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Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating
a single expectation value are known, requiring a number of state preparations that scales with the target
error ε as Oð1=εÞ. In this Letter, we address the task of estimating the expectation values of M different
observables, each to within additive error ε, with the same 1=ε dependence. We describe an approach that

leverages Gilyén et al.’s quantum gradient estimation algorithm to achieve Oð ffiffiffiffiffi
M

p
=εÞ scaling up to

logarithmic factors, regardless of the commutation properties of the M observables. We prove that this
scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box,
even when the operators are mutually commuting. We highlight the flexibility of our approach by
presenting several generalizations, including a strategy for accelerating the estimation of a collection of
dynamic correlation functions.

DOI: 10.1103/PhysRevLett.129.240501

Introduction.—A fundamental task of quantum simula-
tion is to perform an experiment in silico. Like traditional
experimentalists, researchers using quantum computers
will often be interested in efficiently measuring a collection
of properties. For example, the electronic ground state
problem is frequently cited as a motivation for quantum
simulation of chemistry, but determining the ground state
energy is only a starting point in most chemical applica-
tions. Depending on context, it may be essential to measure
the dipole moment and polarizability, the electron density,
the forces experienced by the classical nuclei, or various
other quantities [1,2]. Similarly, in condensed matter
physics and beyond, correlation functions play a central
role in the theory of quantum many-body phenomena due
to their interpretability and measurability in the lab [3,4].
In this Letter, we consider the problem of accurately and

efficiently estimating multiple properties from a quantum
computation. We focus on evaluating the expectation values
of a collection ofM Hermitian operators fOjg with respect
to a pure state jψi. We aim to evaluate each expectation
value to within additive error ε using as few calls as
possible to a state preparation oracle for jψi (or its inverse).
One simple approach is to repeatedly prepare jψi and
projectively measure mutually commuting subsets of fOjg.

Alternatively, strategies based on amplitude estimation
achieve a quadratic speedup with respect to ε but entail
measuring each observable separately [5–7]. A range of
newer “shadow tomography” techniques use joint measure-
ments of multiple copies of jψi to achieve polylogarithmic
scaling with respect to M at the expense of an unfavorable
1=ε4 scaling [8–11]. In certain situations, randomized
methods based on the idea of “classical shadows” of the
state obtain 1=ε2 scaling while improving upon sampling
protocols with deterministic measurement settings [12,13].
We review these existing approaches in Supplemental
Material, Sec. I and compare them to our new strategy in
Table I and Supplemental Material, Sec. II [14].
Our main contribution is an algorithm that achieves the

same 1=ε scaling as methods based on amplitude estima-
tion, but also improves the scaling with respect to M from
ÕðMÞ to Õð ffiffiffiffiffi

M
p Þ, where the tilde in Õð·Þ hides logarithmic

factors. Our approach is to construct a function f whose
gradient yields the expectation values of interest and
encode f in a parametrized quantum circuit. We can then
apply Gilyén et al.’s quantum algorithm for gradient
estimation [25] to obtain the desired scaling. The following
theorem formalizes our result.
Theorem 1: Let fOjg be a set of M Hermitian

operators on N qubits, with spectral norms kOjk ≤ 1 for
all j. There exists a quantum algorithm that, for anyN-qubit
quantum state jψi prepared by a unitary Uψ, outputs
estimates eoj such that jeoj − hψ jOjjψij ≤ ε for all j with
probability at least 2=3, using Õð ffiffiffiffiffi

M
p

=εÞ queries to Uψ

and U†
ψ , along with Õð ffiffiffiffiffi

M
p

=εÞ gates of the form
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controlled-e−ixOj for each j, for various values of x
with jxj ∈ Oð1= ffiffiffiffiffi

M
p Þ.

As we show in Corollary 3, this query complexity is
worst-case optimal (up to logarithmic factors) in the high-
precision regime where ε ∈ ½0; ð1=3 ffiffiffiffiffi

M
p Þ�. After establish-

ing this lower bound for our problem, we review the
gradient algorithm of Ref. [25] and present the proof of
Theorem 1. We then discuss several extensions of our
approach, including a strategy for estimating multiple
dynamic correlation functions and a method that handles
observables with arbitrary norms (or precision require-
ments) based on a generalization of the gradient algorithm.
Lower bounds.—In Ref. [26], Apeldoorn proved a lower

bound for a task that is essentially a special case of our
quantum expectation value problem. We explain how a
lower bound for our problem can be obtained as a corollary.
Their results are expressed in terms of a particular quantum
access model for classical probability distributions:
Definition 1 (Sample oracle for a probability distribu-

tion). Let p be a probability distribution over M out-
comes, i.e., p ∈ ½0; 1�M with kpk1 ¼ 1. A sample oracle
Up for p is a unitary operator that acts as

