
Lorentzian Threads as Gatelines and Holographic Complexity

Juan F. Pedraza ,1,2 Andrea Russo ,1 Andrew Svesko ,1 and Zachary Weller-Davies 1

1Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
2Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

(Received 16 July 2021; revised 21 October 2021; accepted 15 November 2021; published 30 December 2021)

The continuous min flow-max cut principle is used to reformulate the “complexity ¼ volume”
conjecture using Lorentzian flows—divergenceless norm-bounded timelike vector fields whose minimum
flux through a boundary subregion is equal to the volume of the homologous maximal bulk Cauchy slice.
The nesting property is used to show the rate of complexity is bounded below by “conditional complexity,”
describing a multistep optimization with intermediate and final target states. Conceptually, discretized
Lorentzian flows are interpreted in terms of threads or gatelines such that complexity is equal to the
minimum number of gatelines used to prepare a conformal field theory (CFT) state by an optimal tensor
network (TN) discretizing the state. We propose a refined measure of complexity, capturing the role of
suboptimal TNs, as an ensemble average. The bulk symplectic potential provides a “canonical” thread
configuration characterizing perturbations around arbitrary CFT states. Its consistency requires the bulk to
obey linearized Einstein’s equations, which are shown to be equivalent to the holographic first law of
complexity, thereby advocating a notion of “spacetime complexity.”
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Introduction.—Gravity has an information theoretic
character. The sharpest realization of this is captured by
the Ryu-Takayanagi (RT) formula [1,2], relating the area of
minimal codimension-2 surfaces mðAÞ in a (dþ 1)-
dimensional (bulk) anti–de Sitter (AdS) spacetime to the
entanglement entropy (EE) SðAÞ of a conformal field
theory (CFT) state restricted to a (d − 1)-dimensional
boundary subregion A homologous to m. The RT formula
generalizes Bekenstein-Hawking black hole entropy and
satisfies all known properties of the von Neumann entropy.
More strikingly, it was used to show gravitational field
equations are dual to the first law of entanglement [3,4],
encapsulating the slogan “entanglement ¼ geometry” [5–7].
Recently, the RT prescription was reformulated in terms

of flows or holographic “bit threads” [8], where mðAÞ is
replaced by the maximum flux of a divergenceless norm-
bounded Riemannian vector field v through A,

SðAÞ ¼max
v∈F

Z
A
v; F ≡

�
vj∇ ·v¼ 0; jvj≤ 1

4GN

�
: ð1Þ

The equivalence between the two follows from the max
flow-min cut theorem, a known principle in network theory,
where the “min cut” is the minimal surface, and was proven

using convex optimization techniques [9]. It has several
generalizations and applications, e.g., [10–18]. Not only
does (1) have technical advantages, it offers conceptual
insight: a thread emanating from A is interpreted as a
channel carrying a single (qu)bit encoding the microstate of
A, where the maximum number of threads gives SðAÞ,
which may be distilled as Bell pairs. Bit threads have also
led to insights into tensor network (TN) models of
spacetime, e.g., [19,20], and the emergence of gravity
via the closedness of the “canonical” flow solution [15].
Entanglement alone, however, does not describe all

aspects of bulk gravitational physics [21]. In particular,
the late time growth of the Einstein-Rosen bridge inside
eternal black holes is not captured by entanglement, but
rather complexity. By complexity, one typically means the
state complexity, i.e., the smallest number of unitary
operators (gates) needed to obtain a particular final state
from a given initial state. While the definition of state
complexity in a field theory remains an active area of
investigation (cf. [22–24]), two proposals for its geometric
interpretation have emerged: “complexity ¼ volume” (CV)
[25–28] and “complexity ¼ action” (CA) [29–31]. The
CV conjecture says the complexity C of a CFT state defined
on a Cauchy slice σA delimiting a boundary region A, so
that ∂A ¼ σA, is dual to the volume of an extremal
codimension-1 bulk hypersurface Σ homologous A

