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We study the time-evolution operator in a family of local quantum circuits with random fields in a fixed
direction. We argue that the presence of quantum chaos implies that at large times the time-evolution
operator becomes effectively a random matrix in the many-body Hilbert space. To quantify this
phenomenon, we compute analytically the squared magnitude of the trace of the evolution operator—
the generalized spectral form factor—and compare it with the prediction of random matrix theory. We show
that for the systems under consideration, the generalized spectral form factor can be expressed in terms of
dynamical correlation functions of local observables in the infinite temperature state, linking chaotic and
ergodic properties of the systems. This also provides a connection between the many-body Thouless time
τth—the time at which the generalized spectral form factor starts following the random matrix theory
prediction—and the conservation laws of the system. Moreover, we explain different scalings of τth with
the system size observed for systems with and without the conservation laws.
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The concept of chaos is very natural in classical systems.
Its naive formulation in terms of strong sensitivity of the
trajectory to the initial conditions, the “butterfly effect,” is
so simple and powerful that it has long become an element
of the popular culture. During the second half of the 20th
century, this concept has been refined from both the
physical and mathematical points of view, leading to a
complete theory of chaos in classical dynamical systems
[1–4] that can be regarded as one of the greatest achieve-
ments of mathematical physics.
In the quantum realm, the situation is much less intuitive

due to the absence of well-defined trajectories and the
linear structure of the unitary evolution. In this context, a
key role is played by the spectral correlations of the time-
evolution operator. Indeed, as established in a series of
seminal works [5–7], systems with a well-defined chaotic
classical limit have a spectrum with correlations that
coincide with those of an ensemble of random matrices
with the same symmetries. The latter property remains well
defined also away from the classical limit and has then been
taken as a definition of quantum chaos. However, the
question of connecting the spectral statistics with more
intuitive dynamical properties of the system remained open.

Over the last decade, the problem of characterizing chaos in
quantum systems received renewed interest due to seminal
results coming for the studyof blackholes [8,9] and connecting
quantum many-body chaos with the scrambling of quantum
information. In turn, this renaissance also produced new
discoveries concerning chaos in extended quantum many-
body systems on the lattice [10–26] and led to the introduction
of useful minimal models like local random unitary circuits
[11,27] and dual-unitary circuits [28]. For some of these
systems, it has been possible to compute measures of the
spectral statistics [10,12–14,18], proving that they indeed
follow the predictions of random matrix theory (RMT).
Importantly, however, it has been realized that in generic
extended systems with local interactions this happens only for
energy ranges smaller than a certain scale Eth—known as
Thouless energy—which bares information on the spatial
structure. This energy scale (or the associated Thouless time
τth ¼ ℏ=Eth) is believed to display different scalings with the
system size depending on the conservation laws of the system.
In the recent comeback of quantum chaos, an important

role has been played by driven systems, as they furnish a
simpler modelization of many interesting dynamical phe-
nomena [23–27]. For these systems, in the generic instanceof
aperiodic driving, the spectral statistics is not well defined
(their time-evolution operator is time dependent), and the
chaotic regime has been identified by looking at some
features of the quantum many-body dynamics—seeking a
quantum many-body analog of the butterfly effect. Some of
the most studied features have been the spreading of support
of local operators (measured, e.g., by out-of-time-ordered
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correlators [29–31]), the growth of complexity in the
classical simulations of the dynamics [32], and the scram-
bling of quantum information [33]. However, even though all
these features are connected to an idea of “dynamical
complexity,” they provide different information. It is unclear
what is the minimal set of these features, if any, that a system
has to display to be considered chaotic.
In this Letter, we follow a different route and regard as

