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We present a unified scheme that, by combining molecular dynamics and density-functional
theory, profoundly extends the range of both concepts. Our approach extends molecular dynamics
beyond the usual pair-potential approximation, thereby making possible the simulation of both co-
valently bonded and metallic systems. In addition it permits the application of density-functional
theory to much larger systems than previously feasible. The new technique is demonstrated by the
calculation of some static and dynamic properties of crystalline silicon within a self-consistent pseu-
dopotential framework.

PACS numbers: 71.10.+x, 65.50.+m, 71.45.Gm

Electronic structure calculations based on density-
functional (DF) theory' and finite-temperature com-
puter simulations based on molecular dynamics (MD)
have greatly contributed to our understanding of
condensed-matter systems. MD calculations are able
to predict equilibrium and nonequilibrium properties
of condensed systems. However, in all practical appli-
cations MD calculations have used empirical intera-
tomic potentials. This approach, while appropriate for
systems like the rare gases, may fail for covalent
andi or metallic systems. Furthermore, these calcula-
tions convey no information about electronic proper-
ties. On the other hand, DF calculations have provid-
ed an accurate, albeit approximate, description of the
chemical bond in a large variety of systems, ' but are
computationally very demanding. This has so far pre-
cluded the application of DF schemes to the study of

very large and/or disordered systems and to the com-
putation of interatomic forces for MD simulations.

We wish to present here a new method that is able
to overcome the above difficulties and to achieve the
following results: (i) compute ground-state electronic
properties of large andlor disordered systems at the
level of state-of-the-art electronic structure calcula-
tions; (ii) perform ah initio MD simulations where the
only assumptions are the validity of classical mechan-
ics to describe ionic motion and the Born-
Oppenheimer (BO) approximation to separate nuclear
and electronic coordinates.

Following Kohn and Sham3 (KS) we write the elec-
tron density in terms of occupied single-particle ortho-
normal orbitals: n(r) = X,. ~tlt;(r) ~2. A point of the
BO potential energy surface is given by the minimum
with respect to the Q;(r) of the energy functional,

I

problem. Since the whole pro-
ed for any new atomic confi-
prediction of the equilibrium
are not known from experi-

nsolved problem in most cases.
erent approach and regard the
functional as a complex optim-
an be solved by applying the

nealing, recently introduced by
Ktrkpatrtck, Gelatt, and Vecchi. 4 In this approach an
objective function O({p)) is minimized relative to the
parameters (p), by generation of a succession of
(p) s with a Boltzman-type probability distribution
~ exp( —O((P) )/T) via a Monte Carlo procedure.
For T 0 the state of lowest O((p) ) is reached un-

ri'+, , y, (r) = e;y;(r).
2m 6n(r) (2)

The solution of Eq. (2) involves repeated matrix diag-
onalizations with a computational effort rapidly grow-
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E[(p,},(Rt), (ct„}]= X,. d3r tlt (r) [ —(h2/2m)Vz]tlt;(r) + U[n(r), {Rt), (o,„}].
Here (Ri) indicate the nuclear coordinates and (n„} are
all the possible external constraints imposed on the
system, like the volume fl, the strain e„„, etc. The ing with the size of the

cedure has to be repeatfunctional U contains the internuclear Coulomb repul-
guration, the theoreticalsion and the effective electronic potential energy, in-
geometries, when these

eluding external nuclear, Hartree, and exchange and
ment, still remains an ucorrelation contributions.

In the conventional formulation, minimization of We adopt a quite diff

the energy functional [Eq. (1)] with respect to the or- minimization of the KS

bitals p;, subject to the orthonormality constraint, ization problem which c

leads to the self-consistent KS equations, i.e.,
concept of simulated an
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less the system is trapped into some metastable state. Vecchi, can be applied efficiently to minimize the KS
In our case the objective function is the total-energy functional. This approach, which may be called

functional and the variational parameters are the coef- "dynamical simulated annealing, "not only is useful as
ficients of the expansion of the KS orbitals in some a minimization procedure but, as we demonstrate
convenient basis and possibly the ionic positions here, it allows also the study of finite temperature
and/or the (n„}'s. We found that a simulated anneal- properties.
ing strategy based on MD, rather than on the Metrop- In our method we consider the parameters (p, )
olis Monte Carlo method of Kirkpatrick, Gelatt, and (Rt), (n„) in the energy-functional [Eq. (1)] to be

dependent on time and introduce the Lagrangean

L = X,. 2 p,„d r I+; I + Xt & MtRt + X„2p,„n„—E [(+;), (Rt), (n„}], (3)

pP;(r, t) = —oE/o$, '(r, t) + XkA,„P„(r,t),
~ ~

IRI = —PRIE,

p„n„= —, (8E/Bn„),

(5a)

