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We present a new infinite class of gravitational observables in asymptotically anti—de Sitter space living
on codimension-one slices of the geometry, the most famous of which is the volume of the maximal slice.
We show that these observables display universal features for the thermofield-double state: they grow
linearly in time at late times and reproduce the switchback effect in shock wave geometries. We argue that
any member of this class of observables is an equally viable candidate as the extremal volume for a

gravitational dual of complexity.
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Introduction.—Complexity theory aims to quantify how
difficult it is to perform a chosen task using a set of simple
operations. In quantum complexity theory, one implements
the desired operation by constructing a quantum circuit
with simple unitary gates. An important aspect to keep in
mind is that in complexity theory, the interest is always on
the scaling of the complexity with the “size” of the problem
(e.g., the dimensionality of the Hilbert space in quantum
complexity). Extracting a precise result for the complexity
is often too complicated, and this number is expected to be
highly sensitive, e.g., to the choice of allowed simple
operations, while the scaling is a robust property of the
problem class.

Quantum complexity has recently triggered much inte-
rest in the context of black holes and holography, as a new
twist in the ongoing effort connecting quantum information
theory to quantum gravity. The length of the wormhole for
a two-sided anti—de Sitter (AdS) black hole grows linearly
in time at late times, and continues growing far beyond
times at which entanglement entropies have thermalized
[1]. This suggests that a new quantum information measure
is needed to encode the growth of the wormhole, and
several holographic proposals were made relating it to
quantum complexity, e.g., complexity has been proposed to
be dual to the volume of the maximal slice (CV proposal)
[2], the action of the Wheeler—de Witt patch (CA proposal)
[3] or the spacetime volume of the Wheeler—de Witt patch
(CV2.0 proposal) [4].
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It is important to emphasize that the formulation of all
three of the above proposals is ambiguous. For CV and
CV2.0, this comes from an additional length scale needed
to obtain a dimensionless number out of the volume. For
CA, it results from ambiguities in the boundary terms on
null slices [5]. However, rather than a shortcoming, this
ambiguity can be seen as a feature of holographic complex-
ity, as it connects nicely with the ambiguities arising in
complexity theory, e.g., the choice of a gate set. Therefore,
a gravitational dual for complexity should reflect these
conventional ambiguities.

In this Letter, we explore this idea and show that, in fact,
there is an infinite class of gravitational observables defined
in a diffeomorphism-invariant way that display universal
features and hence are equally viable candidates for a
gravitational dual of complexity as the volume or the
action. These observables are defined on codimension-
one regions of the geometry as

1

— d6VhF(g,: X"), (1
GNL ZFZ 0\/7 l(g/w ) ( )

Or, 3, (Ecrr) =

where Fj is a scalar function of the background metric g,
and of an embedding X*(¢%) of the codimension-one
surface Xp,. Asymptotically X, is fixed by the boundary
condition 9Xp, = Xcpr. In this Letter, we will focus on the
case where Xqpy 1S a constant time slice in the boundary
CFT, and so we often write Op, 5, (7) (7 is the CFT time).
For such quantities to be diffeomorphism invariant, the bulk
slice must be defined in a coordinate independent way.
We determine this slice by requiring that it extremizes a
particular scalar functional F,, i.e.,
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Sy ( L ddm/EFz(g,w;X”)> =0. (2)

Note that generally the scalar functions F; and F, need not
coincide. For F; = F, = 1, this prescription yields the
extremal volume appearing in the CV proposal. Allowing
for more general functions gives an infinite family of new
observables.

A class of such generalized functionals has appeared
previously in the context of holographic complexity for
higher curvature theories of gravity [6-8], in which the
volume functional is corrected with higher curvature
contributions. The present work emphasizes that such
functionals also serve as good measures of holographic
complexity in standard general relativity (or potentially any
diffeomorphism-invariant gravitational theory), since they
are examples of observables OFIA,ZFZ with F| = F,.