CðσAÞ ¼
1

GNl
max
Σ∼A

vol½ΣðAÞ�: ð2Þ

Here, l is some undetermined bulk length scale, e.g., the
AdS curvature, and the homology condition Σ ∼ A implies
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∂Σ ¼ ∂A ¼ σA. Alternatively, CA equates complexity with
the gravitational action I evaluated over the Wheeler-De
Witt (WDW) patch. CV and CA are similar qualitatively,
however, here we focus on CV duality.
Given their similar geometric character, it is natural to

compare the CV proposal (2) to the entropy-area RT
prescription. In light of the bit thread reformulation, one
may suspect the CV proposal for holographic complexity
(2) likewise has a flow based interpretation. Indeed, via the
min flow-max cut (MFMC) theorem, where Riemannian
flows are replaced by Lorentzian flows, the minimum flux
through a boundary region A is equal to the maximum cut
of a surface homologous to A [9]. In this Letter we use the
continuous MFMC principle [9] to reformulate the CV
conjecture of holographic complexity in terms of
Lorentzian flows and explore some of their properties
and implications. We provide a more detailed account
and additional results, including explicit geometric real-
izations of Lorentzian flows in [32].
CV and the min flow-max cut theorem.—The continuous

version of the MFMC theorem was first presented and
proved in [9]. It says the minimum flux of a Lorentzian
flow v through a boundary region A of a compact
Lorentzian manifold M is equal to the volume V of the
maximal bulk codimension-1 Cauchy slice Σ ∼ A:

min
v

Z
A
v ¼ αmax

Σ∼A
ðVðΣÞÞ;

Z
A
v≡

Z
A

ffiffiffi
h

p
nμvμ; ð3Þ

where α ∈ Rþ, nμ is a unit normal covector to A, and
ffiffiffi
h

p
is

the induced volume element. The flow v is a timelike vector
field obeying,

∇ · v ¼ 0; v0 > 0; jvj ≥ α: ð4Þ
It is now natural to reformulate CV duality (2) in terms of

Lorentzian flows. Precisely, upon setting α ¼ ð1=GNlÞ, we
propose C is the minimum flux of a divergenceless norm-
bounded timelike vector field v through A

CðσAÞ ¼min
v∈F

Z
A
v; F ≡

�
vj∇ ·v¼ 0; jvj≥ 1

GNl

�
: ð5Þ

Via the MFMC theorem, Eq. (5) is equal to the maximal
volume of a Cauchy slice Σ homologous to A (3).
Properties of Lorentzian flows.—An important lemma to

MFMC is the nesting property. Concretely, consider two
nested boundary regions AB and AB ⊃ A, B≡ ABnA, in a
compact, oriented Lorentzian manifold M, where A lies to
the future of B, A > B. That is, the boundary is foliated by
slices σA > σAB. Assuming M obeys the strong energy
condition this foliation induces a foliation of the bulk by
nonintersecting maximal cuts ΣðAÞ > ΣðABÞ [33]. Nesting
tells us there exists a flow vðA; ABÞ which simultaneously
minimizes flux through A and AB. Equivalently, vðA; ABÞ
maximizes the flux through B, conditioned on minimizing
flux through AB.

The nesting property uncovers a number of interesting
behaviors holographic complexity must satisfy. First, when
there are two nested regions as above, one has

CðσAÞ − CðσABÞ ¼ −
Z
B
vðA; ABÞ: ð6Þ

Since a flow vðABÞ with minimal flux through AB has
generally less flux than vðA; ABÞ through B, we find

CðσAÞ − CðσABÞ ≤ CðσAjσABÞ; ð7Þ
where we have defined CðσAjσABÞ≡ −min

R
B vðABÞ.

Since CðσABÞ is the complexity of a state at time
tAB ¼ tA − δt, from (6) we find the rate _C in terms of
maximal flux through B. By the momentum-volume-
complexity (PVC) relation [34–36], we deduce

− _C ¼ lim
B→0

1

δt

Z
B
vðA; ABÞ ¼

Z
Σ
Tμνnμζν − RΣ: ð8Þ

The first term in (8) is the integrated momentum flux Pζ,
where n is the future-pointing unit-normal to Σ and ζ is an
“infalling” vector tangent to Σ asymptotically equal to a
radial, inward-pointing vector with modulus given by the
radius of the sphere at infinity. The remainder RΣ arises
from integrating the momentum constraint and vanishes
when ζ is a conformal Killing vector, in which case the
maximal flux through B is only given by Pζ.
Generalizing to three nested boundary regions A, AB,

and ABC, with ΣðAÞ > ΣðABÞ > ΣðABCÞ, we uncover the
following relationship between the minimal flux ΦðXÞ
through each region X and complexity CðσABCÞ

