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We demonstrate unprecedented accuracy for rapid gravitational wave parameter estimation with deep
learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze eight
gravitational wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and find very
close quantitative agreement with standard inference codes, but with inference times reduced from O(day)
to 20 s per event. Our networks are trained using simulated data, including an estimate of the detector noise
characteristics near the event. This encodes the signal and noise models within millions of neural-network
parameters and enables inference for any observed data consistent with the training distribution, accounting
for noise nonstationarity from event to event. Our algorithm—called “DINGO”—sets a new standard in
fast and accurate inference of physical parameters of detected gravitational wave events, which should
enable real-time data analysis without sacrificing accuracy.
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Introduction.—Since the first detection of a signal from a
pair of merging black holes [1], gravitational waves have
quickly emerged as an important new probe of gravitational
theory [2], neutron star physics [3], cosmology [4], and
black hole astrophysics [5]. These scientific successes were
made possible by a growing rate of detections by the LIGO
[6] and Virgo [7] observatories and their subsequent ana-
lysis and characterization as signals from merging compact
binary systems. The LIGO and Virgo Collaborations (LVC)
have now published results from over 50 such systems [8,9],
and this number promises to grow ever faster as detectors are
made more sensitive in the future [10].

Given a detection, Bayesian inference is used to char-
acterize the originating source [11]. This is based on having
models for the signals and the detector noise. For gravi-
tational waves, signal models take the form of waveform
predictions /() depending on the source parameters 6
(masses, location, etc.). Waveform models are based on
solutions to Einstein’s equations (and any relevant matter
equations) for the two-body dynamics and gravitational
radiation, using a combination of numerical relativity and
perturbative calculations [12-14] and phenomenological
fitting [14—16]. Detector noise is typically modeled as
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stationary and Gaussian, with some spectrum that can be
estimated empirically. Together, these “forward” models
give rise to the likelihood p(d|@) for the observed strain
data d, which is assumed to consist of a signal plus noise.
With the choice of a prior p(6) over parameters, the
posterior distribution is given via Bayes’ theorem,

P(do)p(®)
@ W

where p(d) is a normalizing factor called the evidence. The
posterior gives our belief about the source parameters,
given the observed data.

The task of inference is to characterize the posterior by
drawing samples from it. This can be accomplished with
stochastic algorithms like Markov chain Monte Carlo
(MCMC) methods. The LVC have developed software
tools such as LALINFERENCE [17] and BILBY [18-20] to
carry this out. However, these algorithms are computation-
ally expensive as they require many likelihood evaluations
for each independent posterior sample 6 ~ p(6|d), and each
likelihood requires a waveform simulation. An analysis
producing ~10* independent samples typically requires
millions of waveform evaluations and a total inference time
of hours to months, depending on the signal duration and
waveform model. More physically realistic waveform
models [21] are also more costly, so carrying out inference
for all events with the best models is an enormous
computational effort. When rapid results are desired—for
alerts to trigger electromagnetic follow-up of transient
phenomena [22] or when processing large numbers of

p(0ld) =
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events—accuracy usually has to be traded off for speed,
by restricting to a limited set of fast models [23,24] or
specialized inference algorithms [25-27].

In this Letter, we describe an alternative approach to
gravitational wave inference that delivers both dramatically
reduced analysis time and high accuracy, in stark contrast
to the trade-off intrinsic to standard algorithms. The basic
idea is to produce a large number of simulated datasets
(with associated parameters) and use these to train a type of
neural network known as a “normalizing flow” to approxi-
mate the posterior. The trained network can then generate
new posterior samples extremely quickly once a detection
is made. This bypasses the need to generate waveforms at
inference time, thereby amortizing the expensive training
costs over all future detections. The general approach of
building such “surrogate” inverse models is called neural
posterior estimation (NPE) [28-30] and is beginning to
see application in several scientific domains [31]. When
applied to gravitational waves, with all of the optimizations
we describe, we call the method deep inference for
gravitational wave observations (DINGO).

