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We explore the out-of-equilibrium dynamics of the quark-gluon plasma at zero and finite net-baryon
density based on an effective kinetic theory of quantum chromodynamics (QCD). By investigating the
isotropization of the longitudinal pressure, we determine the relevant time and temperature scales for the
onset of viscous hydrodynamics and quantify the dependence on the chemical composition of the quark-
gluon plasma. By extrapolating our results to realistic coupling strength, we discuss phenomenological
consequences regarding the role of the preequilibrium phase at different collision energies.
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Introduction.—High-energy heavy-ion collisions at the
Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) provide a unique opportunity to
explore the properties of strong interaction matter under
extreme conditions. During the first fm=c of the space-time
evolution of heavy-ion collisions, the nonequilibrium
plasma of quarks and gluons created in the collision of
heavy nuclei undergoes an out-of-equilibrium evolution
[1,2], before relativistic viscous hydrodynamics becomes
applicable to describe the ensuing collective expansion of
the near-equilibrium quark-gluon plasma (QGP) [3,4].
During the collective expansion, the hot and dense QGP
is described in terms of macroscopic properties such as
temperature T, chemical potentials μ, and fluid velocity uμ

and cools down until, on timescales ∼10 fm=c, the temper-
atures and densities approach the deconfinement transition
of QCD, eventually leading to the production of final state
hadrons measured in the RHIC and LHC experiments.
Even though the early preequilibrium phase represents a

rather short period of time during the complex space-time
evolution of a heavy-ion collision, it is imperative to
understand the preequilibrium evolution of the QGP in
order to establish a complete theoretical description of the
reaction dynamics. To this end, significant progress has
been made in recent years toward understanding the
equilibration and onset of hydrodynamic behavior in
high-temperature QCD plasmas, from holographic studies
of supersymmetric theories [5–8] to weakly coupled Yang-
Mills [9–12] and QCD plasmas [13] as well as in various
models [14–21].

Despite clear differences at the microscopic level, a
common finding of different theoretical approaches is that
macroscopic properties of the system, such as the non-
equilibrium evolution of the energy-momentum tensor Tμν,
can be accurately described by relativistic viscous hydro-
dynamics on a timescale τhydro, long before the system
approaches local thermal equilibrium on timescales
τeq ≫ τhydro. Strikingly, it has been also observed that,
already at (very) early times τ ≪ τhydro, the nonequilibrium
evolution of macroscopic quantities may become insensi-
tive to the details of the initial conditions and can be
effectively described in terms of nonequilibrium attractors
[22,23], which provides an accumulation point for the
evolution of macroscopic quantities in out-of-equilibrium
plasmas [24,25]. While the existence of such attractors has
been firmly established for different microscopic system
undergoing a one-dimensional Bjorken expansion
[12,18,22,23,25–28], the study of nonequilibrium attractors
remains an active research topic and has led to a number of
interesting results [21,26,29,30] aiming to understand and
extend the range of applicability of effective macroscopic
descriptions, such as relativistic viscous hydrodynamics.
Beyond theoretical interest, the memory loss of macro-

scopic quantities also plays an important role in the
phenomenological description of the preequilibrium stage
of high-energy heavy-ion collisions, e.g., to quantify the
(approximate) amount of entropy production during the
early preequilibrium stage which is directly connected to
experimental measurements of the charged particle multi-
plicity in the final state [28] or to describe the space-time
evolution of the preequilibrium plasma macroscopically in
KoMPoST [10,31–33].
So far, investigations of the preequilibrium dynamics of

the QGP have focused primarily on kinetic equilibration of
pure glue QCD [9] with a recent extension to QCD [13] for
charge neutral plasmas. By performing numerical
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simulations of the leading-order effective kinetic theory of
QCD [34] for gluons and light flavor ðu; d; sÞ quarks, we
extend the theoretical treatment of the preequilibrium
description QGP for the first time to finite net-charge
and net-baryon density. We investigate the existence of
nonequilibrium attractors and describe their phenomeno-
logical consequences in the theoretical description of the
preequilibrium stage. Within this Letter, we focus on the
aspects most relevant to heavy-ion phenomenology and
refer to our companion paper [35] for a detailed exposition
of the theoretical framework and additional discussions.
Effective kinetic description of preequilibrium