“chaotic” those driven systems where the time-evolution
operator acquires random matrix spectral correlations after a
certain initial transient [34,35]. This is a direct generalization
of the traditional definition of quantum chaos and the
transient is naturally interpreted as the Thouless time [35].
We present a family of local quantum circuits with random
fields in a fixed direction. In these systems that have no
semiclassical limit, the time-dependent spectral correlations
can be characterized exactly. In particular, we compute the
squared magnitude of the trace of the evolution operator,
which we dub the generalized spectral form factor (GSFF),
and show that at the leading order in time it is fully specified
by the two-point dynamical correlation functions of local
operators in the infinite temperature state. This provides an
unprecedented direct link between spectral properties and
local physics. We use this result to show that the regime of
quantum chaos coincides with the ergodic and mixing one
(where all dynamical correlations decay in time) and to
elucidate the connection between conservation laws and
scaling of the Thouless time with the system size.
More specifically, we consider a chain of length L with

2L qubits placed at integer and half-integer indexed sites.
Thus, the Hilbert space of the system isH ¼ ðC2Þ⊗2L, with
dimension N ¼ 22L. The time evolution is governed by a
brickworklike local quantum circuit consisting of unitary
matrices (gates) acting on two neighboring spins (with
periodic boundary conditions). We consider the case where
the gates are different at each space-time point and
represent the time evolution as

ð1Þ

where we depicted two-site gates as

ð2Þ

and different colors denote different matrices. Note that we
adopt the conventionof time running upward.We remark that

this setting is in fact quite general. It can be thought of as
generated by a disordered local Hamiltonian, which changes
at each half-integer time due to some external driving. This
formulation of quantum evolution is widely used, for
instance, in the context of quantum simulators [36].
The main quantity of interest for this Letter is the GSFF

defined as

KgðtÞ≡ hjtrsectorUðtÞj2i; t > 0; ð3Þ
where the trace is reduced to a common eigenspace of UðtÞ
and all its commuting symmetries, and h·i denotes an
average of some sort (either a moving time average or
an average over an ensemble of similar systems). Such an
average is necessary because the distribution of jtrUðtÞj2 in
an ensemble of systems does not generically become
infinitely peaked even in the limit of infinitely many
degrees of freedom [37]. From the definition (3), we see
that KgðtÞ with unrestricted trace can be interpreted as the
survival probability (or Loschmidt echo) for a random
initial state, which is another chaos indicator [38,39].
As mentioned before, here we regard UðtÞ as chaotic if

there exists a scale τth such that

KgðtÞ ≃ 1 ¼ ECUE½jtrUj2�; for t ≫ τth; ð4Þ
where ≃ denotes asymptotic equality in the leading and
possibly subleading order in τth=t and, since our system is
not time-reversal invariant, we considered the average over
the circular unitary ensemble (CUE) [40,41]. Equation (4)
allows us to illustrate that expression (3) is very different
from the (conventional) spectral form factor considered in
periodically driven systems [40–42]. Indeed, here the full
time-evolution operator UðtÞ is expected to behave like a
random matrix at large times, while in the periodically
driven case UðtÞ behaves as the tth power of a random
matrix. This means that KgðtÞ should be compared with the
conventional spectral form factor KðtÞ at time t ¼ 1 and
that the asymptotic value in Eq. (4) has nothing to do with
the asymptotic value KðtÞ ¼ N ¼ 22L at which the con-
ventional spectral form factor relaxes for times larger than
the inverse level spacing, namely, for t > N .
In our setting (1), a natural way to produce ensembles of

different systems is to introduce noise in the local gate Ux;t.
Since we are interested in generic drivings, we look at time-
dependent noise and, to avoid any bias, we choose it to be
independently distributed in space and time. Specifically,
following Ref. [43], we take random gates of the form

Ux;τ ¼ ðeiϕx;τσ
z ⊗ eiϕxþ1=2;τσ

zÞU; ð5Þ
where U is a fixed Uð4Þ matrix, ϕx;t are independent
random variables uniformly distributed over ½−π; π�, and⊗
denotes the tensor product between two neighboring sites.
From the physical point of view, the choice (5) describes a
homogeneous spin-1=2 chain where the time evolution is
periodic, but each spin is subject to white noise produced
by a random magnetic field in the z direction [44].
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For gates of the form (5), the average h·i in Eq. (3) can be
implemented locally by placingUðtÞ† on top ofUðtÞ in such
a way that each gate lies on top of its conjugate (i.e.,
“folding” the circuit; see, e.g., Ref. [43]). Specifically, the
average projects to a subspace spanned by diagonal oper-
ators (j○i≡ j1i and j●i≡ jσzi) and allows us to write
Eq. (3) as