(Sb)

(5c)

where A;k are Lagrange multipliers introduced in order
to satisfy the constraints in Eq. (4). The ion dynamics
in Eqs. (5) may have a real physical meaning, whereas
the dynamics associated with the (p;)'s and the {n„}'s
is fictitious and has to be considered only as a tool to
perform the dynamical simulated annealing. Equation
(3) defines a potential energy E and a classical kinetic
energy L given by

K= X,. —,
'

p,JI d r IP;I'+ Xt ,'MtRt + X„——,
'

p,„n„.

The equilibrium value (K) of the classical kinetic en-
ergy can be calculated as the temporal average over the
trajectories generated by the equations of motion [Eqs.
(5)] and related to the temperature of the system by
suitable normalization. By variation of the velocities,
i.e., the {P;}'s, {Rt}'s, and (n„)'s, the temperature of
the system can be slowly reduced and for T 0 the
equilibrium state of minimal E is reached. At equilib-
rium Q;=0, Eq. (Sa) is identical within a unitary
transformation to the KS equation [Eq. (2)], and the
eigenvalues of the A matrix coincide with the occupied
KS eigenvalues. Only when these conditions are satis-
fied does the Lagrangean in Eq. (3) describe a real
physical system whose representative point in config-
urational space lies on the BO surface. For large sys-
tems our scheme is more efficient than standard diago-
nalization techniques. 5 Furthermore, in the present
approach, diagonalization, self-consistency, ionic re-

where the Q, are subject to the holonomic constraints

J{ d'r y, (r, t)yj(r, t) =5,, (4

In Eq. (3) the dot indicates time derivative, Mt are the
physical ionic masses, and p, and p,, are arbitrary
parameters of appropriate units.

The Lagrangean in Eq. (3) generates a dynamics for
the parameters (p;) 's, (Rt) 's, and {n„)'s through the
equations of motion:

laxation, and volume and strain relaxation are
achieved simultaneously Th.e amount of classical
kinetic energy is a measure of the departure of a sys-
tem from the self-consistent minimum of its total en-
ergy.

It should be stressed that the dynamical simulated
annealing technique introduced above is a method of
quite general applicability in the context of functional
minimization. As such it can be useful in many areas
of physics. For instance, it can be applied to the study
of classical field theories or to obtain the ground-state
energy in Hartree-Fock or configuration interaction
schemes. We also observe that, as far as functional
minimization is concerned, Newtonian dynamics may
be conveniently replaced by Langevin or other types
of dynamics.

In order to illustrate how our method works in prac-
tice, we present results obtained for the ground-state
electronic structure of Si as follows. We have con-
sidered a simple cubic supercell containing eight atoms
subject to periodic boundary conditions. We have
used a local pseudopotentials and a local-density ap-
proximation to the exact exchange and correlation
functional. The single-particle orbitals for the valence
electrons have been expanded in plane waves with an
energy cutoff of 8 Ry, which amounts to including 437
plane waves at the I point. For simplicity, only the I
point of the Brillouin zone (BZ) of the supercell has
been considered in the evaluation of the energy func-
tional. 'o This leads to a total of 16&& 437 complex elec-
tronic variational parameters, since sixteen is the
number of doubly occupied KS levels. A simulated
annealing run is illustrated in Fig. 1. The lattice
parameter was allowed to vary while the ions were kept
in their perfect diamond arrangement. The total ener-
gy, the lattice parameter, and the eigenvalues of the
matrix of the Lagrangean multipliers are plotted as
functions of the simulation "time. " The initial condi-
tions for the electronic orbitals were fixed by filling
the lowest available plane-wave states and giving a
Maxwellian distribution of velocities to the com-
ponents of the fields. The value of p, was chosen to be
1 a.u. The mass p, & associated with variation in the
volume was taken to be 10 5 a.u. The deerlet algo-
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FIG. 2. From top to bottom, temporal evolution of aver-
age atomic displacement along er, potential energy per
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atom, and I and I ~ multiplets for two different MD runs.
The lattice constant was taken to be equal to the experimen-
tal value of 10.26 a.u. ; At and p, were taken to be 10 and 300
a.u. , respectively. The dashed line in the second panel from
the top indicates the T=O ground-state energy. The trian-
gles indicate a doubly degenerate level.

