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We demonstrate experimentally the existence of a continuous phase transition between a normal and a
true superconducting phase (with zero linear resistivity) in epitaxial films of Y-Ba-Cu-O in strong mag-
netic fields, H> H.;. The nonlinear I-V curves show scaling behavior near the transition and the
relevant critical exponents are extracted. These exponents are consistent with values expected for freez-

ing into a superconducting vortex-glass phase.

PACS numbers: 74.60.Ge, 74.70.Vy

Since the discovery of high-temperature superconduc-
tivity in 1986, the nature of the mixed state in strong
magnetic fields H > H.; and low temperatures has been
an unresolved question. Much of the recent I-V'! and
magnetic-susceptibility? data have been interpreted in
terms of the Anderson-Kim flux-creep model,? or exten-
sions thereof** which include effects of pinning but ig-
nore important collective effects of the vortex lines.® In
these models, the linear resistance Ry =lim;_.oV/I is
predicted to drop rapidly (exponentially) upon cooling
but always remain nonzero (except possibly at T=0): A
true superconducting mixed-state phase, with R; =0, is
not present. On the other hand,” data from torsional-
oscillator experiments have been constructed as evidence
for the freezing of a vortex-fluid (i.e., normal) phase into
an ordered Abrikosov-flux lattice. Without bulk pinning,
though, the Abrikosov lattice will have a nonzero resis-
tivity due to flux flow. In the presence of pinning, how-
ever, Larkin and Ovchinnikov® have shown that the
long-range crystalline order of the Abrikosov lattice is
destroyed, precluding freezing into a truly ordered solid
phase.

Recently, by taking into account both pinning and col-
lective effects of the vortex lines, one of us (M.P.A.F.)
has argued that at low 7 in a bulk system the vortex
lines should freeze into a new “vortex-glass” phase.®™!!
In sharp contrast to the flux-creep model, the vortex-
glass phase is predicted to be a true superconductor with
R;=0. An equilibrium phase boundary at a well defined
temperature in the H-T plane is expected, separating the
normal phase at high 7 from the superconducting glass
phase.

The purpose of this Letter is to demonstrate experi-
mentally that in Y-Ba-Cu-O samples in a strong mag-
netic field there in fact does exist strong evidence of a
transition at a well defined temperature from a resistive
state into a superconducting state (R, =0) upon cooling.
Analysis of nonlinear I-V curves enables us, in addition,
to extract scaling behavior and related critical exponents
near the transition. Although these measurements do
not probe details of the low-temperature phase (beyond

the fact that R; =0), the exponents are consistent with
values expected theoretically for freezing into the vor-
tex-glass phase.

A continuous (or second-order) superconductor-to-
normal phase transition leaves a distinctive signature in
the nonlinear I-V characteristics. A general formulation
of the scaling at and near such a transition has recently
been carried out.!? The basic idea is that physical quan-
tities near the transition can be expressed as the ap-
propriate powers of a diverging coherence length & and
coherence time &°. The coherence length diverges with
an exponent v, £~ | T — T, | v, at the transition and z is
the dynamical exponent. Assuming isotropic scaling
(which is expected for the vortex-glass transition)*!!!3,
the dc I-V characteristics for a d-dimensional sample
should then scale as (¢po=h/2e)

EW) =JE4™272E L (JE4 Y9o/kpT) , )

where J is the current density and E is the electric field.
Note that in the scaling functions E + (x), J is scaled by
a characteristic current density

Jo=kgT/¢o&? ™!, 2

which vanishes as T— T,. For T <T,, Jo =Jo is
essentially the “critical-current” density of the supercon-
ducting phase. The scaling function in the normal phase,
E(x), goes to a constant as x=J/Jo— 0, implying
a linear resistivity which vanishes as

pL~(T_Tg)V(z+2_d) .

This is a generalization of the Aslamazov-Larkin mean-
field result for the H =0 superconductor-normal transi-
tion, 4

PL~(T— Tc)(4_d)/2 ,

wherein z =2 and v=1.

E?uation (1) dictates that for x— oo, E +(x)
~x &+2=d/@ =1 yhich gives a power-law I-V curve for
T=T,,

E(;T=T,)=~Je*tV/@-1, 3)
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The result for the Kosterlitz-Thouless transition, ap-
propriate to thin-film superconductors'® with H =0,
E~J3, is a special case of Eq. (3) with z=d =2. The
scaling function in the superconducting phase, E — (x),
vanishes (exponentially in 1/x, in 3D) as x— 0 (so that
pr=0). Thus, in sum, we expect the I-V curve for T
near T, to be a power law as in (3) for large enough
currents, crossing over to Ohmic behavior at low currents
for T > Tg, and crossing over to exponentially vanishing
dissipation for T < Tg. For T < Ty, this implies a nega-
tive curvature on a log/-logV plot, in sharp contrast to
the flux-creep prediction, ¥ ~sinh(I/I,), which always
has positive curvature.