ð6Þ

where top and bottom wires at the same position are
connected because of the trace. Above we introduced the
nonunitary “averaged gate” written in the local basis
fj○i; j●ig:

ð7Þ

with nine real parameters in ½−1; 1� depending on the choice
of U in Eq. (5) [45]. Remarkably, for any U, w becomes
bistochastic after a Hadamard transformation on the single
wires [43]. This means that for the choice (5) of noise,
Kgðt; LÞ can be interpreted as the state-averaged return
probability in a classical stochastic Markov process built as
a brickwork circuit with the gate w.
Let us now evaluate the first two orders in the asymptotic

expansion of Eq. (6) for large times. Conceptually, this will
parallel similar derivations carried out in the periodically
driven case, in both single-particle [47,48] and many-body
[10,12,13,16,18,35,49] contexts. Indeed, even thoughKgðtÞ
will generically relax to 1 and not to t [cf. Eq. (4)], in both
cases the leading correction is exponential, and the relax-
ation timescale can be interpreted as a Thouless time.
To proceed, we now expand the trace (6) in the

computational basis fjemi ig where m ¼ 0;…; 2L denotes
the particle number (number of quasiparticles ●), and
i ¼ 1;…; ð2Lm Þ labels states in a fixed m sector. Assuming
that there are no conserved charges, we have

KgðtÞ ¼
X2L
m¼0

KðmÞ
g ðtÞ ¼ 1þ Kð1Þ

g ðtÞ þ � � � þ Kð2LÞ
g ðtÞ; ð8Þ

where we defined in “first quantization notation”

KðmÞ
g ðtÞ≡ Xxi>xj∶i>j

fxjgmj¼1

h●x1 � � �●xm j●x1 � � �●xmðtÞiL; ð9Þ

and used that Kð0Þ
g ðtÞ ¼ 1. We see that KðmÞ

g ðtÞ is expressed
as the sum of the averaged autocorrelation functions of the
extended operators σzx1 � � � σzxm (with x1 < x2 � � � < xm, and
xj ∈ Z2L=2) in finite volume L (cf. Ref. [43]).
Let us now focus on a special family of reduced gates

(7): those with either no splittings (f ¼ e ¼ 0) or no
mergers (b ¼ d ¼ 0) and with non-negative weights. For
this family of gates, we can invoke the following property
(proven in Sec. II of the Supplemental Material [45]):
Property 1. The averaged dynamical correlations

h●x1 � � �●xm j●y1 � � �●ymðtÞiL are bounded from above by

max

�
1;

g
ε1ε2 þ ac

�ðm−1ÞtX
σ∈Sm

Ym
i¼1

h●xi j●yσðiÞ ðtÞiL; ð10Þ

where Sm is the permutation group of m elements.
Moreover, we also have
Property 2. The two-point functions have the following

asymptotic expansion in t,

h●xj●yðtÞiL ≃
Cηx;ηy

C0;0 þ C1;1

λt

L
þ a2tηxδt−ðx−yÞmod L; ð11Þ

where ηx ¼ 2x mod 2, δ0 ¼ 1; δx≠0 ¼ 0, a0 ¼ a, a1 ¼ c,

λ ¼ 1

4

�
ðaþ cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ε1ε2 þ ða − cÞ2

q �2

; ð12Þ

while Cηx;ηy are constant amplitudes (C0;0 and C1;1 are
reported in Sec. III of the Supplemental Material [45]).
An instructive way to obtain the expansion (11) is to note

that the correlations in finite volume can be written as

h●xj●yðtÞiL ¼
Xbt=Lc

w¼−bt=Lc
h●xþwLj●yðtÞi∞; ð13Þ

where h●xj●yðtÞi∞ are the infinite volume correlations
known exactly from Ref. [43]. This form follows from the
observation that for no splittings (mergers) the only
contributions to the correlation come from continuous
paths (the skeleton diagrams [43]) connecting the end
points, and wrapping around the cylindrical world sheet
along the space direction an arbitrary number of times. The
maximal number of wrappings is restricted by the maximal
speed of propagation. Then, Eq. (11) follows directly from
plugging in the asymptotic form