dynamics.—During the collision of heavy nuclei, a fraction
of the energy and valence charge is deposited in a
primordial plasma, providing the initial conditions for
the subsequent preequilibrium evolution of the QGP. In
high-energy collisions, the color glass condensate effective
field theory of high-energy QCD [36,37] provides a
theoretical description of the gluon-dominated initial state
created at very early times [38–42]. Despite recent efforts to
generalize this framework to include quark production
[43–45], baryon stopping [46], and other corrections to
the high-energy limit [47–49], so far, the chemical com-
position of the nonequilibrium plasma, as well as the
structure of a nonequilibrium initial state in heavy-ion
collisions at lower beam energies or the forward rapidity
regions of high-energy collisions, is currently not well
understood. We will therefore consider a rather generic
parametrization of the initial phase-space distributions of
gluons, quarks, and antiquarks [50]:
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where the initial abundance of the Nf ¼ 3 light flavor
quarks and antiquarks is determined by the sum of the
contributions from valence quark stopping (f0v) and quark
or antiquark pair production (fs0) as
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1

2Nf
f0s ;

f0d ¼
np þ 2nn
3ðnp þ nnÞ

f0v þ
1

2Nf
f0s ; f0

d̄
¼ 1

2Nf
f0s ;

f0s ¼
1

2Nf
f0s ; f0s̄ ¼

1

2Nf
f0s ; ð2Þ

with np=nn ¼ 2=3 denoting the proton and neutron fraction
of the colliding nuclei. We will vary the parameters ξ0

representing the initial momentum anisotropy, as well as
f0g, f0s , and f0v to investigate the sensitivity of our results to
the initial conditions.
Starting from the above initial conditions, we solve the

QCD Boltzmann equation [51]
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for a (longitudinally) boost-invariant (transversely) homo-
geneous system undergoing a one-dimensional Bjorken
expansion. We include all leading-order elastic ðC2↔2Þ and
inelastic ðC1↔2Þ interactions, and following previous works
[13,31] accounts for in-medium screening of elastic inter-
actions [34] and the Landau-Pomeranchuk-Migdal [52–54]
suppression of inelastic rates, as described in detail
in Ref. [35].
Nonequilibrium evolution of macroscopic properties.—

In order to connect the nonequilibrium initial state, with the
subsequent hydrodynamic evolution we will focus on the
preequilibrium evolution of the macroscopic properties of
the QGP. Specifically, we will investigate the evolution of
the energy-momentum tensor Tμν and conserved currents
Jμf, determined, respectively, as
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Z
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Based on the symmetries of the one-dimensional Bjorken
expansion, one finds that in Milne ðτ; x; y; ηÞ coordinates
Tμν ¼ diagðe; pT; pT; pL=τ2Þ and ΔJνf ¼ ðΔnf; 0; 0; 0Þ in
the local rest frame uμ ¼ ð1; 0; 0; 0Þ [55] and the conser-
vation laws take the form

∂τeþ
eþ pL

τ
¼ 0; ∂τΔnf þ

Δnf
τ

¼ 0; ð5Þ

such that, irrespective of the underlying microscopic
dynamics, the charge density per unit rapidity τΔnf ¼
ðτΔnfÞ0 ¼ ðτΔnfÞeq remains constant throughout the evo-
lution. Conversely, the evolution of the energy density e is
affected by the longitudinal pressure pL. Because of the
rapid longitudinal expansion, the longitudinal pressure
pL ≪ e is initially much smaller than the transverse
pressure pT ≃ e=2, resulting in a constant ratio of energy
per baryon e=ΔnB and a constant energy density per unit
rapidity ðeτÞ0 at early times.
Over the course of the nonequilibrium evolution, the

longitudinal expansion slows down, while kinetic inter-
actions lead to a continuous increase of the longitudinal
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pressure pL (cf. Fig. 1). Eventually, the residual deviations
from equilibrium can be captured by hydrodynamic con-
stitutive relations, where to first order in the gradient
expansion the longitudinal pressure is determined by

