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The impact of the finite top-quark mass on the inclusive Higgs production cross section at higher
perturbative orders has been an open question for almost three decades. In this Letter, we report on the
computation of this effect at next-to-next-to-leading order QCD. For the purely gluonic channel, it amounts
to þ0.62% relative to the result obtained in the Higgs effective field theory approximation. The formally
subleading partonic channels overcompensate this shift, leading to an overall effect of −0.26% at a pp
collider energy of 13 TeV, and −0.1% at 8 TeV. This result eliminates one of the main theoretical
uncertainties to inclusive Higgs production cross section at the LHC.
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Introduction.—Gluon fusion is the dominant production
process for a standard model (SM) Higgs boson at the
Large Hadron Collider (LHC). Obviously, this makes a
firm understanding of the pertinent cross section mandatory
for current and future precision Higgs physics.
A comprehensive analysis of the theoretical prediction

for the inclusive gluon-fusion cross section has been
performed in Ref. [1]. It arrives at an overall theoretical
uncertainty of about �5%, arising from six different
sources, each of which contributes roughly 1% [2].
Thus, a significant reduction of the theoretical uncertainty
cannot be achieved by eliminating a single source, but
entails efforts on several of them.
Indeed, two of these sources have recently been

addressed. The first one was due to the fact that the next-
to-next-to-next-to-leading order (N3LO) QCD corrections
were based on their expansion around z≡ 1 −M2

H=ŝ ¼ 0
[3], giving rise to an uncertainty from the truncation of this
expansion at finite order in z. Meanwhile, however, the exact
dependence on z has become available [4]. The second one
originated from the use of a factorization formula for the
mixed QCD-electroweak effects [5,6]. Recent progress
indicates that this issue will be settled in the near future
[7–10]. On the other hand, two other sources of uncertainty,
namely the missing higher-order terms in both the partonic
cross section and the parton density functions (PDFs), will
require further technological advances before one can expect
significant improvements.
The two remaining sources of uncertainty identified in

Ref. [1] are related to quark mass effects. Both of them

originate from the fact that the gluon-fusion process is
induced by quark loops. The NnLO QCD corrections
therefore involve an (nþ 1)-loop calculation with at least
two external mass scales (the Higgs and the quark mass,
and possibly other quark masses from additional closed
loops). While the next-to-leading order (NLO) result for
arbitrary quark masses has been available for almost three
decades [11], radiative corrections beyond this order were
mostly restricted to top-loop induced terms [12–14], which
make up around 95% of the total cross section in the SM.
Their exact evaluation is the topic of the current Letter.
Progress in approximating bottom- and charm-quark effects
beyond NLO has been made recently in Refs. [15–19].
It turns out that the dominant effect of the top-loop

induced terms can be accounted for in the so-called Higgs
effective field theory (HEFT) approximation, which is
defined by multiplying the leading order (LO) cross section
by the higher-order (HO) correction factor in the limit of an
infinite top-quark mass,Mt → ∞ [20,21], which we take to
be defined in the on-shell scheme throughout this Letter:

σHOHEFT ¼
�
σHO

σLO

�
Mt→∞

σLO: ð1Þ

In this limit, the top-quark loop assumes the form of an
effective Higgs-gluon vertex [22], thus reducing the num-
ber of associated loop integrations by one. At NLO, Eq. (1)
approximates the full hadronic cross section for a SM
Higgs boson to about 0.1%. This is remarkable for several
reasons. On the one hand, the assumption that Mt is the
largest dimensional scale of the process is invalid over a
large range of the partonic center-of-mass energy

ffiffiffî
s

p
,

which reaches up to the collider energy
ffiffiffi
s

p
≫ Mt. On

the other hand, less than 50% of the total cross section is
due to the LO contribution, which means that the Mt → ∞
approximation is applied to more than half of the total cross
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section. And finally, for the non-gg partonic channels such
as qg or qq̄ the HEFTapproximation largely fails to capture
the top-mass effects at NLO. It is only due to the strong
numerical dominance of the gg channel that this hardly
affects the total hadronic cross section.
Qualitatively, the high accuracy of the HEFT result can be

explained by the suppression of the large-ŝ region by the
PDFs. Also a dominance of the soft region in the total cross
section could be made responsible for the small impact of the
top-mass effects at higher orders. However, a solid quanti-
tative understanding of this observation is still missing. The
main reason for this is that higher-order terms in 1=Mt
introduce positive powers of ŝ and thus enhance the large-ŝ
region. Consequently, such terms cannot serve as uncertainty
estimates of the heavy-top limit in a straightforward way.
So far the only estimate of top-mass effects beyond the

