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Correlations between the spins of top-quark pairs produced at a collider can be used to probe quantum
entanglement at energies never explored so far. We show how the measurement of a single observable can
provide a test of the violation of a Bell inequality at the 98% C.L. with the statistical uncertainty of the data
already collected at the Large Hadron Collider, and at the 99.99% C.L. with the higher luminosity of the
next run. Detector acceptance, efficiency, and migration effects are taken into account. The test relies on the
spin correlations alone and does not require the determination of probabilities—in contrast to all other tests
of Bell inequalities.
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Introduction.—A characteristic property of a quantum
system is the presence of quantum correlations (entangle-
ment) among its constituents not accounted for by classical
physics (for a review, see [1]), leading to the violation of
specific constraints, the so-called Bell inequalities [2,3].
The violation of Bell inequalities requires the presence of
the strongest version of quantum nonlocality; although
weaker forms of nonclassical correlations have been
identified, they play no role in our considerations.
Quantum correlations can readily be studied in a bipartite

system made of two spin-1=2 particles [4]. This physical
system is routinely produced at colliders and the spin
correlations among quark pairs have been shown [5,6] to be
a powerful tool in the physical analysis—limited aspects of
which have been already studied by the experimental
collaborations at the LHC on data at 7 [7], 8 [8], and
13 TeV [9] of center-of-mass (c.m.) energy.
In this Letter, we focus on top-antitop pairs produced at

the Large Hadron Collider (LHC) and identify a single
observable probing the presence of quantum correlations
among their spins. The measurement of such an observable
provides a test of a (generalized) Bell inequality.
Many experiments have been performed to test analo-

gous inequalities in various quantum systems involving
photons and atoms [4,10–13]. Similar tests in the high-
energy regime of particle physics have been suggested by
means of eþe− collisions [14], neutral meson physics
[15,16], positronium [17], charmonium decays [18], and

neutrino oscillations [19]. No test has so far been performed
at the high energies made available by the LHC—even
though some preliminary work has been done in [5,6] and
more recently in [20]. In particular, we build on the results
of [20] in which the entanglement of the top-quark pairs
and the kinematical regions where it could be maximal
were identified and explicitly discussed.
Let us stress that all these tests involve the direct

measurement of the joint probabilities entering the various
inequalities and therefore might be affected by the so-called
loopholes, depending on the specific characteristics of the
used setups. Our approach is quite different and unexplored:
the focus is not on the probabilities of joint events, specifi-
cally top-quark pair spin projectionmeasurements, but rather
on their mutual spin correlations. Such a measurement of
correlations will provide evidence against a whole class of
local completions of quantum mechanics by explicitly
exposing their internal inconsistency. In order to bevalidated,
these classical theories will need to reproduce both the
probabilities entering the Bell inequality and the averages
of the spin correlation matrix through the presence of
auxiliary stochastic variables and do that both at atomic
energies and in the extreme relativistic setting of proton
collisions at the LHC.
Reformulating the actual determination of the selected spin

observable into a statistical test,we showhow thevalue of this
observable can be extracted from the events and the violation
quantified at the confidence level (C.L.) of 98%with the data
already collected by the experimental collaborations at the
LHC and 99.99% C.L. (4σ significance) with the higher
luminosity of the next run. Detector acceptance, efficiency,
and migration effects have been taken into account.
Methods.—The quantum state of a two spin-1=2 pair, as

the one formed by a top-quark pair system, can be
expressed by the density matrix
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þ
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Cijðσi ⊗ σjÞ
�
; ð1Þ

where σi are Pauli matrices, 1 is the unit 2 × 2matrix, while
the sums of the indices i, j run over the labels representing
any orthonormal reference frame in three dimensions. The
real coefficients Ai ¼ Tr½ρðσi ⊗ 1Þ� and Bj ¼ Tr½ρð1 ⊗
σjÞ� represent the polarization of the two spins, while the
real matrix Cij ¼ Tr½ρðσi ⊗ σjÞ� gives their correlations. In
the case of the top-quark pair system, Ai, Bj, and Cij are
functions of the parameters describing the kinematics of the
quark pair production.
In the c.m. reference frame of the top-quark pair system

as produced at a pp collider, the two spin-1=2 quarks fly
apart in opposite directions. One can then extract the
probability Pð↑n̂;−Þ of finding the spin of one quark in
the state ↑n̂, with the projection of the spin along the axis
determined by the unit vector n̂ pointing in the up direction.
Similarly, one can consider double probabilities, like
Pð↑n̂;↓m̂Þ, of finding the projection of the spin of the
quark along the unit vector n̂ pointing in the up state, while
the companion antiquark has the projection of its spin along
the direction of a different unit vector m̂ pointing in the
down state.
In classical physics, these probabilities involve averages

over suitable distributions of variables and obey the
following (generalized) Bell inequality [11]:

Pð↑n̂1 ;↑n̂2Þ − Pð↑n̂1 ;↑n̂4Þ þ Pð↑n̂3 ;↑n̂2Þ þ Pð↑n̂3 ;↑n̂4Þ
≤ Pð↑n̂3 ;−Þ þ Pð−;↑n̂2Þ; ð2Þ

where n̂1, n̂2, n̂3, and n̂4 are four different three-dimen-
sional unit vectors determining four spatial directions along
which the spins of the quark and antiquark can be
measured. In quantum mechanics the same probabilities
are computed as expectation of suitable spin-observable
operators in the state (1), so that the previous inequality
reduces to the following constraint:

jn̂1 · C · ðn̂2 − n̂4Þ þ n̂3 · C · ðn̂2 þ n̂4Þj ≤ 2; ð3Þ
involving only the spin correlation matrix Cij and not the
polarization coefficients Ai and Bj.
In order to test the Bell inequality in Eq. (3), one needs to

experimentally determine the matrix C and then suitably
choose four spatial directions n̂1, n̂2, n̂3, and n̂4 that
maximize the left-hand side of (3). In practice, there is
no need to optimize the choice of n̂i: this maximization
process has already been performed in full generality in
Ref. [12], for a generic spin correlation matrix. Indeed,
consider the matrix C and its transpose CT and form the
symmetric, positive, 3 × 3 matrix M ¼ CTC whose three

eigenvalues m1, m2, m3 can be ordered by decreasing
magnitude: m1 ≥ m2 ≥ m3. The two-spin state density
matrix ρ in (1) violates the inequality (3), or equivalently
(2), if and only if the sum of the two greatest eigenvalues of
M is strictly larger than 1, that is

m1 þm2 > 1: ð4Þ
In other words, given a spin correlation matrixC of the state
ρ that satisfies (4), there are for sure choices for the vectors
n̂1, n̂2, n̂3, n̂4 for which the left-hand side of (3) is larger
than 2.
It should be stressed that the above formulation, based on

the relation (2), departs from the more standard approaches
adopted in testing Bell inequalities, in particular in quan-
tum optics. While in the standard, direct tests one needs to
experimentally determine the expectation values of spin
observables entering the Bell inequalities, in the above,
indirect approach the actual measure of probabilities is
avoided, in favor of the determination of the spin corre-
lation matrix C—the entries of which can be measured by
studying the kinematics of the quark-antiquark decay
products [6].
In the recent analysis [9], the spin correlations of the top-

quark pairs produced at the LHC are analyzed but only after
being averaged over a large portion of phase space; the
values obtained for the entries of C are in agreement with
the inequality (3), for any choice of the four vectors n̂i. This
agreement is the consequence of the averaging procedure
(mixing) that unavoidably reduces the entanglement con-
tent of the density matrix ρ.
On the other hand, the study in [20] suggests that by

focusing on specific, small regions of the phase space, the
entanglement of the top-quark pair state could be close to
maximal (see also [21]) and the Bell inequality in Eq. (2)
could be violated at the maximal level.
Results.—The sum of the eigenvalues m1 þm2 provides

an observable whose value, as extracted from the data, tests
whether the Bell inequality in Eq. (3) is violated or not. To
compute this observable we collect all the entries of the
correlation matrix C as given in the process

pp → tþ t̄ → l�l∓ þ jetsþ Emiss
T ; ð5Þ

where l ¼ e, μ are taken only in different-flavor combi-
nations, in order to better connect with experimental
measurements in this channel. Emiss