Up∶j0ij0i ↦
XM
j¼1

ffiffiffiffiffi
pj

p jji ⊗ jϕji; ð1Þ

where the jϕji are arbitrary normalized quantum states.
We rephrase Lemma 13 of Ref. [26] below. Here and

throughout this Letter, we count queries to a unitary oracle
U and to its inverse U† as equivalent in cost.
Theorem 2: [Lemma 13, [26] (rephrased)] Let M be a

positive integer power of 2 and let ε ∈ ½0; ð1=3 ffiffiffiffiffi
M

p Þ�. There

exists a known matrix A ∈ f−1;þ1gM×M such that the
following is true. Suppose A is an algorithm that, for every
probability distribution p, accessed via a sample oracle Up,
outputs (with probability at least 2=3) a q̃ such that
kAp − q̃k∞ ≤ ε. Then A must use Ωð ffiffiffiffiffi

M
p

=εÞ queries to
Up in the worst case.
We can use this Theorem to derive the following

corollary, establishing the near-optimality of the algorithm
in Theorem 1 in certain regimes.
Corollary 3: Let M be a positive integer power of 2

and let ε ∈ ½0; ð1=3 ffiffiffiffiffi
M

p Þ�. Let A be any algorithm that
takes as an input an arbitrary set of M observables fOjg.
Suppose that, for every quantum state jψi, accessed via a
state preparation oracle Uψ , A outputs estimates of each
hψ jOjjψi to within additive error ε (with probability at least
2=3). Then, there exists a set of observables fOjg such that
A applied to fOjg must use Ωð ffiffiffiffiffi

M
p

=εÞ queries to Uψ .
Proof.—Assume for the sake of contradiction that for

any fOjg and Uψ , the algorithm A uses oð ffiffiffiffiffi
M

p
=εÞ queries

to Uψ to estimate every hψ jOjjψi to within error ε (with
success probability at least 2=3). For any sample oracle Up

of the form in Eq. (1), consider the state

jψðUpÞi ≔
XM
j¼1

ffiffiffiffiffi
pj

p �
⊗
M

i¼1

���� 1 − Aij

2

��
⊗ jji ⊗ jϕji: ð2Þ

A quick computation verifies that the ith entry of the vector
Ap is equal to hψðUpÞjZijψðUpÞi, where Zi denotes the
Pauli Z operator acting on the ith qubit. Since the matrix A
is known, it is clear that jψðUpÞi ¼ UAðI ⊗ UpÞj0i for a
known unitary UA:

UA ¼
X
j

�
⊗
M

i¼1
X
δAij;−1
i

�
⊗ jjihjj ⊗ I: ð3Þ

Therefore, we can apply algorithmA with Oj ¼ Zj for j ∈
f1;…;Mg and Uψ ¼UAðI⊗UpÞ. By our assumption, this
constitutes an algorithm that for every Up, estimates each
entry of Ap to within error ε using oð ffiffiffiffiffi

M
p

=εÞ queries toUp,
contradicting Theorem 2, and completing the proof. ▪
Background on Gilyén et al.’s gradient algorithm.—Our

framework for simultaneously estimating multiple expect-
ation values uses the improved quantum algorithm for
gradient estimation of Gilyén, Arunachalam, and Wiebe
(henceforth, Gilyén et al.) [25]. Gilyén et al. built on earlier
work by Jordan [27], which demonstrated an exponential
quantum speedup for computing the gradient in a particular
black-box access model. Specifically, Jordan’s algorithm
uses one query to a binary oracle (see Supplemental
Material, Sec. III [14]) for a function f, along with phase
kickback and the quantum Fourier transform, to obtain an
approximation of the gradient ∇f.
While we defer a technical discussion of Gilyén et al.’s

algorithm to Supplemental Material, Sec. III [14] (and we

TABLE I. A comparison of the (worst-case) complexities, in
terms of state preparation oracle queries, of different approaches
for measuring multiple observables. We consider three applica-
tions: estimating the expectation values of M commuting or non-
commuting observables, and determining the fermionic k-RDM
of an N-mode system. Here, ε denotes the additive error to which
each quantity is estimated. We compare strategies based on naive
sampling, amplitude estimation, and shadow tomography to our
gradient-based approach. We cite the specific works used to
determine these complexities, including the Pauli-specific
shadow protocol of Ref. [11]. Note that methods based on
sampling and shadow tomography also work under a weaker
input model where only copies of the state are provided.