pL

e
¼ 1

3
−
16

9

η

ðeþ pÞτ ð6Þ

with shear viscosity η and thermodynamic pressurep ¼ e=3
for a conformal plasma. Ultimately, the QGP approaches an
isotropic equilibrium state (pL ¼ pT ¼ e=3), where energy
and charge densities are described by temperature T and
chemical potentials μf as
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respectively, for an ultrarelativistic plasma of quarks
and gluons, such that τ4=3e and μf=T approach constant
values ðτ4=3eÞeq and ðμf=TÞeq, respectively, at late times
τ ≫ η=ðeþ pÞ when the QGP approaches local thermal
equilibrium.
We present our results for the nonequilibrium evolution

of the longitudinal pressure to energy density ratio in Fig. 1,
where we show the evolution of pL=e for different initial
conditions at zero and nonzero net-baryon density sum-
marized in Table I. Starting from a highly anisotropic initial
state at early times, the longitudinal pressure soon exhibits
a rapid rise, followed by a slow approach toward isotropy
ðpL=e ¼ 1=3Þ at late times.
Strikingly, previous studies of the pressure isotropization

in pure glue QCD [9,10,31] and QCD at zero density [13]
have shown that the nonequilibrium evolution of the
energy-momentum tensor at different coupling strengths
is governed by a universal scaling variable w̃ ¼ τT=4πη=s
[11,28], representing the ratio of the evolution time τ to the
equilibrium relaxation time τR ¼ 4πη=s=T. By introducing
an effective temperature Teff ¼ ½30eðτÞ=π2νeff �1=4 with
νeff ¼ νg þ ð7=4ÞνqNf characterizing the energy density
of the nonequilibrium QGP, the definition of the scaling
variable can be generalized to finite density systems as

ω̃ ¼ ðeþ pÞτ
4πη

¼
�
eþ p
ηTeff

�
τTeff

4π
ð8Þ

such that the hydrodynamic evolution of the pressure in
Eq. (6) remains a universal function of the scaling variable
pL=e ¼ ð1=3Þ − ð4=9πω̃Þ, irrespective of the net-baryon
density. Indeed, one observes from Fig. 1 that eventually all
curves converge toward the same viscous hydrodynamic
behavior, which provides an accurate description of the
pressure anisotropy for w̃≳ 1. We note that, albeit the
dimensionless transport coefficient ðηTeff=eþ pÞ, which at
zero density reduces to η=s, exhibits a chemical potential
dependence, we find that the variations of ðηTeff=eþ pÞ
are only at the 10% level for the considered range of
chemical potentials ðμB=TÞeq ≲ 2.5, as can be seen from
Table I, where we provide the results for ðηTeff=eþ pÞ
extracted from fits to the late time asymptotics of pL=e
in Eq. (6).
Despite their common late time behavior, important

differences emerge in the evolution of the pressure
anisotropy at intermediate times (w̃≲ 1). By comparing
the solid and dashed curves in the top panel in Fig. 1, we
find that variations of the initial momentum anisotropy ξ0
do not significantly affect the evolution of the pressure
beyond very early times, which is in line with a detailed
earlier investigation in pure glue QCD [12]. Conversely,
changes in the chemical composition of the primordial
plasma do have a noticeable effect on the isotropization of
the pressure at intermediate times, resulting in a moderate
dependence on the net-baryon density μB=T shown in the
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FIG. 1. Nonequilibrium evolution of the longitudinal pressure
over energy ratio pL=e for different net-baryon density (top) and
different initial quark to gluon ratios at zero density (bottom).
Dotted and dashed curves show results for different initial
anisotropies ξ0 (top) and different initialization times Qsτ0
(bottom).
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top panel in Fig. 1. Generally, the isotropization of the
pressure proceeds more slowly for a larger quark fraction,
which is in line with early theoretical expectations [56],
attributing the slower equilibration of the quark sector to
the differences in color factors in elastic and inelastic
scattering processes. Even in zero density systems, shown
in the bottom panel in Fig. 1, the initial quark/gluon ratio
affects the evolution of the pressure at intermediate times
w̃≲ 1, challenging the existence of a universal nonequili-
brium attractor, where the evolution of the pressure
anisotropy becomes insensitive to the details of the initial
conditions before the onset of hydrodynamic behavior
[12,18,20,23,31]. Nevertheless, the variations of pL=e
are still rather moderate, and it is equally important to
point out that by the time w̃ ∼ 1, where hydrodynamics
becomes applicable, differences in the initial chemical
composition no longer affect the pressure evolution.
Connecting the initial state to hydrodynamics.—Now