T stands for the trans-
verse missing energy.
We simulate full matrix elements for the top quark

production and decays through the decay chain formalism
built into MADGRAPH5 [22], which embeds full spin
correlations and Breit-Wigner effects, thus excluding only
nonresonant diagrams. Within the standard model we
consider gluon (gg) and quark (qq̄) initiated top-quark pair
production at leading order in the strong and electroweak
couplings, using the NNPDF23 [23] leading order parton
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distributions set and within the four flavor number scheme,
thus fully taking into account for bottom quark mass
effects. Next-to-leading order corrections in the strong
coupling are known to be small on the largest entries of
C: at the LHC energies their impact is less than 2% [5], and
will be neglected in the following. We assume a c.m. energy
of 13 TeV, setting both the renormalization and factoriza-
tion scales to the sum of the transverse energies of the final-
state particles.
We follow [6] for the choice of orthonormal basis for the

matrix C of Eq. (1). The unit vectors r̂ and n̂ are built
starting from the direction of flight k̂ of the top quark in the
top pair c.m. frame with respect to one of the proton beams
directions in the laboratory frame p̂:

p̂ ¼ ð0; 0; 1Þ; r̂ ¼ 1

r
ðp̂ − yk̂Þ; n̂ ¼ 1

r
ðp̂ × k̂Þ; ð6Þ

(see Fig. 1) where

y ¼ p̂ · k̂ ¼ cosΘ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
; ð7Þ

and Θ represents the top-quark scattering angle. The
correlation matrix C can be experimentally accessed
through the angular spin correlations of the tt̄ leptonic
decays—whose directions of flight in the t and t̄ rest frames
are described, respectively, by the unit vectors l̂�. These
angular spin correlations are determined by properly
averaging the products ξab ¼ cos θaþ cos θb−, where we
defined the quantities

cos θaþ ¼ l̂þ · â and cos θb− ¼ l̂− · b̂; ð8Þ

and the labels a and b ∈ fk; n; rg follow the conventions of
Table I for the choices of reference axes. Indeed one can
show that, in the absence of acceptance cuts, the elements
of the 3 × 3 matrix C can be expressed as [6]

Cab½σðmtt̄; cosΘÞ� ¼ −9
1

σ

Z
dξab

dσ
dξab

ξab; ð9Þ

with the residual dependence of the cross section σ on
cosΘ and the invariant mass mtt̄ of the top-quark pair
system being understood. The integral of Eq. (9) represents
precisely the average of the products ξab taken over the
leptonic angular phase space.
In order to fully take advantage of Eq. (9), the event

generation was performed removing any possible kin-
ematic cuts, both in production and decay. The diagonal-
ization of the matrix C, needed to test Eq. (4), can be
performed as a function of mtt̄ and Θ.
The result of this procedure is shown inFig. 2,whose event

statistics benefits from the intrinsic initial-state symmetry
Θ → π − Θ. The binning choice represents the best com-
promise between the expected event statistics at the LHC and
the unavoidable dilution of entanglement effects coming
from averaging ξ in bigger portions of phase space.
We can identify in Fig. 2 two regions where (4) holds,

one at mtt̄ close to threshold, and another at mtt̄ ≳ 0.9 TeV
and 2Θ=π ≳ 0.7. Of these two regions, only the one at large
mtt̄ presents a constructive sum of the qq̄ and gg contri-
butions, both giving rise to a top-quark pair state close to a
pure, maximally entangled state [6,20], and therefore
increase m1 þm2. In the other region close to threshold,
qq̄ events produce a mixed state and dilute the gg pure
maximally entangled state—even if the qq̄ contribution is
subdominant in terms of cross section rates. This difference
explains the higher values of m1 þm2 in the top right

TABLE I. Notation for the labels a, b and corresponding choice
of reference axes, following the definitions of Eq. (6).

a, b â b̂

k k̂ −k̂
n sgnðyÞn̂ −sgnðyÞn̂
r sgnðyÞr̂ −sgnðyÞr̂

FIG. 1. Kinematics and coordinate systems used in the analysis.
The t and t̄ rest frames are reached from the tt̄ center of mass
frame by rotation-free boosts.
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FIG. 2. Values of the observable m1 þm2 in the phase space of
the invariant mass mtt̄ vs the scattering angle Θ. The last bins in
mtt̄ include overflow events. Bins in the upper right corner have
the largest values of m1 þm2 and are selected for testing the
violation of the Bell inequality.
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corner of Fig. 2, where m1 þm2 is expected to reach a
value as large as 1.6.
In order to assess to what extent the values of m1þ