FIG. 1. Evolution of total energy per atom, lattice con-
stant, and eigenvalues of the A matrix, during a typical
dynamical annealing run. The partial averages of the classi-
cal kinetic energy E during each subsection of the run are
indicated in the lower part of the picture. For E 0 the
eigenvalues of the A matrix tend to the KS eigenvalues.
The various multiplets are labeled according to the sym-
metry of the diamond lattice.

rithm" with a time step of 0.1 a.u. was used and the
values of the Lagrange multipliers were determined by
the method of Ryckaert, Ciccotti, and Berendsen. '
After some initial equilibration the temperature was
progressively reduced to very small values. A satisfac-
tory degree of convergence is seen to be achieved after—200 time steps, when our results agree within nu-
merical errors with those of a conventional self-
consistent calculation for the same model. '3

We can consider now a situation in which the ions,
to which we associate their actual physical masses, are
allowed to move at a given temperature, while the
kinetic energy of the electronic variational parameters
remains equal to zero. In this case the electrons are at
any time in their ground state and the ions move
under the action of BO forces. This can be achieved
either by conveniently reoptimizing the electronic vari-
ational parameters or by realizing a metastable situa-
tion in which the kinetic energy associated with the

s remains always very small compared to the typical
variations of the potential energy of the system. This
is equivalent to giving the BO surface a finite thickness
proportional to the temperature associated with the

s. If this temperature remains very small, the ion

dynamics generated via Eqs. (5) provides a good
representation of the actual dynamics of a physical sys-
tem.

In Fig. 2 we report the results of two different sets
of calculations in which we have performed dynamical
simulations for our model. In these calculations it was
not necessary to reoptimize the electronic variational
parameters at each point along the trajectory, since the
thickness of the BO surface never exceeded the value
of 7X 10 6 a.u. per atom, a rather small fraction of the
potential energy variation. This is perfectly adequate
to represent the interionic forces in this particular case.
If the thickness of the BO surface were too large, not
only would the forces be incorrectly estimated but also
they might depend upon the path along which a given
point of the potential energy surface is approached.
On the other hand, for very small thicknesses the low
velocities of the electronic variational parameters
might lead to intolerably long relaxation times. In
such a case a compromise would be necessary. In Fig.
2(a) the atoms were initially displaced from their per-
fect lattice position according to the eigenmode er
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corresponding to the optical phonon mode at the I
point of the diamond lattice. The system undergoes
slightly anharmonic oscillations whose frequency is 20
THz, in perfect agreement with the results of a static
frozen-phonon calculation for the same model, '3

showing that the thickness of the BO surface was ade-
quate. In Fig. 2 (a) we also report how the effect of
the ionic oscillatory motion is reflected in some elec-
tronic properties. Notice that the threefold degenerate
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topmost I, level splits, in perfect phase with the ion-

ic motion, into a singlet and a doublet, whereas the
low-lying I t state is hardly affected by the ionic
motion. These results are contrasted with those re-
ported in Fig. 2(b). Here the ions were first randomly
displaced from their equilibrium position and a simu-
lated annealing was performed in order to bring the
electrons in the corresponding ground state. The ions
were then allowed to move. After some equilibration
the average kinetic energy associated with ionic motion
had a value corresponding to —250 K and the
behavior of the system was as illustrated in Fig. 2(b).
The projection of the ionic displacement along the er

25

eigenvector and the electronic properties do not show
any apparent correlation. The degeneracy of the 12s,
one-electron eigenstate is completely lifted by thermal
disorder, while the I t state still remains hardly affect-
ed by the ionic motion.

The calculations presented here can all be performed
on a VAX-like minicomputer. Access to supercom-
puters can make possible the simulation of larger sys-
tems and more realistic models. Because of the simpli-
city of Newton's equations the computer code can be
fully vectorized with not much effort. However the
main advantages of the present approach lie in its abili-
ty to perform a global minimization of the energy DF
and, more importantly, in offering a convenient and,
in principle, exact tool for studying finite temperature
effects and dynamical properties.
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