Commuting Non-commuting k-RDM

Sampling OðlogM=ε2Þ ÕðM=ε2Þ ÕðNk=ε2Þ [13]
Amplitude
Estimation [6]

ÕðM=εÞ ÕðM=εÞ ÕðN2k=εÞ

Shadow
Tom. [11]

OðlogM=ε4Þ OðlogM=ε4Þ Oðk logN=ε4Þ

Gradient Õð ffiffiffiffiffi
M

p
=εÞ Õð ffiffiffiffiffi

M
p

=εÞ ÕðNk=εÞ
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refer the reader also to Ref. [25]), we give a brief, colloquial
description of their algorithm here. It is helpful to review
their definition for a probability oracle.
Definition 2 (Probability oracle). Consider a func-

tion f∶RM → ½0; 1�. A probability oracle Uf for f is a
unitary operator that acts as

Uf∶jxij0i ↦ jxið
ffiffiffiffiffiffiffiffiffi
fðxÞ

p
j1ijϕ1ðxÞi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðxÞ

p
j0ijϕ0ðxÞiÞ; ð4Þ

where jxi denotes a discretization of the variable x encoded
into a register of qubits, j0i denotes the all-zeros state of a
register of ancilla qubits, and jϕ0ðxÞi and jϕ1ðxÞi are
arbitrary quantum states.
Gilyén et al. show how such a probability oracle can

be used to encode a finite-difference approximation to a
directional derivative of f in the phase of an ancilla register,
e.g., a first-order approximation is implemented by

Af0
1
∶jxij0i ↦ eiðfðxÞ−fð−xÞÞjxij0i: ð5Þ

As in Jordan’s original algorithm, a quantum Fourier
transform can then be used to extract an approximate
gradient from the phases accumulated on an appropriate
superposition of basis states. By using higher-order finite-
difference formulas, Gilyén et al. are able to estimate the
gradient with a scaling that is optimal (up to logarithmic
factors) for a particular family of smooth functions. We
restate the formal properties of their algorithm in the
theorem below.
Theorem 4: [Theorem 25, Ref. [25] (rephrased)] Let ε,

c ∈ Rþ be fixed constants, with ε ≤ c. Let M ∈ Zþ and
x ∈ RM. Suppose that f∶RM → R is an analytic function
such that for every k ∈ Zþ, the following bound holds
for all kth order partial derivatives of f at x (denoted
by ∂αfðxÞ): j∂αfðxÞj ≤ ckkðk=2Þ. Then, there is a quantum
algorithm that outputs an estimate g̃ ∈ RM such that
k∇fðxÞ − g̃k∞ ≤ ε, with probability at least 1 − δ. This
algorithm makes Õðc ffiffiffiffiffi

M
p

logðM=δÞ=εÞ queries to a prob-
ability oracle for f.
Expectation values via the gradient algorithm.—To

construct our algorithm and prove Theorem 1, we build
a probability oracle for a function whose gradient encodes
the expectation values of interest and apply the quantum
algorithm for the gradient.
Proof of Theorem 1.—We begin by defining the para-

metrized unitary

UðxÞ ≔
YM
j¼1

e−2ixjOj ð6Þ

for x ∈ RM. The derivative of this unitary with respect
to xl is

∂U
∂xl

¼ −2i
�Yl

j¼1

e−2ixjOj

�
Ol

� YM
k¼lþ1

e−2ixkOk

�
: ð7Þ

We are interested in the expectation of the Oj with respect
to the state jψi, so we define the following function f:

fðxÞ ≔ −
1

2
Im½hψ jUðxÞjψi� þ 1

2
: ð8Þ

Using Eq. (7), we have

∂f
∂xl

����
x¼0

¼ hψ jOljψi: ð9Þ

Therefore, the gradient ∇fð0Þ is precisely the collection
of expectation values of interest.
Now, we verify that f satisfies the conditions of

Theorem 4. Observe that f is analytic and that the
kth order partial derivative of f with respect to any
collection of indices α ∈ f1;…;Mgk takes the form

∂αfðxÞ ¼ ð−2Þk−1Imðikhψ jVðx;αÞjψiÞ; ð10Þ

for some operator Vðx; αÞ which depends on both α and x.
Note that V is a product of terms which are either unitary, or
from fOjg. Since kOjk ≤ 1 for all j, we have kVk ≤ 1, and
therefore j∂αfð0Þj ≤ 2k−1 for all k and α. By setting c ¼ 2,
we satisfy the derivative conditions of Theorem 4.
To construct a probability oracle for f (see Definition 2),

we need a quantum circuit that encodes fðxÞ into the
amplitudes of an ancilla. We construct such a circuit using
the Hadamard test for the imaginary component of
hψ jUðxÞjψi [28,29]. Let