NPE and conventional methods both involve the same
inputs: a prior and a likelihood. A key difference, however,
is the way in which the likelihood is used: for conventional
methods, its density is evaluated, whereas for NPE it is
used to simulate data, i.e., d ~ p(d|@). This distinction is
important when dealing with nonstationary or non-
Gaussian detector noise, for which an analytic likelihood
is either expensive or unavailable. In this case, one could
nevertheless simulate data, in a noise-model-independent
way, by injecting simulated signals into real noise. Our
present focus is on speed and on validating DINGO on real
data with the common assumption of stationary-Gaussian
noise, but the ultimate aim of more accurate inference using
real noise should be kept in mind.

There have been several previous studies that applied
NPE or related approaches to gravitational waves [32-39];
see also [40]. However, most of these are limited in some
way: they either restrict the number of parameters or the
distributional form of the posterior, they do not analyze real
data, or there are clear deviations from results obtained
using standard algorithms. The best performance to date
was achieved in the study [36] by some of us. This was the
only study to infer all 15 parameters [41] of a binary black
hole (BBH) system in real data and demonstrate close
agreement to standard samplers. However, even that study
did not achieve full amortization, as it did not address the
fact that detector noise varies from event to event. Rather,
the neural network of [36] was tuned to the noise power
spectral densities (PSDs) of the detectors at the time of the
analyzed event, and it would require retraining for each new
event. We now present for the first time completely
amortized inference for BBHs using DINGO. This is
achieved by conditioning the neural network not only on
the event strain data, but also on the detector noise PSD,

which can be estimated using nearby data [17]. We also
achieve unprecedented accuracy thanks to a new iterative
algorithm for time shifting the coalescence times, as well as
various architecture improvements. We use our trained
networks to analyze all events in the first Gravitational-
Wave Transient Catalog (GWTC-1) [8] with component
masses greater than 10 My (our prior bound) and find
close (sometimes indistinguishable) quantitative agreement
with standard algorithms. This Letter sets a new standard
for rapid gravitational wave inference, which should enable
real-time gravitational wave science in the near future. It
shows that NPE has moved beyond toy models and is
competitive with conventional algorithms. More broadly,
it provides a demonstration of these new methods in a
realistic use case, which we hope will inspire wider ado-
ption in experimental science.

Method.—The central object of DINGO is the density-
estimation neural network, which defines a conditional
probability distribution ¢(0|d). This should be distin-
guished from the posterior p(6|d), which ¢(6|d) learns
to approximate through training. We use so-called norma-
lizing flows [43-45] to define a sufficiently flexible ¢(0|d)
via a d-dependent mapping f,:u +— 0 from a simple
“base” distribution 7(u),

q(0]d) = x[f3" ()] detJ -1|. (2)

If 7z(u) can be rapidly evaluated and sampled from, and if
fa1s invertible and has a simple Jacobian determinant, then
q(0]d) can also be rapidly evaluated and sampled from.
Following [36], we take z(u) to be multivariate standard
normal and f; as a composition of spline coupling flows
[46], each of which is defined with a neural network.
The overall structure of DINGO is illustrated in Fig. 1.
This contains three key enhancements compared to the
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FIG. 1. DINGO flow chart. The posterior distribution is
represented in terms of an invertible normalizing flow (orange),
taking normally distributed random variables u into posterior
samples 6. The flow itself depends on a (compressed) represen-
tation of the noise properties S, and the data d, as well as an
estimate 7; of the coalescence time in each detector /. The data are
time shifted by z; to simplify the representation. For inference,
the iterative GNPE algorithm is used to provide an estimate of z;,
as described in the main text.
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study [36]. First, since the data generation process depends
on the detector noise PSD S,,, we include this as additional
context to the neural network, i.e., ¢(6|d, S, ). This allows
us to tune the network at inference time to the PSD
estimated just prior to the event, corresponding to standard
“off-source” noise estimation [17]. An alternative would
be to estimate the noise “on-source” [47], but since we
consider only short-duration BBH events here, the off-
source approach is sufficient.

The second enhancement addresses the problem of high-
dimensional observed data by using an additional neural
network to first compress to a small number of features.
This network (called an “embedding network™) is trained
alongside the flow network. Our data are in the frequency
domain, between 20 and 1024 Hz, with 0.125 Hz reso-
lution; so, combined with the PSDs, this gives 24 096 input
dimensions for each of the two or three interferometers.
The first stage of the embedding network maps this linearly
to 400 components per detector. To provide an inductive
bias to extract signal information, we seed this layer with
the principal components of clean waveforms from
our training set and then allow these parameters to float
during training. Following this, a fully connected residual
network [48] compresses to 128 features, which are
provided to the flow.

