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We generalize the thermodynamic uncertainty relation (TUR) and thermodynamic speed limit (TSL) for
deterministic chemical reaction networks (CRNs). The scaled diffusion coefficient derived by considering
the connection between macro- and mesoscopic CRNs plays an essential role in our results. The TUR
shows that the product of the entropy production rate and the ratio of the scaled diffusion coefficient to the
square of the rate of concentration change is bounded below by two. The TSL states a trade-off relation
between speed and thermodynamic quantities, the entropy production, and the time-averaged scaled
diffusion coefficient. The results are proved under the general setting of open and nonideal CRNs.
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Introduction.—It has been a fundamental question
whether there are universal laws in nonequilibrium systems
or processes like equilibrium thermodynamics. In the last
two decades, our understanding of the thermodynamic
structure of nonequilibrium mesoscopic systems has been
substantially gained with the aid of stochastic thermody-
namics [1,2].
The following are two examples of discoveries made

by stochastic thermodynamics. One is thermodynamic
uncertainty relation (TUR) [3,4]. A TUR states a trade-
off relation between a relative fluctuation and dissipation.
The former is typically evaluated by the diffusion constant
D and a current J as 2D=J2, while the latter is given by the
entropy production rate σ. The original TUR shows the
trade-off relation by an inequality Q ≔ ð2D=J2Þσ ≥ 2 [3].
Subsequently, various variants in mesoscopic systems
[5–19] and an extension to quantum systems [20] have
been developed. The other example is a thermodynamic
speed limit (TSL) [21–24]. A TSL gives a lower bound to
the time it takes for a system to change using thermody-
namic quantities such as the entropy production. TSLs
typically indicate a universal trade-off between speed and
dissipation. Speed limits (SLs) were originally developed
for microscopic systems described by quantum mechanics
[25,26]. To date, many SLs have been found by using
mathematically elaborated methods [27–37].
However, the universal thermodynamic principles, TUR

and TSL, have been restricted to meso- or microscopic

systems described by stochastic thermodynamics or
quantum mechanics. Whether such principles hold in
other nonequilibrium systems, like deterministic chemical
reaction networks (CRNs), is nontrivial. Chemical thermo-
dynamics has been an essential thermodynamic theory
of nonequilibrium systems since before the birth of
stochastic thermodynamics [38–40]. Remarkably, the origi-
nal derivation of TUR is obtained in a stochastic model of
enzymatic reaction [3]. Mesoscopic theory of chemical
reactions can be described by stochastic thermodynamics
[41,42], while macroscopic theory, e.g., thermodynamic
theory of biochemical reaction networks, is not [40,43].
Because of their deep connection [44,45], wisdom of
stochastic thermodynamics is still useful for macroscopic
chemical thermodynamics [35,46–51]. However, the latest
knowledge of stochastic thermodynamics, such as TUR
and TSL, has not been sufficiently considered in chemical
thermodynamics.
In this Letter, we obtain a TUR and a TSL in determin-

istic CRNs by focusing on a relationship between the meso-
and macroscopic theory of chemical reactions. In both the
TUR and TSL, the intrinsic fluctuations of CRNs play an
important role. The fluctuations in chemical reactions get
smaller when the size of the system increases, as shown in
Fig. 1. However, they can be considered in macroscopic
CRNs by scaling by the volume (the scaled diffusion
coefficient D̃ in Fig. 1). We obtain a TUR between this
measure of fluctuations D̃, the rate of concentration change,
and the entropy production rate. This measure of fluctua-
tions is also important in the TSL, which shows a relation
between speed and thermodynamic quantities, the scaled
diffusion coefficient, and the entropy production. These
results are proved under highly general settings used in
recent studies [47,51]. We illustrate the TUR and TSL in
concrete models of CRNs.
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Setup.—We examine open CRNs that consist of N þ N0
chemical species. Within them, we assume that the con-
centrations of N0 species are controlled externally. We
denote the N kinds of internal species by Xiði ∈ SX ≔
f1;…; NgÞ, and denote the other chemostatted species by
Yiði ∈ SY ≔ fN þ 1;…; N þ N0gÞ. Here, we define SX
and SY as the index sets of the two kinds of species. We
may use α to collectively represent X and Y. That is,
αi means Xi if i ∈ SX, and vice versa. Chemical reac-
tion networks have M reversible reactions labeled by
ρ ∈ R ≔ f1;…;Mg. Each reaction has two directions of
reaction since it is reversible. We call one of the two the
forward reaction and the other the backward reaction. We
denote the number of αi involved in the ρth forward
reaction by ναiρ and that involved in the backward reaction
by καiρ. Then, the ρth reaction can be written as follows:

X
i∈SX

νXiρXi þ
X
i∈SY

νYiρYi⇌
X
i∈SX

κXiρXi þ
X
i∈SY

κYiρYi: ð1Þ

For both the internal species and the chemostatted species,
we define the respective stoichiometric coefficient matrix
Sα by Sα

iρ ≔ καiρ − ναiρ. Each element Sα
iρ gives the net

increase (respectively, decrease) in αi molecule in the ρth
forward (respectively, backward) reaction. Combining
them, we can obtain the total stoichiometric coefficient
matrix S ¼ ½ðSXÞTðSYÞT�T, where the superscript T rep-
resents the transposition.
We also consider the kinetics of CRNs. Let ½α�t ¼

ð½αi�tÞi∈Sα
denote the concentrations of αi ’s at time t.

Throughout this Letter, we only consider homogeneous
CRNs where the concentrations do not depend on the
position. Let the rate of the ρth reaction be Jρ ¼ Jþρ − J−ρ ,
where Jþρ (respectively, J−ρ ) is the reaction rate of the
forward (respectively, backward) reaction. They are func-
tions of the concentrations. Then, the kinetics of the
concentrations are given by the rate equation

d½X�t
dt

¼ SXJ;
d½Y�t
dt

¼ SYJ þJ Y; ð2Þ

where J ¼ ðJρÞρ∈R is the vector of reaction rates andJ Y ¼
ðJ Y

i Þi∈SY
is the vector of external flows to control the

concentrations of the chemostatted species.
We introduce thermodynamic structure to CRNs. To

this end, we adopt the local detailed balance condition
introduced in Ref. [51],

−ðμTSÞρ ¼ RT ln
Jþρ
J−ρ

; ð3Þ

where μ ¼ ðμiÞi∈SX∪SY
is the chemical potential, ð·Þρ is the

ρth element of the vector, R is the gas constant, and T is the
temperature. This is a core assumption when extending
the framework of chemical thermodynamics to nonideal
systems [51]. Because of the local detailed balance con-
dition, the entropy production rate of chemical reactions is
given as follows [47,51,52]:

_Σ ¼ R
X
ρ∈R

Jρ ln
Jþρ
J−ρ

≥ 0; ð4Þ

where the inequality is obtained since the signs of Jρ ¼
Jþρ − J−ρ and lnðJþρ =J−ρ Þ are the same, and it expresses the
second law of thermodynamics. The total entropy produc-
tion during a time interval ½0; τ� is given by integrating
the entropy production rate as Σ ≔

R
τ
0 dt _Σ. Hereafter, we

set R ¼ 1.
In addition to the entropy production that involves all

the reactions, we formally introduce partial entropy pro-
ductions for specific chemical species. To define partial
entropy productions, we define a subset of R for each
subset of species S ⊂ SX ∪ SY by RS ≔ fρ ∈ Rj ∃ i ∈
S;Siρ ≠ 0g. Next, we define the partial entropy production
rate for a subset of chemical species S by

FIG. 1. Schematic diagram of thermodynamic uncertainty relation in chemical thermodynamics [Eq. (11)]. The left graph shows the
concentrations of A in a reaction 2A⇌B calculated by the chemical Langevin equation corresponding to the Fokker–Planck
equation (10). The dark curve is obtained with the volume V set 107 times as great as that for the light curves. Although the same number
of curves are plotted for each V, the curves concentrate on the single curve when V is large. By taking the thermodynamic limit in such a
way, we have a rigorous inequality between the changing rate of the concentration f, the scaled diffusion coefficient D̃, and the entropy
production rate _Σ, namely, the thermodynamic uncertainty relation, as shown in the right figure.
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_ΣS ≔
X
ρ∈RS