ΦðACÞ þΦðBCÞ −ΦðCÞ ≤ CðσABCÞ: ð9Þ
This is the Lorentzian analog of the strong subadditivity of
EE. Moreover, in the limit B, C shrink, together with (8),
we recover C̈ ¼ _Pζ [36,37], suggesting Newton’s laws of
gravitation have an origin in complexity.
CV complexity is also known to obey a superadditivity

property [38–40], defined in terms of subregion complexity
CSðσXÞ [41], where σX ⊂ σA is a boundary spatial sub-
region. Let R be a Hubeny-Rangamani-Takayanagi (HRT)
surface subdividing σA ¼ σX ∪ σY . We bipartition A ¼
AX ∪ AY with AX ∩ AY ¼ =0. The MFMC theorem allows
us to reformulate superadditivity as

CSðσX ∪ σYÞ ≥ CSðσXÞ þ CSðσYÞ; ð10Þ
where CSðσXÞ ≤

R
AX

vðAÞ and similarly for CSðσYÞ.
Interpretation: “gatelines” and tensor networks.—

Similar to the bit thread interpretation of Riemannian flows
[8], there is a unique mapping between Lorentzian flows
and what we call “Lorentzian threads” or gatelines [9].
Specifically, threads are defined as the integral lines of the
flows v (4) of transverse density jvj. Denoting NA as the
number of threads passing through the maximal slice ΣðAÞ,
given (5), CV complexity is understood as the minimum
number of threads passing through ΣðAÞ,
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CðσAÞ ¼ minNA: ð11Þ
This observation suggests threads prepare the state on

ΣðAÞ from a specific reference CFT state defined on the
infinite past of the manifold. More precisely, recall bulk
Lorentzian spacetimes describe time evolution of CFT
states prepared by Euclidean path integrals with sources
turned on [42–46]. A reference state is specified on a bulk
Cauchy slice Σ− of the southern hemisphere of Euclidean
AdS, such that for generic analytic initial data the bulk
Einstein’s equations reveal which sources are used to
prepare the state [47]. The length of the Lorentzian cylinder
glued at Σ− then gives the duration of evolution (Fig. 2).
Threads flowing into A enter from the Euclidean sub-

manifold attached to boundary sources and pass through
ΣðAÞ. The minimal flux configuration optimally prepares
the CFT state on ΣðAÞ, i.e., requiring fewer operations to
assemble the state. Thus, Lorentzian threads act as gate-
lines: timelike trajectories representing unitary gates
needed to transform a reference state to a target state.
Consequently, complexity is the minimum number of
gatelines through ΣðAÞ preparing the target state:

C∼number of threads∼number of gates to prepare the state:

ð12Þ
Conceptually, then, CðσAjσABÞ in (7) is the minimum

number of gatelines needed to prepare a state on ΣðAÞ given
the state prepared on ΣðABÞ. That is, CðσAjσABÞ is the
“conditional complexity,” describing a two step optimiza-
tion, first preparing the intermediate state ΣðABÞ before
preparing ΣðAÞ. Vanishing flux through B implies the same
number of gatelines prepare states on ΣðABÞ and ΣðAÞ,
thereby having equal complexity. Meanwhile, when
CðσAÞ > CðσABÞ, for example, flux through B provides
additional gatelines to prepare ΣðAÞ.
The gateline interpretation deepens our insight into TN

constructions of spacetimes [19,20]. TNs act as discretiza-
tions of bulk spatial slices, where the EE is computed by
counting cuts along the TN, and complexity equals the
number of tensors that describes the TN. Combining this
prescription for complexity with (12), it is then natural to
conjecture an optimal thread configuration v prepares the

TN on Σ. We imagine attaching a unitary to each thread,
connecting to each physical tensor of the network, so
number of threads ∼ number of tensors (Fig. 1). These
unitaries act similar to disentanglers in a MERA TN [48],
transforming a reference state to its target. Upon analytic
continuation, this operation generates time evolution and
the TN acts as a quantum circuit.
Canonical flows from the bulk symplectic form.—To

characterize perturbative excited states, e.g., linear pertur-
bations to vacuum AdS, we develop a notion of “perturba-
tive Lorentzian threads.” Analogous to [15], for a perturbed
metric of the form gημν ¼ gμν þ ηδgμν, with η small, we
define vη ¼ vþ ηδvþOðη2Þ, where vη obeys the flow
criteria (4), constraining δv. Thus, given a metric gμν and a
solution v to the unperturbed min flow problem, we can
solve for the minimizing flow vη.
It is convenient to work with differential forms. We

exploit the map between divergenceless vector fields v and
closed (D − 1) forms u in a D-dimensional background

u ¼ 1

ðD − 1Þ! ϵμ1;…;μD−1νv
νdxμ1 ∧ � � � ∧ dxμD−1 ; ð13Þ

where ϵ ¼ ffiffiffiffiffiffi−gp
ε is the volume form on the manifold.