Summary of results.—We show that for a large subset of
the class of functionals O, p the two following universal

properties hold when probing the thermofield double state:
(1) Observables grow linearly with time at late times

lim 0F172F2 (T) ~ PooT' (3)

In the limit of large temperature, the constant P is
proportional to the mass. (2) Observables exhibit the
switchback effect [9], a universal time delay in response
to perturbations described by particles falling into the dual
black hole. Properties 1 and 2 are expected to be displayed
universally by any definition of quantum complexity and
are held as the main evidence for the CV and CA proposals.
The linear growth property is a consequence of viewing
the time evolution operator exp(—iHz) as a quantum
circuit, whose size scales as « 7. On the other hand, the
switchback effect is an imprint of the butterfly effect on
complexity growth. We can insert an operator at some
time ¢ in the past which corresponds to acting with
exp(—iHt)Wexp(iHt) on our state. If we do not add
any operator W, the backward and forward time evolution
exactly cancel. With the operator, the cancellation is
disturbed but still occurs approximately for some time,
before the effect of the operator grows large due to the
butterfly effect. This logic suggests the size of the cir-
cuit implementing exp(—iHt)W exp(iHt) for large ¢ is
~2P(t —t,), where ¢, is the scrambling time [9].

The universality displayed by the class of observables (1)
leads us to conclude that any of them are equally good
candidates for a gravitational dual of complexity. This
nicely parallels the expected ambiguities for quantum
complexity, noted above, where a precise definition of
the complexity depends on many choices. Hence the
precise value of the complexity is unimportant, whereas
the scaling (here, the time dependence) is universal.

Observables with F; = F,.—The quantities (1) provide
a huge class of diff-invariant observables in AdS which can
probe a plethora of states, ranging from small perturbations
of AdS to black holes. In this Letter, we focus on the eternal
planar black hole, which corresponds to two decoupled
CFTs on planar (i.e., R%") spatial slices entangled in the
thermofield double (TFD) state

lwrep (7)) = Ze‘ﬂEn/Z—iEnr
Eﬂ

n), ® |n)g. (4)

The spacetime dual to this state is described in Eddington-
Finkelstein coordinates by the metric

2
ds® = —f(r)dv? + 2dvdr + %dﬁ, (5)

where f(r) = (r?/L*)[1 — (r¢/r?)], and we use the infal-
ling coordinate v = 7+ r,(r) with r.(r) = — [®[dr'/ f(V)]
to cover the black hole interior. The spacetime describes
the time evolution of the CFT state living at time tz =
t; = 1/2 (see Fig. 1).

We will start by considering observables with F'; = F,
such that the slice on which the functional is evaluated
extremizes the functional itself. We will call these observ-
ables Cyep, as they generalize the CV proposal. To probe the
state (4), we must anchor the surface on the CFT slice X,
i.e., the boundary of the hypersurface X(z). Thus,

Cgen (T) =

1 d F o
— . X” .
02?1?——)(21 |:GNL /): d 0\/5 1[9ﬂl" ( )] (6)

Because of the symmetries of the state and the hyper-
surface X(), we can parametrize our surface with a single

T—> &0
|

oy T — 00

FIG. 1. The time evolution of the extremal hypersurfaces from
¥(7) to a nearby extremal hypersurface X(7'). At infinite time
limit 7 — oo, the extremal surface approaches a constant-r
hypersurface at r = ry, where the effective potential arrives at
a local maximal value.
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function r(v). When F; = F, finding the extremal surface
is analogous to solving a classical mechanics problem
where the action and Lagrangian are identified as S ~ Cgep,

L ~ Fv/h. Moreover, the extremality conditions become
the equations of motion derived from L.

In this picture, the time derivative of C,, evaluated on
the extremal surface is related to the momentum at the end
point of the trajectory:

ACon 1

dr :Ept

_1ac

= ; 7

0Z(7) ’

where P, is the momentum conjugate to the coordinate
time #. Linear growth amounts to the statement that P, |5
approaches a constant at large 7.

Time evolution of the extremal surfaces.—We will now
proceed to solve for the location of the extremal surfaces
as a function of time and study the late time behavior of
our new observables. Because of the symmetries of the
planar black hole, we can parametrize the spacelike hyper-
surface X simply by [v(o), r(o), X]. Derivatives with respect
to o will be represented by dots. In this Letter, we will
focus on observables where the function F; (g,,. Rups. V,)
depends only on (d + 1)-dimensional curvature invariants
evaluated on the extremal slice . (We comment on more
general observables in the discussion.) For such observ-
ables, one can rewrite the generalized volume in our
parametrization by

Coun = G‘;"L L da(%)d_lx/—f(r)iﬂ+2b Fa(r), (8)

where ¢ can be understood as a radial coordinate on the
hypersurface X, V, denotes the (regulated) volume of
the spatial boundary directions X, and the factor a(r) is
the result of evaluating the corresponding function
of curvatures on the surface. The restriction to (d + 1)-
dimensional curvature invariants was made so that the
factor a(r) does not depend on derivatives of r, which
considerably simplifies the problem [10].