that we have established the evolution of the pressure
anisotropy during the early preequilibrium phase, we can
determine how the initial energy density ðeτÞ0 and net-
charge density ðΔnfτÞ0 affect the initial conditions for the
subsequent hydrodynamic evolution. By following the
arguments of Ref. [28], the evolution of the conserved
quantities e and Δnf during the preequilibrium phase can
be compactly expressed as

ðτ4=3eÞðω̃Þ ¼
�
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ηTeff

eþ p
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respectively, where, as explained in Supplemental
Material [57], the function Eðω̃Þ ¼ τ4=3eðτÞ=ðτ4=3eÞeq
describes the nontrivial evolution of the energy density
due to work performed against the longitudinal expansion
[28,58,59]. Specifically, at early and late times Eðω̃Þ has the
asymptotic behavior

Eðω̃ ≫ 1Þ ≃ 1 −
2

3πω̃
ðvisc:hydroÞ;

Eðω̃ ≪ 1Þ ≃ C−1
∞ ω̃4=9 ðfree streamingÞ ð10Þ

such that the constant C∞ in Eqs. (9) and (10) describes the
efficiency with which the initial energy density per unit
rapidity ðeτÞ0 is converted into the thermal energy density
at the onset of hydrodynamics.
Because of the different evolution of the pressure

anisotropy, this conversion is different between zero and
finite density systems, as can be seen in Fig. 2, where we
present our results for the nonequilibrium evolution of the
energy density of the QGP at different values of the baryon
chemical potential ðμB=TÞeq at late times. Evidently, the
more baryon-rich systems experience a smaller longitudinal
pressure during the preequilibrium phase and, therefore,

convert the initial energy density more efficiently into
thermal energy. By matching the results from QCD kinetic
theory simulations to the asymptotic behavior in Eq. (10),
we have extracted the values of C∞ to quantify this effect
and provide the respective values for all simulations in
Table I. We find that, for the considered range of param-
eters, the dependence on the chemical composition of the
primordial plasma is typically on the 10%–15% level,
indicating that, despite the differences in the pressure
evolution, the energy density at the beginning of the
hydrodynamics phase can still be estimated to rather good
accuracy.
Phenomenological consequences.—We conclude our

analysis by studying phenomenological consequences of
our results for the dynamical description of heavy-ion
collision experiments at RHIC and LHC energies.
Neglecting the entropy production during the late-stage
hydrodynamic expansion, we follow previous works
[28,60] matching the asymptotic entropy density

ðτsÞeq ¼
4
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ðeτ4=3Þeq
ðτ1=3TÞeq

−
�
μB
T

�
eq
τΔnB −

�
μQ
T

�
eq
τΔnQ

ð11Þ
to the experimentally measured charged particle multiplic-
ities, according to dNch=dη ¼ ðNch=SÞðτsÞeqS⊥, and fix the
final entropy to baryon number ratio ðτsÞeq=ðτΔnBÞeq,
according to s=ΔnB ¼ 144, 285, and 420 for 62.4, 130,
and 200 GeV Auþ Au collisions, respectively. We employ
S=Nch ¼ 8.36 [28,61] and estimate the transverse area
S⊥ ¼ πR2