Criteria (4) apply to forms u, and we rewrite CV (5) as

CðσAÞ ¼ min
u

Z
A
u: ð14Þ

For metrics perturbatively close to gμν, denote the perturbed
(D − 1) form by uη ¼ uþ ηδu. Divergencelessness, the
norm bound, and restriction to Σ translate to

dðuþ ηδuÞ ¼ 0 ⇒ dðδuÞ ¼ 0;

− hu; uig þ η½2hu; δuig þ hu; uiδg� ≥ 1;

ðuþ ηδuÞjΣ ¼ ϵ̃þ ηδϵ̃ ⇒ δujΣ ¼ δϵ̃; ð15Þ
with hu; uig ≡ ½1=ðD − 1Þ!�gμ1ν1 ;…; gμD−1νD−1uμ1;…;μD−1

×
uν1;…;νD−1

, and ϵ̃ is the pullback of ϵ to Σ. Hence, when
studying linear perturbations of complexity around a
background we must find a closed (D − 1) form δu
satisfying (15).
A canonical choice for δu is the bulk Lorentzian

symplectic current ωL
bulk. This follows from the equivalence

between the boundary symplectic form ΩB and the bulk
symplectic form [49,50]

ΩBðδ1λ̃; δ2λ̃Þ ¼ i
Z
∂M−

ωE
bulkðϕ; δ1ϕ; δ2ϕÞ: ð16Þ

Precisely, for holographic CFT states prepared by
Euclidean path integrals with sources λ [45], the space
of sources defines a Kähler manifold whose Kähler 2 form
ΩB is determined by the bulk Euclidean action. One then
invokes the extrapolate dictionary to relate sources λ to bulk
fields ϕ, and the variation of theD-dimensional Lagrangian
form δL ¼ −Eϕδϕþ dθðϕ; δϕÞ. Here, Eϕ is a D form

FIG. 1. Complexity is equal to the minimum number of
gatelines preparing a state on maximal volume slice Σ. Optimal
flow prepares optimal TN (left); suboptimal flows prepare more
complex suboptimal TNs (right).
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characterizing the equations of motion for ϕ, which are
assumed to be satisfied, Eϕ ¼ 0, and θ is the symplectic
potential, whose variation gives the symplectic current
ωbulkðϕ; δ1ϕ; δ2ϕÞ ¼ δ1θðϕ; δ2ϕÞ − δ2θðϕ; δ1ϕÞ.
If δ1;2ϕ obey the linearized equations of motion,

δ1;2Eϕ ¼ 0 and dωbulk ¼ 0, so the southern hemisphere
∂M− can be pushed to an initial value surface Σ, replacing
ωE
bulk with its Lorentzian counterpart ωL

bulk

ΩBðδ1λ̃; δ2λ̃Þ ¼
Z
Σ
ωL
bulkðϕ; δ1ϕ; δ2ϕÞ: ð17Þ

When the boundary sources are deformed by the
“new York” transformation δY , Eq. (3.11) in [51], the bulk
symplectic form Ωbulk ≡ R

Σ ωbulk is identified with the
variation of the volume of the maximal bulk slice Σ [49,50],

ΩBðδY λ̃; δλ̃Þ ¼ ΩbulkðδYϕ; δϕÞ ¼
ðd − 1Þα̃
8πGN

δV; ð18Þ

with α̃ some constant. Foliating the bulk by constant-time
surfaces Σ with spatial metric hij and extrinsic curvature
Kij, in terms of δY , the Hamiltonian constraint of general
relativity H reads, δYH ¼ 2ðd − 2ÞK. This is satisfied
when trace of the extrinsic curvature K ¼ 0. Thence, δY
is on shell when Σ is a maximal surface.
For α̃≡ ½8π=lðd − 1Þ�, Eq. (18) naturally proposes a

notion of varying complexity, δC [50]. In fact, defining
complexity as an integral of kinetic energy over the space of
sources, Cðsi; sfÞ≡ R sf

si dsgab _λ
a _λb, with s parametrizing

trajectories in this space, δC obeys a first law

δλfC ¼ ΩBðδY λ̃; δλ̃Þ: ð19Þ
This is a boundary relation. For holographic CFTs, via (17)
and (18) one has a first law of (CV) complexity.
Returning to the definition of perturbative thread form u