h●xj●yðtÞi∞ ≃ δt−ðx−yÞa2tηx þ
λtCηx;ηyffiffi

t
p e−

ðx−y−ζ̄tÞ2
4Dt ð14Þ

[where the diffusion constant is given by D ¼ ½4πðC0;0 þ
C1;1Þ2�−1 and the fluid velocity ζ̄ is defined in Sec. III of the
Supplemental Material [45]], and turning the sum over
wL=t into an integral for t ≫ L. Alternatively, Eq. (11) can
also be derived by diagonalizing an effective Markov
operator; see Sec. IV of the Supplemental Material [45].
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Using the asymptotic form (11) for two-point correla-
tions and Property 1, we find (see Sec. V of the
Supplemental Material [45])

X2L
m¼2

KðmÞ
g ðtÞ < CL2λ2t max

�
1;

gt

ðε1ε2 þ acÞt
�
: ð15Þ

This leads us to our first main result: For large times and
λ max½1; g=ðε1ε2 þ acÞ� < 1, the GSFF is fully determined
by correlation functions of local observables

KgðtÞ≃1þKð1Þ
g ðtÞ≃1þλtþða2tþc2tÞLδtmod L: ð16Þ

In particular, since λ > maxða2; c2Þ, we find

KgðtÞ ≃ 1þ e−t=τth ; τ−1th ¼ − log λ: ð17Þ
Note that in this case, τth is the exponent governing the
decay of two-point correlations in infinite volume. Note
also that there is no L dependence in τth, in contrast to logL
dependence found in several examples of extended sys-
tems; see, e.g., Refs. [10,12,35].
Equation (16) shows excellent agreement with the exact

numerical evaluation of KgðtÞ; see Fig. 1 for a represen-
tative example. Moreover, our numerical observations
suggest that the bound (15) is too conservative, and
Eq. (16) holds whenever λ < 1, namely, whenever the
averaged two-point correlations decay exponentially.
When some of the gate’s parameters (7) are negative,

the Gaussian asymptotic form (14) is not valid. We calculate

Kð1Þ
g ðtÞ ≃ λt by diagonalizing an effective Markov operator;

see Sec. IV of the Supplemental Material [45] [λ can be
different from the one inEq. (12)].Moreover,we again bound
the other contributions as in Eq. (15) (with a minor modi-
fication; see Sec. V of the Supplemental Material [45]).
Let us now consider a special case for which Eq. (15)

does not provide a useful bound (because λ ¼ 1). Namely,
the case of averaged gates with a conservation law. This
situation has been extensively studied in the recent liter-
ature [13,35,50,51] and can be realized in our setting by
considering a gate U [and hence, Ux;τ in Eq. (5)] that
conserves the magnetization in the z direction. This leads to
the following averaged gate [45]:

wUð1Þ ¼

0
BBB@

1 0 0 0

0 cos22J sin22J 0

0 sin22J cos22J 0

0 0 0 1

1
CCCA; J∈ ½0;π=4�: ð18Þ

Note that the time-evolution operator generated by this gate
is integrable: It is an example of the Floquet XXX model at
a nonunitary point [52]. Interestingly, a similar Floquet
XXX model was obtained in Ref. [13] after averaging a
Uð1Þ-symmetric Floquet-Haar random circuit. Finally, we
remark that a similar reduced gate for driven systems has
been studied in Ref. [35].

