maximum number of J;; = 0) but is still
consistent with all M measured data sets.
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FIG. 2. Inferring connectivity from measuring response dy-
namics. M = N = 16 experiments [29]. (a),(b) Connectivities
of the networks with homogeneous and heterogeneous natural
frequencies of Figs. 1(a) and 1(b), respectively, as reconstructed
using Egs. (5)—(7). The matrix of off-diagonal connection
strengths j is gray-coded from light gray (J; ; = 0) to black
(f max/ /{J +}). Insets: Elementwise absolute difference

1
| ]?;Igma jff“VEdL plotted on the same scale.

To achieve this goal, we use the constraints (7) to pa-
rametrize the family of admissible matrices by (N — M)N
real parameters P,,,z e{l,..,N,jeE{M+1,...,N},in
a standard way using a singular value decomposition of
0T = USVT, where the M X N matrix S contains the
singular values on the diagonal S;; = §;;0; = 0. We re-
write the set of all coupling matrices J = DUSV” + PV,
setting P;; = 0 for all j =M and S‘ij = 6,;/o; if 0;>
107* and S;; = 0 if o; = 10~*. Finally, we minimize the
1-norms of the row vectors of J (input coupling strengths)

N

S 17l 8)

J=Tj#i

”ji”l =

with respect to the parameters P, separately for all oscil-
lators i. By this method, we find the network with a
minimal number of incoming links (maximal number of
zero entries) [28]; thus, we find a particularly sparse net-
work satisfying the measurement data. Reasonably good
reconstructions can already be obtained with the number of
experiments M being substantially smaller than N, as
illustrated in Fig. 3.

How reliable is such a reconstruction? This depends on
the details of the network connectivity and the realization
of driving. We did a case study for random networks of dif-
ferent numbers N of identical oscillators each receiving
input connections from k;=k<N randomly chosen

Using Jyx = max;, /{|Jd,jfiV°d| IJOHgmall} define

the elementwise relative difference as
ongmall/2 (9)

such that AJ;; € [0, 1]. After M experiments, the quality of
reconstruction is defined as the fraction

others.

A Jij = maxl Jderwed
Qa(M N2 ZH((I - a) AJ;/) S [0 1] (10)

of coupling strengths which are considered correct. Here
a = 1 is the required accuracy of the coupling strengths

.

FIG. 3. Revealing connectivity with M <N experiments.
Network (N = 64, k; = 10, w; = 1) reconstructed by minimiz-
ing the 1-norm, (a) M = 38 and (b) M = 24. The insets are as in
Fig. 2.

and H the Heaviside step function; H(x) = 1 for x = 0 and
H(x) = 0 for x <0. Typically, the quality of reconstruc-
tion increases with M (but depends also on the realizations
of the experiments), becoming close to 1 already for M
substantially smaller than N; see Fig. 4(a). We furthermore
evaluated the minimum number of experiments

M, o = min{M|Q,(M) = q} (11)

q,a
required for accurate reconstruction on quality level gq.
Figure 4(b) shows M 5095, the minimum number of ex-
periments required for having at least ¢ = 98% of the links
accurate in strength on an accuracy level of at least & =
0.95, as a function of N. The numerics suggests that M ,
generally scales sublinearly (presumably logarithmically)
with network size N for reasonable 0 <1 — a < 1 and
0 <1 — g < 1. In particular, it implies that the connec-
tivity of a network can be revealed reliably even if M is
much smaller than the network size N.

In the present study we took advantage of the fact that, in
response to driving (cf. also [21-26]), networks with stable
dynamics respond in a way characteristic of their connec-
tivity (cf. also Fig. 1 and Refs. [25,26]). Thus, information
about the connectivity can be revealed from measuring the
response dynamics. To achieve this, we exploited all avail-
able information of the network dynamics (the N — 1
independent phase differences and the collective fre-
quency) rather than only statistical information such as
one order parameter. Interestingly, in a recent study,
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FIG. 4. Quality of reconstruction and required number of ex-
periments. (a) Quality of reconstruction (a = 0.95) for k = 10
and N =24 (&), N=136 (A), N =066 (o), and N = 96 (O).
(b) Minimum number of experiments required (¢ = 0.98, a =
0.95) versus network size N with best linear and logarithmic fits
(gray and black solid lines). The inset shows same data with N
on logarithmic scale.
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Arenas et al. [20] also used more detailed information of
the dynamics and successfully inferred the hierarchical
structure of a network. The method presented here not
only identifies where links are present and where they are
absent but also gives a good estimate for the strength of
each connection. For networks with a substantial number
of potential links absent, we furthermore showed how to
predict the connectivity in a reliable way even by a number
of experiments that is much smaller than the network size.
The relatively simple yet efficient method presented here
thus qualifies as potentially practically useful also for real
systems of moderate or larger size where the number of
experiments might be desired as small as possible.

The method presented here is based on the standard form
of Eq. (5) and thus is applicable not only to coupled phase
oscillators but also to all other systems that exhibit a line-
arization about some stable state analogous to Eq. (5). An
important question for future research is how to extend this
method further to networks of dynamical elements that are
described by more than one variable, are coupled via
exchanging pulses, or exhibit delayed interactions. Each
of these systems requires a separate and thorough study of
the technical details involved in the reconstruction analy-
sis. The basic ideas underlying the reconstruction method
presented here, however, are likely to transfer to a variety
of systems because the main requirements—(i) stable dy-
namics and, as follows from the above analysis, (ii) first
order additivity of the couplings—are features ubiquitous
in natural and artificial systems. For spiking neural net-
works, for instance, in which units are pulse-coupled and
delays can be significant, preliminary studies show that,
once the delay times (that render the system formally
infinite dimensional) can be estimated independently, a
reconstruction is possible along the lines presented here.

The multidisciplinary research community studying net-
works has recently seen significant progress towards un-
derstanding the implications of structural features for net-
work dynamics and function, in particular, in biological
networks. Interesting examples [4—11] include: (i) Net-
work motifs, small subnetworks that occur significantly
more often than in randomized networks, have been iden-
tified in a variety of complex systems and might be de-
signed for functionality; (ii) a small part of a genetic
pathway was successfully identified based on expression
profiling; (iii) neural wiring in the brain appears to follow
optimization rules. Together with such findings, our active
method—exploiting dynamical response properties of net-
works—suggests a promising future direction of research:
Developing new and refining existing inverse methods
should, on the one hand, help to better understand
structure-dynamics relations from measuring (possibly
complicated) dynamics; on the other hand, they could
also help to clarify structural questions in the first place,
e.g., by identifying functionally meaningful parts of a
network.
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