A ¼ 128, 138, and 95 fm2 for central Auþ Au,
Pbþ Pb, and Xeþ Xe collisions, respectively, with
dNch=dη ¼ 470, 590, and 665 for 62.4, 130, and
200 GeV Auþ Au collisions, respectively; dNch=dη ¼
1600 and 1942 for 2.76 and 5.02 TeV Pbþ Pb collisions,
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FIG. 2. Nonequilibrium evolution of the energy density for
different net-baryon densities, characterized by the ratio of the
chemical potentials to temperature ðμB=TÞeq at late times. Dashed
and solid curves show a comparison to early and late time
asymptotics in Eq. (10).
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respectively; and dNch=dη ¼ 1166 for a 5.44 TeV Xeþ Xe
collision [62–64]. Since the overall normalization is fixed
by this procedure, Eq. (9) then provides the evolution of the
energy e and charge densities Δnf, from which we infer
temperatures T and baryon chemical potential μB based on
the usual Landau matching procedure associating the
conserved charges with their equilibrium values e ¼
eeqðT; μfÞ and Δnf ¼ neqðT; μfÞ.
We illustrate the resulting nonequilibrium trajectories of

the QGP in the QCD phase diagram in Fig. 3, where dashed
(dotted) lines represent the prehydrodynamic evolution of
ðT; μBÞ for 0.2 < ω̃ < 1, whereas solid lines show the
hydrodynamic trajectories for ω̃ > 1 for two different
values of the transport coefficient ηTeff=ðeþ pÞ ¼
0.08 ð0.16Þ. Strikingly, one observes at first sight that
the preequilibrium plasma can exhibit much higher temper-
atures and chemical potentials as can be achieved during
the subsequent hydrodynamic evolution. While in high-
energy collisions of heavy nuclei the trajectories run
straight down along the vertical axis ðμB=T ≈ 0Þ, the
nonequilibrium trajectories at lower energies bend toward
larger values of μB=T and deviate significantly from the
(perturbative) isentropes indicated by gray dotted lines.
Concerning the applicability of hydrodynamics, one

finds that, e.g., in high-energy Pbþ Pb collisions, hydro-
dynamics becomes applicable on timescales

τ ≃ 1.3 fm=c

�
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2
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�
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�
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�
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2

�
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�
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�
S⊥

138 fm2

�
−1=2

ð12Þ

well above the QCD crossover temperature Tc ≃ 156 MeV
[65], indicated by a black line in Fig. 3. However, at lower
energies, the nonequilibrium trajectories extend almost all
the way to the QCD phase boundary, indicating that the
QGP created in low-energy collisions may be significantly
out of equilibrium for a substantial part of its lifetime. Even
though the use of a perturbative description and the
modeling of the space-time dynamics in terms of a one-
dimensional Bjorken expansion become increasingly ques-
tionable at lower energies, we still believe that Fig. 3 points
to one of several important challenges in describing the
space-time evolution of heavy-ion collisions at low ener-
gies [3,66–69].
Conclusions and outlook.—We investigated the early

time preequilibrium dynamics of the QGP at zero and finite
densities of the conserved baryon and electric charge based
on an effective kinetic description of high-energy QCD. We
find that, for a plasma undergoing a one-dimensional
Bjorken expansion, the nonequilibrium evolution of the
energy-momentum tensor can be well described by viscous
hydrodynamics for time τ ≳ 4πη=eþ p, which is in
accordance with earlier findings at zero density [13].
However, the chemical composition of the QGP can have
a significant impact on the evolution of the pressure at
early times τ ≲ 4πη=eþ p, which is in sharp contrast
to the results obtained for single-component plasmas [7–12,
17,18,22,23,25–27,70,71], where macroscopic properties
such as pL=e exhibit a rapid memory loss at early times,
resulting in a universal approach toward viscous hydro-
dynamics. Even though the ensuing differences in the
pressure affect the late time evolution of the QGP only
at the 10%–15% level, it is clear that further progress in the
theoretical understanding hinges to a considerable extent
on an improved determination of the chemical composition
of the primordial plasma, created immediately after the
collision of heavy nuclei.
We further discussed how the results presented in this

Letter can be used to connect the properties of the non-
equilibrium initial state to the initial conditions for the
subsequent hydrodynamic evolution. By extending pre-
vious works [28] to include the effects of finite net-baryon
and electric charge density, our calculations thus provide a
first important step toward including the evolution of all
QCD conserved charges into dynamical descriptions of the
preequilibrium stage of heavy-ion collisions [10,31,72].
Beyond such applications to bulk phenomenology, our
QCD kinetic theory studies also provide the basis for future
investigations of heavy flavor dynamics or the emission of
electromagnetic probes, which could provide sensitive
probes of the early time nonequilibrium dynamics [73–75].
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