FðxÞ ≔ ðH ⊗ IÞðC-UðxÞÞðS†H ⊗ UψÞ; ð11Þ

where H denotes the Hadamard gate, C-UðxÞ the UðxÞ gate
controlled on the first qubit, and S ≔ j0ih0j þ ij1ih1j the
phase gate. Applied to j0i ⊗ j0i, this circuit encodes fðxÞ
in the amplitudes with respect to the computational basis
states of the first qubit:

FðxÞj0i ⊗ j0i ¼
ffiffiffiffiffiffiffiffiffi
fðxÞ

p
j1i ⊗ jϕ1ðxÞi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðxÞ

p
j0i ⊗ jϕ0ðxÞi; ð12Þ

for some normalized states jϕ0ðxÞi and jϕ1ðxÞi (see
Supplemental Material, Sec. IV [14] for more details).
Note that FðxÞ uses a single call to the oracle Uψ .
All that remains is to add quantum controls to the

rotations in FðxÞ, so that FðxÞ is controlled on a register
encoding x. Specifically, we consider the unitary

Uf ≔
X
k∈GM

n

jkihkj ⊗ FðkxmaxÞ; ð13Þ
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where GM
n is a set of 2nM points distributed in an

M-dimensional unit hypercube, with n ¼ Oðlogð1=εÞÞ,
and xmax is a rescaling factor. The values of xmax and n
are chosen to satisfy the requirements of the gradient
algorithm (see Supplemental Material, Sec. IV [14]).
Here, jki ¼ jk1i…jkMi for k ∈ GM

n denotes the basis state
storing the binary representation of k in M n-qubit index
registers. The controlled time evolution operator for each
Oj can be implemented efficiently as a product of n
controlled-e−ixOj gates with exponentially spaced values
of x, each controlled on the appropriate qubit of the jth
index register. We illustrate an example of such a Uf

in Fig. 1.
Uf is a probability oracle for the function f, and each call

to Uf involves a single call to the state preparation oracle
Uψ . Theorem 4 then implies that with probability at least
2=3, every component of the gradient of f, and hence all
of the expectation values hψ jOjjψi, can be estimated to
within an error ε using Õð ffiffiffiffiffi

M
p

=εÞ queries to Uf. The
complexity in terms of the controlled time evolutions
follows from multiplying the number of controlled time
evolutions required for each query toUf, i.e.,OðlogðM=εÞÞ
per observable, by the total number of queries, i.e.,
Õð ffiffiffiffiffi

M
p

=εÞ. As discussed in Supplemental Material,
Sec. IV [14], we have xmax ∈ Oð1= ffiffiffiffiffi

M
p Þ as a consequence

of the details of the proof of Theorem 4 in Ref. [25]. This
completes the proof of Theorem 1. ▪
Furthermore (see Supplemental Material, Sec. IV [14]),

the space complexity of the gradient algorithm is the
same as that of the probability oracle up to an additive
logarithmic factor [30]. Therefore, our algorithm uses
OðM logð1=εÞ þ NÞ qubits.

Discussion.—In this Letter, we considered the problem
of simultaneously estimating the expectation values of
multiple observables with respect to a pure state jψi. We
presented an algorithm that uses Õð ffiffiffiffiffi

M
p

ε−1Þ applications
of Uψ and its inverse, where M denotes the number of
observables and ε the target error, and Uψ is a unitary that
prepares jψi. We explained how a lower bound on a closely
related problem posed in Ref. [26] implies that, for
algorithms given black-box access to Uψ , this query
complexity is worst-case optimal up to logarithmic factors
when ε ∈ ½0; ð1=3 ffiffiffiffiffi

M
p Þ�. In fact, our algorithm affirma-

tively resolves an open question from Ref. [26] regarding
the achievability of this bound for the simultaneous
estimation of classical random variables [31]. These results
imply that the optimal cost for expectation value estimation
can become exponentially worse with respect to M when
one demands a scaling that goes as ε−1 instead of ε−2.
Furthermore, the instances used in establishing our lower
bounds involve a set of mutually commuting observables,
implying that commutativity is not necessarily helpful
when one demands ε−1 scaling.
We presented a comparison with other approaches for

the estimation of expectation values in Table I, which we
elaborate on in Supplemental Material, Secs. I,II [14]. For
example, we find that our algorithm is capable of estimat-
ing each element of the k-body fermionic reduced density
matrix (k-RDM) of an N-mode system to within error ε
using ÕðNk=εÞ state preparation queries. This offers an
unconditional asymptotic speedup compared to existing
methods when ε ¼ oðN−k=3Þ. This may be particularly
useful in practical applications where we wish to achieve
a fixed error in extensive quantities by measuring the 1 or
2-RDM and summing ΩðNÞ elements.
Our gradient-based approach to estimating expectation

values can be extended to other properties. For example,
consider the task of evaluating a collection of two-point
dynamic correlation functions. These functions take the
form