Of course, we also require that the functionals C,, are
diffeomorphism invariant. Consequently, one can easily
show that C,., is invariant under the transformation
o — ¢(0). As a result, we can fix the gauge by choosing

—f(r)8? + 207 = a(r) ({) - 9)

Because the bulk spacetime is stationary, one finds that the
momentum P, conjugate to the infalling time v, i.e.,

p _ a(r/L) 7 F = f(r)i]
' V() + 207
is conserved on the extremal surfaces. Combining these
two equations, one arrives at the extremality conditions:

= i—f(r)i. (10)

F= i\/1"% + f(r)a*(r) (%) Z(d_l),
e o

We can recast this problem as the motion of a classical
nonrelativistic particle in a potential [11,12]. To wit,

} . -\ 2(d-1)
i+ U(r)=P2 with U(r) = —f(r)a*(r) <z> ,
(12)

with an effective potential U/ which parametrizes the choice
of observable. Figure 2 presents a characteristic potential.
Because of the multiplicative prefactor f(r), the effective
potential vanishes at the horizon r = r;,. We will particu-
larly be interested in the case where the effective potential
has at least one local maximum inside the horizon. As we
will show, this is precisely the requirement for the linear
growth of the generalized volume. When the couplings for
the higher curvature terms in F; are sufficiently small, such
a local maximum always exists [10]. We can specify the
local maximum at r = r; by

U(rs) = P%, U'(rs) =0, U"(r;) <0. (13)
Finding the extremal surface anchored on a specific
boundary time slice = thus corresponds to solving the

0(r)
J 3
2
= AT ()
P} < P;
0 re rh\ r

FIG. 2. The blue curve denotes a characteristic effective
potential U(r) depending on the spacetime curvature and the
black curve presents the potential from the volume. The turning
point at the minimal radius r,;, satisfies # =0, which is
equivalent to P2 = U (rmin) for a given conserved momentum.
The critical value of the momentum P, is obtained at the infinite
boundary time 7 — oo.
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Hamiltonian system (12) with a given conserved momen-
tum P, that is fixed by the boundary time, namely [13],

0 P,
TEZIR:—2/>dV ;_N .
run f(r)V/ Py =U(r)

We denote ry,;, as the minimal radius lying on the timelike
surface t = 0 (dashed vertical line in Fig. 1) and determined
by the conserved momentum through P2 = U(r ). This
is also the turning point of the analog particle. As discussed
in Eq. (7), the time derivative of the generalized volume at
boundary time 7 is given by

(14)

dCoen 1 v,

& 27l =Gr

Py(z). (15)
Linear growth at late times.—For any boundary time r,
fixing the conserved momentum P, (7) via Eq. (14), there
is a corresponding extremal hypersurface. For example,
P2 =0 gives the time reflection symmetric slice 7 = 0.
For generic 7, the radial trajectory of the extremal surface
starts from the asymptotic boundary and moves into the
interior of the black hole until it reaches the minimal radius
r'min- Increasing the conserved momentum P, to the critical
value P, causes the boundary time to diverge because the
extremal surface is near the final slice at r = r,. This can be
seen by expanding the potential around the maximum

PL—U(r) ~ —%f]”(rf)(r —r)?+0[(r—rp)?,  (16)

and substituting into Eq. (14). Then we note that a
divergence arises from the lower boundary of the integral
as Iy, approaches ry. Similarly, we will now demonstrate
that lim,_, o P,(7) = P,. Because of Eq. (15), this means
that the generalized volume grows linearly at late times.
Before doing so, we stress again that the existence of the
above late-time limit requires the existence of a local
maximum of the effective potential inside the horizon.
Using Eq. (14), it is straightforward to get

dt dr. 2P,
0 20(r)
+ / dr - . (17)
T'min f(r) [P% - U(r)}:;/z

where both terms on the right-hand side are divergent due
to P2 — U(rmin) = 0. Approaching the infinite boundary
time by pushing the minimal radius to the final slice (i.e.,
Tmin = Ty oOr, equivalently, P, — P,), the leading diver-
gence appearing in Eq. (17) in the late-time limit is

dr —2fU(rf) 1
dP, " f(rp)[=0"(r)P (rin = )%

(18)