(15), it is straightforward to verify ωL
bulkðδY; δÞ satisfies the

conditions on δu. Thus ωL
bulkðδY; δÞ represents a “canoni-

cal” thread configuration, solves the MFMC program and is
closed for on-shell perturbations.
First law of complexity and Einstein’s equations.—From

(19) we can derive the covariant linearized Einstein’s
equations, differing from [52]. Our method is similar to
[3,4] using the first law of EE. While the following holds
for general bulk states, here we consider vacuum perturba-
tions, hence ϕ only represents the bulk metric.
Applying Stokes’ theorem and using Eϕ ¼ 0, we have

i
Z
M−

dωE
bulk ¼ ΩBðδY λ̃; δλ̃Þ − δV: ð20Þ

Assuming the holographic version of the first law (19), the
right hand side vanishes, requiring dωE

bulkðδY; δÞ ¼ 0 for
arbitrary variations δ. Since δY is a diffeomorphism for
perturbations around vacuum AdS, then

dωE
bulkðδY; δÞ ¼ −ϵδEμνδYgμν ¼ 0; ð21Þ

where δEμν ¼ ð1= ffiffiffi
g

p ÞðδSgrav=δgμνÞ, is no longer a d form
on M.
We now argue demanding (21) for all Lorentzian initial

data is equivalent to the linearized Einstein’s equations
δEμν ¼ 0 being satisfied everywhere in the bulk M. First
consider a maximal slice Σ along which the southern and
northern hemispheres are glued. In Euclidean Poincaré
coordinates one has

τ2δEττ þ 2τzδEτz þ ðτ2 þ z2ÞδEii þ τz2δEzz ¼ 0: ð22Þ
We now demand this holds for all maximal slices Σ, each
providing data for different Lorentz observers inM, which
will allow us to prove δEμν ¼ 0 everywhere.
We start by deforming the contour to allow for some real

time evolution. This is done by gluing a cylinder section M̃
in between the southern and northern hemispheres, along
surfaces Σ− and Σþ (Fig. 2). The state on Σ− is prepared by
a Euclidean path integral over M−. It then evolves to Σþ
and closes at Mþ [42,43]. Lorentzian AdS M̃ is split into
sections M̃−, M̃þ along Σ. Performing a Wick rotation on
M̃�, manifolds M̃− ∪ M− and M̃þ ∪ Mþ describe state
preparation on Σ. However, there is nothing special about
Σ; we could have chosen another slice Σ0, e.g., a constant-
time surface of a Lorentz boosted observer. Wick rotating
M̃0

�, we have a path integral over the sphere, preparing
initial data on Σ0.
If Σ0 is related to Σ by an isometry then in the new

coordinates the metric will take the same form, as will
the initial data on Σ0. Consequently, δY is invariant,
ðδYgÞ0½x0ðxÞ� ¼ ðδYgÞðxÞ. The equations of motion, how-
ever, transform as δE0μν½x0ðxÞ� ¼ Λμ

γΛν
δE

γδðxÞ, where
Λμ
ν ¼ ð∂x0μ=∂xνÞ. Since dωE

bulkðδY; δÞ ¼ 0, we deduce

δE0μνðδYgÞ0μν½x0ðxÞ� ¼ Λμ
ρΛν

σδEρσδYgμνðxÞ ¼ 0: ð23Þ
Thus, demanding the constraint (21) holds for all maximal
slices Σ in different Lorentz frames means

Λμ
ρΛν

σδEρσδYgμν ¼ 0 ð24Þ

FIG. 2. We pick a different bulk Lorentzian slice Σ0 to partition
the two regions, in particular Σ0 could be the constant time surface
of a Lorentz boosted observer.
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for any rotation of Euclidean AdS. Together with the
Bianchi identities ∇μδEμν ¼ 0, this is enough to conclude
δEμν ¼ 0 holds everywhere in M. Hence, assuming CV
duality, the first law of complexity implies the linearized
Einstein’s equations around vacuum AdS.
Note we can easily accommodate higher derivative

gravities, with the volume replaced by the “generalized
volume” [53]. Also, we emphasize the bulk-boundary
symplectic form equivalence (16) holds for perturbations
over general states, not just around vacuum AdS. Then, as
suggested in [54] for EE, any asymptotically AdS space-
time obeying CV duality and the first law should satisfy
the full nonlinear Einstein equations. Thus, bulk gravity
emerges from boundary complexity.
An ensemble proposal of holographic complexity.—Thus

far we have focused on optimal flows. Here, we argue
suboptimal flows—those with more flux and prepare (more
complex) suboptimal TNs—must play a role in defining
holographic complexity beyond CV duality.
We propose a more general prescription using sub-

optimal TNs. We are partly motivated by the “maximin”
prescription [55] for computing EE, a two step algorithm
where one picks a slice Σ0, finds the minimal surface m0