CA;BðtÞ ≔ hψ jUð0; tÞA†Uðt; 0ÞBjψi; ð14Þ

where A and B are some simple operators and Uðt; t0Þ is the
time evolution operator that maps the system from time t0 to
time t. These correlation functions are often directly acces-
sible in experiment, as in the case of angle-resolved
photoemission spectroscopy [3], and are also central to
hybrid quantum-classical methods based on dynamical
mean-field theory [32–34]. In Supplemental Material,
Sec. V [14], we explain how a generalization of our approach
can reduce the number of state preparations required for
estimating a collection of these correlation functions.
Although we focused on quantifying the number of

state preparation oracle queries, we also considered two
other complexity measures. Our approach requires time

FIG. 1. Schematic depiction of the quantum circuit for Uf, the
probability oracle for the function fðxÞ defined in Eq. (13). The
top registers encode the (n ¼ 3 bit in this case) binary repre-
sentations of x1; x2;…; xM. The ancilla qubit whose amplitudes
encodes fðxÞ [cf. Eq. (11)] is indicated below the x registers. The
final line represents the N-qubit system register. The gates that act
on the system register with colored circles represent the doubly
controlled time evolution by the various observables. Estimating
the expectation values of the M observables fOjg requires

executing this circuit and its inverse Õð ffiffiffiffiffi
M

p
=εÞ times.
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evolution by each of the M observables. The total duration
of time evolution required scales as ÕðM=εÞ. We also need
an additional ÕðM logð1=εÞÞ qubits, although we can
modify our approach to trade off between space and query
complexities (see Supplemental Material, Sec. VI [14]).
When we are interested in simultaneously estimatingOðNÞ
expectation values, the asymptotic scaling of the space
complexity is only logarithmically larger than that of
storing the system itself. This is the case in a variety of
contexts, for example, in the evaluation of the momentum
distribution [35]. In other situations, the space overhead
may be more substantial, though the capability of modern
simulation algorithms to use so-called “dirty ancilla”
(temporarily borrowing qubits in an arbitrary state) may
offset this challenge in some contexts [36–38]. As a
concrete example, we consider the double-factorized sim-
ulation of the electronic structure Hamiltonian proposed in
Ref. [37]. Von Burg et al. find that the time complexity of
their simulation algorithm can be minimized by using
ÕðN3=2Þ qubits for data lookup. These same qubits could
be used by our algorithm for expectation value estimation
to parallelize the measurement of ÕðN3=2Þ observables,
offering a ÕðN3=4Þ asymptotic speedup without any addi-
tional qubit overhead.
Another potential reason for modifying our approach

arises when the observables of interest have different
norms, or when the desired precision varies. In
Supplemental Material, Sec. VII [14], we consider address-
ing this situation by measuring certain observables using
our strategy and measuring others using a sampling-based
method. In Supplemental Material, Sec. VIII [14], we
take a different approach, and generalize Gilyén et al.’s
gradient estimation algorithm to accommodate functions
whose gradient components are not necessarily uniformly
bounded. This allows us to simultaneously estimate
the expectation values of observables fOjg with
arbitrary norms kOjk (possibly greater than 1) using

Õð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j kOjk2
q

=εÞ queries. By rescaling the individual

observables we can then also vary how precisely we
estimate each expectation value, thereby extending
Theorem 1 to the most general setting.
Our focus has been on the asymptotic scaling of our

approach, but it will also be desirable to understand the
actual costs. Performing a fault-tolerant resource estimate
and a comparison against other measurement strategies in
the context of a practical application would be a useful line
of future work. It is possible that our approach could be
modified to obtain a further speedup by taking advantage of
the structure of the states and/or observables for particular
problems of interest. Another potentially fruitful direction
would be to explore extensions of the gradient algorithm to
yield quantum algorithms for the Hessian or even higher-
order derivatives.

Extracting useful information from a quantum compu-
tation, especially a quantum simulation, is a bottleneck for
many applications. This is especially true in fields such as
quantum chemistry and materials science, where it may be
necessary to couple high-level quantum calculations with
coarser approximations at other length scales in order to
describe macroscopic physical phenomena. We expect that
our gradient-based approach to the estimation of expect-
ation values will be a useful tool and a starting point for
related approaches to other problems.
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