More explicitly, the above limit implies that in the late-time
limit, the growth rate P,(7) approaches the critical value
P, from below as an exponential

—f(rs)

20" (ry)
P ’

Py — P (1) xe™, with x=

(19)

Note that k is always positive, since the final slice is inside
the horizon [hence f(r;) < 0] and corresponds to a local
maximum of the potential with U”(r;) < 0.

Finally, let us show that P, o« M where M « (r/GyL?)
is the ADM mass of the black brane. We can introduce a
dimensionless radial coordinate w = (r/r;)?, in terms of
which the potential is rewritten as

T'n

00) = () -, 0

We note that a(w) depends only on w because curvature
invariants in the geometry (5) are independent of r, when
written as a function of w. This is easy to see by using
rescaled coordinates (r,/L)v, (r,/L)X, in which metric
components have no dependence on r;,. The dimensionful
coefficients appearing in the definition of F| should not
depend on r;, either, because we want to define the
observable in a state independent way. Using the recast
potential (20), it is easy to show that its extrema satisfies

rste-(B) e

where the constant £ is independent of r;, [14].

More general observables with F| # F,.—We can also
consider observables that are associated with the function
F| but are evaluated on the extremal surface determined by
the functional F,. Let us focus on the simplest case where
both F| and F, only depend on the bulk spacetime
geometry. To wit, we define the observable as

O, 3, é ) do(%)d_l —F(P 420 kay(r). (22)

where the extremal hypersurfaces Xz, are associated with

the effective potential U,(r) = —f(r)a3(r)(r/L)*¢="). For
F, = F,, the time derivative was given by the boundary
term P,. Now, the time derivative of this new observable
with respect to the boundary time 7 reads instead

GyL dOFl,ze B

dP, [
v d
V. dr "

v
dT Tmin

r \/7U2 23

f(r)[P = Ux(n))?
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where we defined U; = U;(ryi,) and the second term
involving the integral vanishes when U, = U,. As with
the analysis above, we find the new observable (22) still
exhibits the expected linear growth at late times, i.e.,

dOFl,ze V.,

lim — =
= dr GyL

Uy(ry). (24)

where r; is the position of the maximum of U,(r). But the
growth rate is controlled by the functional F; [10].
Switchback effect.—Consider the perturbed TFD state

(2., 1)) = e~ Meie=Hrie W, (1,)... W, (t;)|lyrep (0)).
(25)

where the 1?4, ...,¢, are in an alternating “zig-zag” order.
The corresponding complexity is then proportional to [9]

ltr + 11|+ [ty =ty + -+ |1, —1,| = 2nz.. (26)

Here, the terms with absolute values give the total length of
the path integral contour. The switchback effect is the
subtraction —2nt,, owing to the partial cancellation of
forward and backward parts of the time contours around the
“switchbacks,” where the operator insertions have not been
scrambled yet. The formula assumes that the time along
each switchback (i.e., each term involving an absolute
value) is much larger than the scrambling time.

The state (25) is dual to a long wormhole supported by
alternating left- and right-moving shock waves. When all
shocks are strong (which we study here), the geometry is
obtained by gluing together AdS black hole geometries (5)
along their horizons [15]. There are n + 1 such patches, and
the wormhole region consists of n —1 future and past
interiors glued together in an alternating manner. The
gluing is best described in Kruskal coordinates

UV = —elton(), — = — /'t (27)

in which the corresponding null shifts along the horizons are
given by a; = 2e~(27/P)1.41) with the inverse temperature
B = [4x/f'(r,)] and the scrambling time ¢,  Blog Gy'.

The switchback effect associated with the maximal
volume in this geometry was analyzed in Ref. [9]. It is
based on two properties of the extremal volume: (i) that it
adds up in shock wave geometries, i.e.,

V= V(IR, V]) + V(Vl + ap, Uz) +
+V(Un—l _an—lvvn) +V(Vn +an’tL)’ (28)
where V(.,.) denotes the volume of the extremal slice

connecting two specified points (either V;, U, on a horizon
or t; g on the boundary) in the black hole geometry; (ii) that

V(.,.) all present a linear growth at late times. In order
to find the maximal volume slice, one needs to extremize
the additive volume in Eq. (28) with respect to V,,
U,,...U,_;,V, which leads to the result (26).