Finally, we developed a new method to treat time
translations of the strain data. For standard algorithms,
inference of (a,d,1.) requires sampling over waveforms
with varying coalescence times #; in each detector I.
Likewise, for NPE, the network must learn to interpret
strain data with different #;. For frequency-domain data,
however, time translations correspond to local phase shifts,
which, although explicitly known, are challenging for
neural networks to learn. Indeed, this occupied much of
the network capacity in Ref. [36]. Our new approach—
called group equivariant neural posterior estimation
(GNPE)—Ieverages explicit knowledge of the time-
translation symmetry along with approximate knowledge
of #; to simplify the data representation and allow the
network to focus on more nontrivial parameters. For further
details see [49].

For GNPE, we train the network to infer 6 given
perturbed coalescence times z; and manually time-shifted
strain data d_;,. Using maximum likelihood estimation
[50], this means we minimize the loss function

L =E,)Eps,) Epaso.s,) Exsn)
[—log q(0]d_y,)-s1,+ Sn- 11(0) + 6t1)], (3)

with respect to the network parameters [51]. Here, E refers
to the expected value over the specified distribution, which
is evaluated stochastically using Monte Carlo draws. x(5t;)
is a uniform kernel used to perturb ¢,;. For inference, even
though we do not have direct access to ¢, all parameters
can be inferred using Gibbs sampling, starting with an
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FIG.2. P-P plot for 1000 injections. The legend shows the p
values of the individual parameters, with a combined p value
of 0.46.

approximate #; (obtained, e.g., using standard NPE): first,
convolve #; with (5t;) to obtain z;, then use the network to
infer a new estimate for #;; then convolve again and repeat.
We find that this converges after O(10) iterations.
Evaluating (3) requires sampling 8) ~ p(6) and s~
p(S,) and then simulating data d© ~ p(d|0), 5\). Aside
from the PSD sampling, this follows Ref. [36] very closely.
In particular, we use the same prior over parameters, with
my, my € [10,80] M. We train separate networks for the
noise distributions in the first (O1) and second (02)
observing runs of LIGO and Virgo, with PSD samples
estimated empirically from stretches of interferometer
noise data [52]. For Ol, we choose the distance prior
[100, 2000] Mpc. For O2, we train one network for loud
events with distance prior [100, 2000] Mpc and another
for quieter events with [100, 6000] Mpc. In addition to
these two-detector networks, we train a three-detector
network with distance prior [100, 1000] Mpc to analyze
GW170814. With future enhancements of network archi-
tecture we expect to cover the entire distance range with a
single network. Finally, as in Ref. [36], training data are
generated from a fixed set of spin-precessing, frequency-
domain waveforms, described by the IMRPhenomPv2
[16,53,54] model, but with extrinsic parameters and noise
realizations drawn randomly during training. With training
sets of 5x 10° waveforms, there is no indication of
overfitting. Training takes roughly 10 days on a single
NVIDIA A100. Further details on the networks and train-
ing are provided in the Supplemental Material [55].
Results.—As a first test, we evaluate DINGO on
data entirely consistent with the training distribution, i.e.,
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FIG. 3. Comparison of (a) detector-frame component mass
and (b) sky position posteriors from DINGO (colored) and
LALINFERENCE (gray) for eight GWTC-1 events. 90% credible
regions shown.

simulated waveforms in stationary-Gaussian noise. This is
an easier task than using observational data, which include
real signals in noise that is neither strictly stationary nor
Gaussian and therefore lie outside the training distribution.
We sample posteriors from 1000 simulated datasets and
construct a P—P plot (see Fig. 2). For each parameter, we
compute the percentile score of the true value within its
marginalized posterior, and then we plot the cumulative
distribution function (CDF) of these scores. For true
posteriors, the percentiles should be uniformly distributed,
so the CDF should be diagonal. Kolmogorov-Smirnov test
p values are indicated in the legend, with combined p value
of 0.46. This shows that DINGO is performing properly on
simulated data.