A,
and then maximizes over all slices. Extrapolating to TNs,
one first finds the minimal number of cuts on a TN on a Σ0
and then maximize over all TNs in different Σ0 [56]:

SA ∼max
Σ0

min½number of cuts�: ð25Þ

A lesson is drawn from (25): for the computation of EEs,
not only the TN on the maximal slice plays a role but also
suboptimal TNs defined over other slices. This is particu-
larly crucial for dynamical setups. Thus, a more refined
measure of complexity capturing a notion of state inde-
pendence is one where all TNs are taken into account. In
terms of flows, optimal flows v prepare a TN on the
maximal slice while suboptimal flows v0 (those with higher
flux) prepare TNs over different slices Σ0. Thus, an
averaged measure of complexity accounting all TNs is
alternately given by averaging over suboptimal flows.
For specific states, e.g., static ones, the optimal TN is

enough to compute the full set of EEs since the associated
RT surfaces all lie on a constant-t maximal slice Σ, and
complexity is its volume. However, for generic out-of-
equilibrium settings, Σ cannot be foliated by HRT surfaces
in general. Consequently, appealing to state independence,
we need to consider TNs defined over all possible slices Σ0.
Since these TNs have different numbers of tensors and thus
different complexities, we must consider an appropriate
average over Σ0 to fully characterize the state. Concretely,
we should consider an ensemble over all possible TNs
defined over all Σ0. Formally,

Z ∼
Z

D½Σ0�e−1
ℏS½Σ0�; Σ0 ∈ WDW patch; ð26Þ

for a given measure of integration D½Σ0� and weight S½Σ0�
we leave unspecified. We introduced a control parameter
“ℏ” where small ℏ defines a saddle-point approximation,
where the maximal slice Σ emerges as a “classical” saddle
in the case of static spacetimes, for example, if S½Σ0�∼
vol½Σ0�. Last, ℏ is taken to be a covariant parameter which
takes different values depending on the background, e.g., ℏ
could be a timescale of the state, where for static cases
ℏ → 0, and ℏ ≠ 0 otherwise.
Assuming Eq. (26), we propose

C ∼
1

Z

Z
D½Σ0�vol½Σ0�e−ð1=ℏÞS½Σ0�; ð27Þ

for appropriate optimized choices of S, ℏ, and measure of
integration. When ℏ → 0 we recover CV duality, but
generally (27) gives a weighted average deviating from
CV. Alternatively, in terms of flows we define an average

vavg ∼
1

Z

Z
D½v0�v0e−1

ℏS½v0�; ð28Þ

which obeys ∇ · vavg ¼ 0, but relaxes the norm bound.
Discussion.—CV duality reformulated using Lorentzian

flows reveals complexity may be interpreted as the mini-
mum number of gatelines needed to prepare an optimal TN
discretizing the state, where more complex TNs are
prepared by suboptimal flows. To account for generic
TNs we propose complexity is to be given by a weighted
average over all Cauchy slices in the WDW patch.
Our proposal is similar to the holographic dual of the

path integral optimization definition of complexity [24,57],
where optimization is equivalent to maximizing an AdS
Hartle-Hawking (HH) wave function given by a Euclidean
path integral of a bulk gravity action over metrics induced
on a codimension-1 probe brane Q of tension T [58,59].
Via a saddle-point analysis, the maximization of the HH
wave function implies Q provides a constant mean curva-
ture (CMC) slicing of empty AdS. The tension provides a
measure of the complexity: T ∝ K ¼ 0 the path integral
complexity functional is optimized; CMC slices T ≠ 0
correspond to suboptimal TNs. Both proposals thus make
use of suboptimal TNs, and we suspect in some contexts
the two will coincide. Particularly, when Q foliates the
WDW patch the two proposals may be equal when Σ0 has
CMC. Alternatively, Lorentzian path integral complexity
was shown to behave as CA duality. It is worth deepening
this connection and seeing how it relates to other complex-
ity proposals [60–63].
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