Jρ ln
Jþρ
J−ρ

: ð5Þ

The partial entropy production is given by integrating the
partial entropy production rate ΣS ≔

R
τ
0 dt _ΣS . If S is a

subset of S0, RS is also a subset of RS0 . Thus, if S ⊂ S0,
_ΣS ≤ _ΣS0 and ΣS ≤ ΣS0 hold. When S has only one element
αi, we may substitute i for S like _Σi or Ri.
Main results.—We first state and prove the most impor-

tant inequality for the derivation of our results

jfij ≤
ffiffiffiffiffiffiffiffiffiffiffi
D̃ii

_Σi

q
; ð6Þ

where fi ≔
P

ρ∈R SiρJρ and D̃ii ≔ ð1=2ÞPρ∈R S2
iρ ×

ðJþρ þ J−ρ Þ. We note that the range of summation in the
definition of fi and D̃ii can be replaced by the subset Ri,
namely, fi ¼

P
ρ∈Ri

SiρJρ and D̃ii ¼ ð1=2ÞPρ∈Ri
S2
iρ ×

ðJþρ þ J−ρ Þ, because Siρ ¼ 0 if ρ ∉ Ri. This inequality is
shown as follows. From the Cauchy–Schwarz inequality,
we find����X

ρ∈Ri

SiρJρ

���� ¼
����X
ρ∈Ri

Siρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþρ þ J−ρ

q Jρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jþρ þ J−ρ

p ���� ð7Þ

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ρ∈Ri

S2
iρðJþρ þ J−ρ Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ρ∈Ri

J2ρ
Jþρ þ J−ρ

vuut : ð8Þ

By using an inequality 2ða−bÞ2=ðaþbÞ≤ ða−bÞ lnða=bÞ
that holds for any nonnegative real numbers a, b, we have

X
ρ∈Ri

J2ρ
Jþρ þ J−ρ

≤
1

2

X
ρ∈Ri

Jρ ln
Jþρ
J−ρ

¼ 1

2
_Σi: ð9Þ

By combining these inequalities, we can obtain Eq. (6).
We next show how this inequality readily leads to a

TUR. Our results are completely described by macroscopic
quantities such as reaction rates, but the quantities appear-
ing in Eq. (6), fi and D̃ii, should be understood from the
mesoscopic point of view. Here, we assume d½Y�t=dt ¼ 0,
but this assumption does not lose the generality of our
discussion. When the stochasticity of reactions is strong,
chemical reactions are described as Markov jump processes
[53]. By taking the thermodynamic limit, we can remove all
the effects of the noise to recover the rate equation [44,45].
If we leave the lowest-order noise, we have the chemical
Fokker–Planck equation [54]

∂pðt;xÞ
∂t ¼−

X
i∈SX

∂
∂xi ½fipðt;xÞ�þ

1

V

X
i;j∈SX

∂2

∂xi∂xj ½D̃ijpðt;xÞ�;

ð10Þ

where x is the random variable that corresponds to the
concentration, and V is the volume as an expanding para-
meter. This chemical Fokker–Planck equation has fi as the
deterministic drift, and V−1D̃ij ¼ ð2VÞ−1 Pρ∈R SiρSjρ ×
ðJþρ þ J−ρ Þ as the diffusion coefficient matrix (for deriva-
tion, see Supplemental Material [55]). Thus, fi and D̃ii can
be seen as the measures of drifts and fluctuations that
the CRN intrinsically has. We call this scaled diffusion
coefficient D̃ij simply the diffusion coefficient. As well as
the ratio of the diffusion constant to the square of a current
2D=J2 that appears in the conventional TUR, the ratio of
the diffusion coefficient to the square of the drift 2D̃ii=f2i
represents a relative fluctuation of the CRN. Therefore, the
following relation can be seen as a thermodynamic uncer-
tainty relation in chemical reactions:

�
min

i∈SX∪SY

2D̃ii

f2i

�
_Σ ≥ 2; ð11Þ

where chemostatted species are reintroduced because
the inequality in Eq. (6) holds for all i ∈ SX ∪ SY . This
inequality is our first result. It is obtained from Eq. (6)
and the fact that _Σi ≤ _Σ. It shows the trade-off rela-
tion between the entropy production rate _Σ and the
minimum of the relative fluctuation of chemical reactions
mini∈SX∪SY

2D̃ii=f2i . As long as the local detailed balance
condition (3) is satisfied, it holds in any homogeneous
CRNs, even if they are open, nonideal, and nonstationary;
thus, it is a universal law of chemical reactions.
By integrating the inequality in Eq. (6), we obtain a TSL

of CRNs similar to the ones that have already been known
in stochastic thermodynamics [21,23]. The following
inequality is our second main result:

τ ≥
LSð½X�0; ½X�τÞ2

hD̃SiτΣS
≕ τS; ð12Þ

where S is a subset of SX that has jSj elements,
LSð½X�t; ½X�t0 Þ ≔ jSj−1 Pi∈S j½Xi�t − ½Xi�t0 j, D̃S is the
average of the diagonal elements of the diffusion coefficient
matrix with respect to S given by D̃S ≔ jSj−1 Pi∈S D̃ii,
and the bracket represents the time average hD̃Siτ ≔
τ−1

R
τ
0 dtD̃S . This inequality indicates a trade-off relation

between speed and other physical quantities, the diffusion
coefficient, and the entropy production. It gives a lower
bound to the time needed for a concentration distribution to
change into another one. It shows that the time average of
the diffusion coefficient or the entropy production must be
increased when one tries making the time shorter by
controlling external parameters. In particular, if the dif-
fusion coefficient does not depend on parameters so much,
the entropy production will be the complementary quantity
to the changing speed. We will demonstrate this trade-off
relation by a numerical calculation.
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We prove the TSL. Because of the rate equation
d½Xi�t=dt ¼ fi, we have j½Xi�0 − ½Xi�τj ¼ jR τ

0 dtfij. From
the triangle inequality and the inequality in Eq. (6), we find

����
Z

τ

0

dtfi

���� ≤
Z

τ

0

dtjfij ≤
����
Z

τ

0

dt
ffiffiffiffiffiffiffiffiffiffiffi
D̃ii

_Σi

q ����: ð13Þ

By using the Cauchy–Schwarz inequality, we see that it is
bounded as

����
Z

τ

0

dt
ffiffiffiffiffiffiffiffiffiffiffi
D̃ii

_Σi

q ���� ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

τ

0

dtD̃ii

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
τ

0

dt _Σi

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τhD̃iiiτΣi

q
:

ð14Þ

Taking summation for i ∈ S leads to

X
i∈S

j½Xi�0 − ½Xi�τj ≤
ffiffiffi
τ

p X
i∈S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hD̃iiiτΣi

q
ð15Þ

≤
ffiffiffiffiffiffiffiffi
τΣS

p X
i∈S

ffiffiffiffiffiffiffiffiffiffiffiffi
hD̃iiiτ

q
; ð16Þ

where we use the fact that fig ⊂ S, so Σi ≤ ΣS . The
Cauchy–Schwarz inequality finally yields the following
inequality:

X
i∈S

j½Xi�0 − ½Xi�τj ≤
ffiffiffiffiffiffiffiffi
τΣS

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jSj

X
i∈S

hD̃iiiτ
r

: ð17Þ

This inequality is readily turned into the form of Eq. (12).
Example of the TUR.—We illustrate the TUR through

a model of an open oscillatory CRN. We consider
the following damped Lotka–Volterra chemical reaction
model [57]:

X þ A⇌2X; X þ Y⇌2Y; Y⇌B; ð18Þ

where we set the concentration of B constant, so it is a
model of an open CRN. We numerically solve the rate
equation, assuming that the reaction rates are given by the
mass-action law (for details, see Supplemental Material
[55]). As shown in the upper two panels in Fig. 2, the
concentrations of X and Y oscillate, while that of A
monotonically decreases.
In the lower panel of Fig. 2, we exhibitQi ≔ ð2D̃ii=f2i Þ _Σ

for i ∈ fX; Y; A; Bg. They are bounded below by two,

FIG. 2. Upper: concentration changes of X, Y, and A in the
damped Lotka–Volterra model [Eq. (18)] are shown. The former
two oscillate, while that of A monotonically decreases. Lower:
confirmation of the TUR (11). Qi’s are always bounded below by
two. Those of oscillating species X, Y are larger than that of the
monotonically changing species A on average.

FIG. 3. For the model of CRN (19), we can see that the
TSL holds in the shown range of parameter κC for all subsets
(upper). As expected from the relatively tight inequality
τfE0g=τ ∼ 0.25 < 1, there is a trade-off between speed τ and
the partial dissipation ΣE0 (lower). On the other hand, for subsets
other than fE0g, the TSL is not a good estimation (upper inset).
Therefore, the trade-off between partial dissipation and speed
does not hold for them (lower inset). We note that we observed
only a few percent of changes in the averaged diffusion
coefficient and the distance between the initial and final dis-
tribution when changing the parameter κC.
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shown by the purple dashed line. On average, Qi’s of the
oscillating species are bigger than QA. That is because fi’s
of oscillating species oscillate around zero and are smaller
on average than fA, while D̃ii’s take nonzero values that are
the same order as the diffusion coefficient of A. From a
mesoscopic point of view, D̃ii=f2i is simply seen as a mea-
sure of fluctuations, so this may imply connections between
macroscopic oscillation and mesoscopic fluctuations.
Example of the TSL.—We numerically examine the TSL

and the expected trade-off relation. To this end, we consider
a model of enzymatic reaction with a coenzyme

Eþ S⇌ES⇌Eþ P; E⇌E0 þ C: ð19Þ

We assume [S] and [P] are kept at constant value, and
the system is first in a steady state with a certain value
of ½C�0. Next, the CRN comes in contact with a par-
ticle reservoir of C, where the concentration of C is
½C�ext ≠ ½C�0. The system starts to evolve with an external
flow J Y

C ¼ −κCð½C� − ½C�extÞ, where κC is a constant [58]
(for details, see Supplemental Material [55]). We define τ as
the time it takes for the system to reach another steady
state. By increasing the speed κC of exchanging C, we can
decrease τ.
From the upper panel in Fig. 3, we can confirm the TSL.

The TSL for fE0g gives a nice bound τE0=τ ∼ 0.25, but the
other TSLs, shown in the inset, do not bound τ very well.
As a result, while there is a clear trade-off relation between
speed τ and the partial entropy production ΣE0 , as we see
in the lower panel in Fig. 3, the other partial entropy
productions do not increase, as shown in the inset. Our TSL
is characterized by the fact that it is possible to find a tight
bound and acquire some trade-off relation by appropriately
choosing a subset of chemical species.
Conclusion.—We have shown a TUR between the

fluctuation defined by the scaled diffusion coefficient
and the changing rate of concentration and dissipation,
namely, the entropy production rate, in deterministic CRNs.
We have also obtained a TSL. The lower bound on the time
it takes when an initial concentration distribution goes to
another final distribution is given by combining the entropy
production and intrinsic fluctuation. These results are
proved under quite general settings, so they reinforce the
universality of TURs and TSLs.
In addition to the TSL we have derived, there exist speed

limits and trade-offs in CRNs. One example is the infor-
mation geometric speed limit [35], and its relationship with
the TSL is summarized in Supplemental Material [55].
Additionally, many trade-off relations have been found for
various biochemical processes [59–63]. The relationship
between these individual trade-offs and our general result
of the TSL is still not well understood, and future research
is needed. We expect the general result to give a new and
unified perspective to our understanding of biochemical
processes.
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