We now proceed to our main result, which is a demon-
stration of performance on real events. We perform infer-
ence on the eight GWTC-1 BBH events compatible with
our prior, using both DINGO and LALINFERENCE MCMC.
For DINGO, generation of 50 000 sample points with 30
GNPE iterations takes roughly 20 s. Comparisons of
inferred component masses and sky position for all events
show good agreement (see Fig. 3), including multimodality
for the sky position. The one exception is GW170104,
where the mass posterior is slightly flatter. Nevertheless,
90% credible intervals are in good agreement.

For quantitative comparisons, we compute the Jensen-
Shannon divergence (JSD) [56] between DINGO and
LALINFERENCE one-dimensional marginalized posteriors
(see Fig. 4). This is a symmetric divergence that measures
the difference between two probability distributions, with
values ranging from 0 to In(2) = 0.69 nat. We find a mean
JSD across all events and parameters of 0.0009 nat, which is
slightly higher than the variation (0.0007 nat) found between
LALINFERENCE runs with identical settings but different
random seeds [19]. By comparing such LALINFERENCE runs,
Ref. [19] also established a maximum JSD of 0.002 nat
for indistinguishability; our results are approaching this

R T

GW150914 - 0!8 1!1 012 018 012 Of3 0?5
GW151012- 2.7 16 01 09 04 02 0.5
GW170104- 64 26 02 04 0.7 0.1 0.7
GW170729- 0.9 15 04 6.3 02 0.2 1.0
GW170809- 0.5 08 0.1 05 02 0.1 04
GW170814- 1.2 13 0.2 15 02 02 04
GW170818- 1.6 13 02 1.1 1.0 02 1.9
GW170823- 0.5 06 0.1 09 02 02 04
FIG. 4.

events and parameters is 0.0009 nat.
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threshold, with two events below for all parameters and the
others with 1-3 parameters above. The slight visible dis-
agreement between mass posteriors for GW170104 is also
reflected in larger JSDs. For comparison, we note that PSD
variations (see Supplemental Material [55]) and the choice of
waveform model [19] both impact the JSD at a much higher
level (0.02 nat). Additional comparisons between samplers,
including posteriors for all events, are provided in the
Supplemental Material [55].

Conclusions.—In this Letter, we introduced DINGO and
applied it to perform extremely fast Bayesian parameter
inference for gravitational waves observed by the LIGO
and Virgo detectors. We analyzed eight GWTC-1 events
and showed excellent agreement with standard algorithms,
with inference times reduced by factors of 103 — 10*. This
was achieved by conditioning on the detector noise
characteristics and making a number of architecture and
algorithm improvements. We plan to release a public
DINGO code in the very near future.

A critical component of DINGO is a new iterative
algorithm—GNPE—to partially off-load the modeling of
time translations from the neural network. Although con-
vergence of GNPE may take 20 s, initial samples with
slightly reduced accuracy can, however, be produced in just
a few seconds by taking fewer iterations.

Going forward, the next steps are to extend the prior to
include longer-duration binary neutron star signals [57] (for
which rapid results are especially important to identify
electromagnetic counterparts) and to extend to more
physically realistic waveform models, which include higher
multipole modes and more accurate spin-precession effects
[21]. Long and complex waveforms are much more
expensive for standard algorithms, so the relative improve-
ment in performance should be even more significant. If
successful, this would also enable the routine use of the
most physically realistic waveforms, resulting in consis-
tently reduced systematic errors. These extensions will
likely require somewhat larger networks and improved data
representation or compression [58].

Another natural extension would be to study signals
without making the common stationary-Gaussian idealiza-
tion for the detector noise during the training stage. For
DINGO, performing inference with realistic noise is simply
a matter of training with simulated signals injected into real
noise realizations taken from detectors. Using real noise
should lead to improved accuracy that is not possible using
standard likelihood-based methods and would serve as an
excellent demonstration of the advantages of NPE. For
real-time analysis, it will also be necessary to develop
approaches to progressively retrain networks to keep pace
with changing data distributions during an observing run,
e.g., as detector sensitivity is improved. All of these
enhancements, particularly the treatment of nonstationary
noise, will be critical for extensions to future observatories
such as the Laser Interferometer Space Antenna.

Deep-learning tools are now ready to analyze the vast
majority of LIGO and Virgo events. In the past, the primary
challenge has been in obtaining sufficiently accurate
results, but with DINGO, we have now achieved this in
a realistic context. Through planned future extensions, we
expect that DINGO could become one of the leading
approaches to gravitational wave inference.
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