The above scaling forms are general and can be used
to analyze the data presented below, regardless of the de-
tails of the superconducting phase. If, as we believe, the
low-T phase is a 3D vortex-glass phase, then’

V _(x)~exp(—1/x*) “)

for x— 0 (with a glass exponent 0<u=<1) and
(rough) constraints can be put on the critical exponents
v and z. Specifically, as in magnetic spin glasses, mean-
field theory, which is valid for d =6, gives v=7% and
z=4. For d=3 we expect z >4, as in the Ising spin
glass, and a first order in e=6—d expansion gives'’
v=1/2+5¢/24, which suggests v~1-2 in 3D.

There are (at least) two important length scales in this
problem: (i) the average distance / between the vortex
lines /==(go/nH)'? and (i) the correlation length &
which can be estimated from Jg using (2). The critical
regime for the vortex-glass to normal transition requires,
at the very least, £/, and is thus more accessible in
large fields. In the experiments described below, which
are on films with thickness ¢ =0.4 um, the 3D critical re-
gime requires, moreover, £ St (which is satisfied in the
regime measured below). Since the vortex-glass phase
is, strictly speaking, not expected to exist in 2D,”!2 the
crossover to 2D behavior for £ 2 ¢ is probably quite com-
plicated.

We have made measurements on epitaxial thin films of
YBa;Cu30, deposited using laser ablation 16 onto SrTiO;
(001) substrates. The resistivity of the samples at 100 K
and zero field was typically 1x10 "% @m. Ion milling
was used to define true four-terminal contact patterns
with center stripes that were nominally 0.4X8%40 ym?
in size. The small sample size was chosen to minimize
error from any possible spatial inhomogeneities in the
film. The films were predominantly ¢ axis up and had
critical-current densities of more than 10'° A/m? at 77
K in zero applied field. The magnetic field was applied
in the direction of the ¢ axis using a superconducting
magnet.

Identification of a phase transition depends critically
on the shape of the I-V curve at constant temperature, as
discussed above. Joule heating increases the local tem-
perature of the sample and its immediate surroundings
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compared to the sample-mounting block (which was
temperature regulated). The primary source of Joule
heating was from the —1-Q current contacts to the sam-
ple. This effect, if uncorrected, can substantially change
the shape of the I-V curve since we are measuring a very
temperature-dependent part of the curve. To circumvent
this potential error at larger currents, we recorded the
I-V curves using a bidirectional current sweep at 11 Hz.
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FIG. 1. I-V curves at constant T for H= (a) 0.5 T and (b)
4 T. The curves differ by temperature intervals of 0.1 and 0.3
K, respectively. At each temperature, a high- and a low-
current-sweep I-V curve was measured and spliced together at
40 uV. Any change in the average temperature of the sample
will result in a disconnection between the upper and lower I-V
curves. In the upper right-hand corner of (b), crowding of the
I-V curves from Joule heating can be seen. The high-current
I-V curve taken at a temperature regulator setting of 67.3 K
matches the low-current I-V curve taken at a setting of 66.7 K.

The shape of each isotherm, however, is unaffected.
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TABLE I. Measured exponents at three field values.

Applied z measured viz+2—d) v(z+2—d)
field from I-V v measured from measured
H (T) curve from J¢" (T) measured z,v from p.(T)
2 4.9 1.7 6.6 6.2
3 5.0 1.6 6.4 6.5
4 4.7 1.8 6.4 6.5

Since the wave-form repeat time was much shorter than
the measured thermal time constant of more than 10 sec,
heating only changed the average temperature of the
sample, but not the shape of the I-V curve. The temper-
ature rise was measured to be less than 0.1 K for bias-
current sweeps of I,, =4 mA, but 0.6 K for I, =20 mA.
Most of the data were taken with Ip, <4 mA. Atlow T
varying the frequency of measurement from 100 to 0.1
Hz had an essentially unobservable effect on the I-V
curves. Below 0.03 Hz, the shape of the curve was dis-
torted by heating.