m2 > 1 can realistically be used to prove a violation of the
generalized Bell inequalities Eq. (3), we study the impact
on their determination of statistical uncertainties due to
detector resolution, acceptance, efficiency, and migration
effects. To this aim, we reformulate the problem into a
statistical test of the null hypothesis fH0∶m1 þm2 ≤ 1g.
We compute the significance of the corresponding outcome
at the LHC with 139 fb−1, the full Run II luminosity, by
performing ten new, independent simulations of the process
in Eq. (5), with fast simulation of the ATLAS detector using
the DELPHES [24] framework.
We require at least two anti-kt jets with R ¼ 0.4 and at

least one b-tagged jet, all with transverse momentum pT >
25 GeV and rapidity jηj < 2.5. Similarly, both e� and μ�
leptons are required to have pT > 20 GeV and jηj < 2.47.
The neutrino momenta from the dileptonic decay are not
directly detectable, since only their sum can be inferred
through the missing transverse energy ET

miss of the event.
The t and t̄momenta need thus to be reconstructed using the
neutrino weighting technique [25]. With this method, the
sums of the momenta of the candidate reconstructed neu-
trinos, charged leptons, and candidate b jets are constrained
to satisfy four equations on the invariant mass of the two
candidateW bosons and top quarks.The possible solutions of
this unconstrained system are assigned a weight w. The
solutionwhichmaximizesw is eventually used to reconstruct
the t and t̄momenta for that event. This procedure allows us
to determine the reconstructed distributions which are
eventually corrected for detector resolution and acceptance
effects using a simplified unfolding procedure. The good
agreement between our response matrix and those published
for comparable processes [26] shows that migration effects
have been properly simulated.
Tuning such pseudoexperiments to have a statistics equal

to the one expected with present LHC luminosity, we can
take the resulting standard deviations si on m1 þm2 as the
predicted statistical uncertainty, with detector effects
included. In testing the hypothesis, we use a standard χ2

statistical test,

χ2 ¼
X
i

ð1 −mi
1 −mi

2Þ2
s2i

; ð10Þ

where the sum runs over the set of bins that maximize the
standard model expected significance for m1 þm2 > 1.
We find that, under such conditions, the null hypothesis

and the violation of Eq. (3) can be assessed at the 98% C.L.
with present Run II luminosity. Moreover, after rescaling
this result by the projected luminosity of the LHC full Run
III, we expect that it will be possible to test the violation at
the 99.99% C.L. (4σ significance).
While systematic uncertainties associated with the

unfolding procedure itself are known to be negligible

[26], the results hereby presented do not include other
theoretical and experimental systematic effects, the inclu-
sion of which is beyond the scope of the present Letter
since it would require a more detailed simulation both of
the detector and of the collisions conditions, which is only
possible for the experimental collaborations.
Conclusions.—We have shown that the measurement of

a single, suitable defined observable of the top-quark pair
system can be used to ascertain quantum correlations
among the spins of two quarks and in turn test a Bell
inequality with the data already collected at the LHC. This
test can provide clear evidence for quantum mechanics in
an energy range never explored before.
Testing Bell inequalities at high-energy colliders differs

from themore familiar tests performed using quantum optics
experiments. In the latter, the request of Bell locality can be
easily achieved by using spin polarizationmeasurements that
are spacelike separated; these measurements cannot influ-
ence each other, so that the two events have independent
statistics. It is not possible to follow the sameprocedure in the
case of the top-quark system because of the obvious
restrictions of the detectors employed at the LHC.
Nevertheless, there are advantages in studying Bell’s

inequalities in high-energy settings along the lines dis-
cussed in this Letter. In quantum optics tests, to avoid so-
called loopholes connected to the lack of control of the
number of pairs produced that actually impinge in the
detectors, and other inevitable inefficiencies, one is gen-
erally forced to use inequalities more involved than (2).
Although loophole-free tests of Bell inequalities have been
recently performed in quantum optics [27,28], none of
these problems affect the (indirect) Bell test presented
above, as it reduces to the study of the spin correlation
matrix C, without the need of any a priori commitment
about efficiencies of detectors.
We believe that our results will stimulate additional

analyses to test Bell inequalities by means of the actual
experimental data collected at LHC and motivate further
investigations on other possible tests of quantummechanics
at high-energy colliders.
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