HEFT approximation is therefore based on a combination
of the 1=Mt expansion with the leading terms in the large-ŝ
limit [23–26], from which an uncertainty of 1% due to top-
quark mass effects was derived [1].
In this Letter, we eliminate this uncertainty by reporting

on the exact calculation of the top-quark mass effects in
hadronic Higgs production at next-to-next-to-leading order
(NNLO) QCD.
Calculation.—The calculation requires the combination

of the purely virtual three-loop corrections to the cross
section with the contributions from the real emission both of
a single parton (quark q, antiquark q̄, or gluon g) at two-loop
level, and of two partons at one-loop level. Factorization
scheme dependence demands to take all possible partonic
initial states into account. This is also important in the light
of the failure of Eq. (1) for the non-gg channels as mentioned
before, combined with the fact that they increase by roughly
100% from NLO to NNLO within HEFT.
Calculations of all the relevant amplitudes, including

their full top-mass dependence, have already been reported
on in the literature. In fact, the double-real emission
amplitudes have been known for two decades [27].
Today, they can be obtained with public automated tools,
and we use OpenLoops [28] for this purpose.
Complete results for the three-loop virtual amplitude are

very recent. Its full top-mass dependence at NNLO has
been first obtained with the help of Padé approximants
constructed from the heavy-top expansion and the non-
analytic terms at the threshold ŝ ¼ 4M2

t [29]. For the
present study, we use a numerical result that was derived
by expressing the amplitude in terms of master integrals,
and subsequently evaluating them numerically [30]. Note

that a fully analytic result is only available for the part
which involves light (massless) fermion loops [31].
The main obstacle when calculating the total cross

section with full top-mass dependence are the two-loop
single-emission amplitudes. Unfortunately, existing results
are not suitable for our purpose. After a number of
approximate results [32,33], the amplitudes have been
evaluated including their full top-mass dependence in the
context of the Higgs-plus-jet production [34,35], but their
numerical accuracy is insufficient, in particular since we
need them also in the soft and collinear regions.
Semianalytic results for the master integrals in the form
of one-dimensional generalized power series have been
presented as well [36]. In the case of a lack of a public code
for these results, it would be necessary to implement the
algorithm of Ref. [36] from scratch, which is a very
demanding task.
In order to arrive at the required numerical precision, we

have calculated the single-emission contribution by follow-
ing the strategy of Ref. [30], which itself is based on
Ref. [37]. In short, the amplitudes have been reduced to a
set of master integrals with the help of the public software
Kira⊕Firefly [38–42]. Algebraic manipulations have been
simplified by setting the ratio of the top-quark and Higgs-
boson mass to a fixed value of M2

t =M2
H ¼ 23=12, corre-

sponding to Mt ≈ 173.055 GeV for MH ¼ 125 GeV. The
same software has also been used to derive a system of first-
order homogeneous linear differential equations in Mt
satisfied by the master integrals. Using initial conditions
in the heavy-top limit, obtained with a diagrammatic large
mass expansion, the system of differential equations has
been solved numerically at a very large number of phase-
space points. As a result, the amplitudes have been obtained
on a dense grid that could, in principle, be used for
interpolation. However, since the grid does not extend to
the boundaries of the phase space where the amplitudes
diverge, direct inclusive phase-space integration requires a
nontrivial extrapolation to the singular soft and collinear
regions.
In order to evaluate the phase-space integrals, the

amplitudes have been regulated in the soft and collinear
limits by subtracting their counterparts in HEFT. For
instance, for the gg → gH process assuming jt̂j < jûj, with
t̂; û the partonic Mandelstam variables, the contraction of
the two-loop, jMð2Þi, and one-loop, jMð1Þi, amplitudes,
both treated as vectors in color and spin space, has been
replaced with

hMð1Þ
exactjMð2Þ

exactijregulated ≡ hMð1Þ
exactjMð2Þ

exacti −
�
hMð1Þ

HEFTjMð2Þ
HEFTi þ

8παs
t̂

�
Pð0Þ
gg

�
ŝ

ŝþ û

��
hFð1ÞjðFð2Þ

exact − Fð2Þ
HEFTÞi

�
; ð2Þ
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with jF1;2i the respective amplitudes for the gg → H
process, and hPð0Þ

gg ðzÞi the spin-averaged Altarelli-Parisi
splitting function:

hPð0Þ
gg ðzÞi ¼ 2CA

�
z

1 − z
þ 1 − z

z
þ zð1 − zÞ

�
: ð3Þ

It is not difficult to convince oneself that
hMð1Þ

exactjMð2Þ
exactijregulated is devoid of soft and collinear

singularities. We use an analogous expression for the qg →
qH process with

−hPð0Þ
qq ðzÞi ¼ −TF½1 − 2zð1 − zÞ�; ð4Þ

instead of hPð0Þ
gg ðzÞi, while there is no splitting-function

contribution in the qq̄ → gH case. The regulated ampli-
tudes for the three processes are illustrated in Fig. 1. Notice
that the amplitudes for the first two processes are still
singular in the collinear limit, but these singularities are
integrable and occur very close to the edge of the phase