We find that these two properties are also shared
by the general observables 0F1~2F2 defined in Eq. (22).

The property (i) could in general fail when the functional
involves curvature terms, since there could be extra
o-function contributions at the shock waves, spoiling the
additivity property. However, we can prove that the diffeo-
morphism invariance of the functional F; guarantees that
no contribution arises from & functions on the shock waves.
Consider the geometry (5) in Kruskal coordinates

ds? = —2A(UV)dUdV + B(UV)dx:®,  (29)

where A = —(2/UV)[f(r)/f'(r;)?], B = r*/L* are both
functions of UV because the spacetime is stationary. For
simplicity, we consider a single null shock wave at U = 0.
The backreaction on the geometry is described by [9,15,16]

ds* = =2A(U[V + a®(U)])dUdV
+ B(U[V + a®(U)])dx?, (30)

where ©(U) denotes the Heaviside step function. Suppose
we want to write down a scalar function F; which only
depends on the bulk geometry. All metric components
depend on U and V as f(U[V + a®(U)]). Therefore, delta
functions can come only from U derivatives of metric
components. Since gy = gyy = 0, in order to form scalars
we must eventually contract all indices coming from
derivatives with metric components ¢V", e.g., gVV9, 0, f.
As a result, one can show that all U derivatives must
come multiplied by an equal number of V derivatives in
scalar functions. Noting that 9y f(U[V + a®(U)]) =
Uf'(U]V 4+ a®(U)]), we find that delta functions always
come in the form US(U), U*8§'(U), etc. Since in the Kruskal
geometry the functions A and B are regular and nonzero
on the horizon we conclude that no delta functions
appear in spacetime scalars formed from the shock wave
geometry [17].

Regarding the property (ii), we can show following
section 4 that the general observables O, x,, are still domi-

nated by linear growth in ingoing and outgoing time, i.e.,

Vs
GyL

Or, 5, (UL, Vg) = Uy (rp)lvg+u|+0(1). (31)

where U, (r ) denotes the value of the effective potential on
the final slice and the Kruskal coordinate is given by
|U| = e=@#/P) V| = ¢7/P)* Using the additive formula
in Eq. (28) for 0F|,2F2 and extremizing with respect to

Vi,U,,...U,_;,V,, one recovers the expected switchback
effect (26).
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Discussion.—In this Letter, we have introduced an
infinite family of gravitational observables O V2 defined

on codimension-one slices of the geometry. We examined a
large class of such observables, where the functionals F,
F, only depend on spacetime curvature invariants, and
showed they display universal behavior: in the time-
evolved thermofield double state, they grow linearly in
time at late times and exhibit the switchback effect.
However, we note that this universal behavior also requires
the couplings on the curvature invariants not be too large.
More general observables including functionals that
depend independently on extrinsic and intrinsic data of
the surface will be discussed in Ref. [19], and we expect our
results to extend to these cases as well. We now conclude
with some open questions.

In light of the CA proposal, a natural question is to ask
whether it is also possible to engineer codimension-0
observables like the action of the Wheeler—de Witt patch.
In fact, it is possible to embed both codimension-0O and
codimension-one observables in a unified framework
following a construction by Peierls [20]. This will be
presented in Ref. [19], where we will also discuss how
to extract variations of these observables from the CFT, for
coherent states of the gravitational theory [21-26] using
the dictionary between bulk and boundary symplectic
forms.

Finally, we have given strong evidence that a wide class of
observables are all viable candidates for complexity. It would
be interesting to try and make the connection between
ambiguities in the definition of quantum complexity, and
the choice of gravitational observables more precise.
However, is there perhaps a reason that would single out
the volume? The maximal volume not only captures the
saturation of complexity at very late times [27] but also
satisfies nicer properties like existence theorems for the
maximal slice [28], positivity of the vacuum-subtracted
volume [29], regular behavior under small deformations
[30] and serving as an internal Hamiltonian of the Wheeler—
de Witt patch [24,25]. It would be interesting to explore this
question further in the future.
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