Figure 1 plots a series of I-V curves at constant tem-
perature for H=0.5 and 4 T. Not shown are similar
data for H=1, 2, and 3 T. The field was applied with
the sample in the normal state and the data were taken
as the temperature was reduced. For each field, at a sin-
gle well defined temperature T (dashed line in Fig. 1),
the I-V curves show a power-law behavior at all but the
highest currents measured. For higher T, the I-¥ curves
have positive curvature, and at low I, a crossover to an
Ohmic regime with R; 0. For lower T, the I-V curves
show negative curvature with a voltage which plummets
rapidly upon reducing I, extrapolating to R;=0. In
sum, the experimental data have precisely the form ex-
pected for a vortex-glass transition, provided we identify
the temperature at which the power-law behavior occurs
(dashed line) as the transition temperature Tz(H). In
the following, we define this temperature as T5.

We emphasize that the I-V curves for T < T, are in-
consistent with the flux-creep model, ¥ ~sinh(Z/Iy),
which predicts a positive curvature on a logI-logV plot.'’

The dynamical critical exponent can be extracted
directly from the I-V data. At T,, we find dlogE/
dlogJ =2.9+0.2, which upon using (3) gives z =4.8
+0.2 in good agreement with our expectations for a
vortex-glass transition in 3D. The values of H, Ty, and
z, and other measured parameters are tabulated in Table
I. The phase boundary in the H-T plane, separating the
normal and superconducting phases, is shown in Fig. 2.
We note that T, is not appreciably different from the su-
perconducting “transition” temperature measured in the
usual way, i.e., when V is less than some experimentally
observable value.

The crossover current density, Jo, can also be extract-
ed directly from the experimental I-V curves. Above Ty,
for J <Jg, the I-V curve is characterized by a linear
resistance Ry (T). At larger current densities, the curve
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FIG. 2. The equilibrium phase boundary between the nor-
mal and superconducting phase in the H-T plane. The dashed
line represents the expected Meissner phase.

is seen to be asymptotic to a power law parallel to the I-
V curve at T,. We can quantify this crossover by
defining J¢ as the current at which dlogE/dlogJ =10/9
(other choices for this constant between 1 and 3 would
only change the magnitude of Jg', i.e., not the scaling
behavior). Figure 3 plots J¢ (T) vs (T —T,)/T,. Here
T, is not a fitting parameter, but the value measured in-
dependently above. For H>1 T, we find reasonable
power-law behavior. Using (2), in this regime, gives an
exponent v=1.7. An unknown systematic error in our
measurement of T, of 0.2 K would change this estimate
of v by 25%.

For T =< Ty the I-V curve is seen to crossover from the
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FIG. 3. J§& (T) vs (T —T,)/T, for five values of H.
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FIG. 4. p,(T) vs (T — T)/T, for six values of H.

critical power law at currents larger than Jo , to an ex-
ponential behavior at lower J, consistent again with ex-
pectations from the scaling theory. We define Jo as
that value of J where dlogE/dlogJ =5. Extracting v
from Jo ~(T,—T7)? we find a high-field value of
roughly 1.5-2.0 in agreement with that obtained from
the temperature scaling of J¢'.

For H=1 and 0.5 T, the curves in Fig. 3 show sig-
nificant curvature, perhaps due to errors in estimating
T,. Alternatively, this may be because the true critical
regime has not been reached yet. At low fields one ex-
pects a narrow critical regime due to the large vortex-
line separation /. Indeed, roughly estimating & from (2)
using a midrange value of the measured Jo' (T) gives &
in the range from 40 to 160 nm. To be in the critical re-
gime requires & > /, which is well satisfied for high fields,
H=4 T, where /=20 nm, but not at low fields, H =0.5
T, where /==60 nm. Exponents obtained at large H are
thus more reliable.

A consistency check of the scaling behavior near the
phase transition is to analyze the temperature depen-
dence of the linear resistivity p; for T > T,, deduced
from the I-V curves. Figure 4 plots p,(T) vs (T —T,)/
T, and the exponents are listed in Table I. Scaling im-
plies p, ~ (T —T,)***2~%. Using the high-field value
of v=1.7, we find a value of z==4.8, in excellent agree-
ment with the estimate of z obtained independently from
the I-V curve at T,.

Below T, the vortex-glass model predicts an I-V curve
of the form of Eq. (4). The curves in Fig. 1 show nega-
tive curvature for T < T, as predicted by this equation,
but it is difficult to extract a numerical estimate of the
exponent u from our data. Fitting the shape of the I-V
curve by (4) allows us to estimate that u = 0.4 +0.2.

In summary, our data demonstrate the existence of a
second-order phase transition between a normal and a
true superconducting (R;,=0) state at a well defined
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temperature T in epitaxial films of Y-Ba-Cu-O in large
fields. We expect a similar transition in single crystals
and other high-temperature superconductors. The mea-
sured exponents of the transition are consistent with
those expected for a transition into a vortex-glass super-
conductor.
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