space. In order to obtain a reliable inclusive phase-space
integral, we approximate the regulated amplitudes in the
limit t̂ → 0 with the ansatz a ln jt̂j þ b, for each value of z,
and fit the coefficients to the available numerical values of
the amplitudes at jt̂j > jt̂0j. The ansatz is subsequently
integrated analytically in the region 0 > jt̂j > jt̂0j. The
uncertainty of the procedure is estimated by using the
more general ansatz, a ln jt̂j þ bþ ct̂ ln jt̂j þ dt̂.
Having the amplitudes for all contributions at hand, it is

necessary to actually integrate them in order to obtain the
cross section contributions. Since the effect of the top-
quark mass beyond the heavy-top limit is expected to be
small, we directly evaluate the difference of the cross
sections at each phase-space point:

Z
ðdσðNÞNLOexact − dσðNÞNLOHEFT Þ; ð5Þ

rather than the cross sections themselves separately. This
has the additional advantage that ultraviolet and infrared
divergences in the form of 1=ϵk poles in the dimensional
regularization parameter, ϵ, as well as soft and collinear
singularities first appear at the NNLO level. Hence, for
example, the NLO contributions to the difference are well
defined separately for the virtual and real corrections. This
delay of the appearance of divergences and singularities is
one of the reasons for the smallness of the top-quark mass
effects beyond HEFT.
Ultimately, Eq. (5) is evaluated with Monte Carlo

methods using the sector-improved residue subtraction
scheme [43–45] implementation in the C++ library
Stripper. Note that it suffices to use the subtraction term
in the square brackets of Eq. (2) in order to cancel the IR
divergences with the double real emission. Since this
subtraction term is given in terms of compact analytic
formulae [46], it allows for a fast and numerically stable
Monte Carlo integration. The phase-space integration and
PDF convolution of the rhs of Eq. (2) is done separately.
Adding it to the output from Stripper cancels the subtraction
term contribution and leads to the final result.
Results.—Table I collects our main results. It shows the

hadronic cross section σNNLOHEFT in the HEFT approximation
through NNLO QCD, including only top-loop induced
contributions and without electroweak effects, and sepa-
rately for the partonic subchannels (qq denotes the sum
over all quark initial states). The absolute numbers are split
into the contributions from the individual orders in αs. The
uncertainties indicate the Monte Carlo integration errors.
While the finite-mass effects are small and positive for

the gg channel (and largely independent of the collider
energy), the relative effect on the other channels is negative
and much larger. For the pure quark channels, the HEFT
approximation is off by more than 100% at each perturba-
tive order. Taken individually, this would already exhaust
the uncertainty estimate associated with the missing mass

FIG. 1. Finite part of the regulated amplitudes, 2RehMð1Þ
exact

jMð2Þ
exactijregulated, defined in Eq. (2), for the processes gg → gH

(first row), qg → qH (second row) and qq̄ → gH (third row),
separated into the region below (left column) and above (right
column) threshold for intermediate top-quark pair production,
ŝ ¼ 4M2

t . A factor of α4s=ð4πÞ2 · 1=v2 · ŝ, with v the Higgs-field
vacuum expectation value, has been factored out. The renormal-
ization scale has been set at μR ¼ MH=2. The kinematics is
parametrized with z≡ 1 −M2

H=ŝ and λ≡ t̂=ðt̂þ ûÞ. ŝ, t̂, and û are
the standard Mandelstam variables.
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effects of Ref. [1], despite the fact that these channels
contribute to the total cross section only at the 1%–2%
level. In fact, we find that the absolute values of all finite-
mass effects add up to about 1.5%–1.6% at NNLO.
However, the cancellations among the individual channels
and perturbative orders decrease this number to −0.1% at
8 TeV, and −0.26% at 13 TeV.
Conclusions and outlook.—A calculation of the hadronic

Higgs production cross section including the full top-mass
dependence at NNLO was reported. It results in a slight
decrease relative to the result in the HEFTapproximation of
−0.26% at 13 TeV, and −0.1% at 8 TeV collider energy.
This result confirms and at the same time eliminates the
commonly accepted uncertainty estimate arising from the
lack of knowledge of these effects.
Our calculational techniques are also applicable to the

bottom- and charm-loop induced terms and the associated
interference with the top-loop terms. This is deferred to
future work.
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