Since themagnetization is conserved, the trace inEq. (3) is
reduced to a single magnetization sector. This means that
instead of KgðtÞ in Eq. (8), we should consider a single term
KðmÞ

g ðtÞ with fixed m ¼ 0; 1;…; 2L. Moreover, we observe
that, apart from the two trivial sectors m ¼ 0 and m ¼ 2L

where the GSFF is 1, all KðmÞ
g ðtÞ decay to 1 with the same

exponent; see Fig. 2. This canbeunderstood directly from the
Bethe-ansatz solution (see, e.g., the Supplemental Material
of Ref. [13]). Indeed, by looking at the finite volume
eigenstates, one finds that the lowest excitations (those with
the eigenvalue of theMarkov operator which is the closest to
1) are one-magnon excitations (as opposed to bound states or
scattering states of many magnons). Since the one-magnon
states are the highest-weight states of the representation of
SU(2) with Sz ¼ L − 1, their descendants (obtained by
multiple applications of the lowering operators S−) appear
in all sectors m ¼ 1;…; 2L − 1. Therefore, all sectors have

FIG. 1. Deviations of GSFF KgðtÞ from the RMT prediction for
two different gates with no splittings, b ¼ d ¼ 0. Symbols denote
the exact numerical results for up to 18 sites (L ¼ 9). Solid color

line depicts Kð1Þ
g ðtÞ computed according to Eqs. (9) and (13).

Notice that the τth does not scalewithL. The solid black lines show
the asymptotic from Eq. (16). We wrote the gate’s parameters in
Table SM-1 of Sec. VII of the Supplemental Material [45].

FIG. 2. Deviations of the GSFF jKðmÞ
g ðtÞ − 1j with conservation

laws. We show the results for different magnetization sectors
atL ¼ 7 (14 sites) andJ ¼ 0.3. The black line is the prediction (21).
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the same Thouless time, which can be deduced from the
m ¼ 1 sector.
For large times, the averaged two-point function for

m ¼ 1 takes a simple diffusive form

h●xj●0ðtÞi∞ ≃
1

2
ffiffiffiffiffiffiffiffiffiffiffi
4πtD

p e−
x2
4Dt; ð19Þ

where D ¼ ðtan2 2JÞ=4 is the diffusion constant, and
we neglected exponentially small corrections with L-
independent exponents because we expect an L-dependent
Thouless time. Using again Eq. (13), we have

Kð1Þ
g ðtÞ ≃ 1

2
ffiffiffiffiffiffiffiffiffiffiffi
4πtD

p
Xbt=Lc

w¼−bt=Lc
e−

w2L2
4Dt : ð20Þ

Extending the summation to �∞ [53] and utilizing the
Poisson summation formula, we get

Kð1Þ
g ðtÞ≃

X∞
n¼−∞

e−
4π2Dtn2

L2 ≃1þ2e−t=τth ; τth ¼
L2

4π2D
: ð21Þ

Note that the Thouless time depends on L2=D, in agreement
with previous observations in chaotic systems with diffusive
conservation laws in both single-particle [47,48] and many-
body [13,16,18,35,49] contexts. Our derivation gives a
straightforward illustration of the origin of this scaling.
Another interesting limiting case iswhen, in addition to no

splittings (or merges), at least one of ε1 and ε2 vanishes (note
that ε1 ¼ ε2 ¼ 0 if and only if the gate U is dual unitary
[28,43]). In this case, KgðtÞ¼1þða2tþc2tÞLδtmodLþ…,
and the GSFF admits a closed-form expression (see Sec. VI
of the Supplemental Material [45]). The model is chaotic
when all a, c, g differ from �1. In contrast, if the above
conditions do not hold,KgðtÞwith unrestricted trace does not
decay to the RMT result. This signals new commuting
symmetries and possibly nonchaotic behavior. For instance,
for a ¼ c ¼ g ¼ 1 (corresponding to the SWAP gate) and
unrestricted trace we find KgðtÞjSWAP ¼ 4GCDðt;LÞ. Here
GCDðt; LÞ is the greatest common divisor of L and t.
This result is manifestly larger than the RMT result.
In the general case, when both mergers and splittings are

allowed, there is a phase transition in the decay exponent of
infinite volume correlations [43]. In particular, there is a
region in parameter space [see Eq. (41) in Ref. [43]] where
the decay of quasiparticles is still governed by λ in Eq. (12),
while for parameters out of this region the exponent

changes. Moreover, all KðmÞ
g ðtÞ will decay with the same

exponent [since the number of particles can change during

the time evolution, all KðmÞ
g ðtÞ contain the slow-decaying

configurations]. However, this means that the decay
exponent can again be determined from two-point func-
tions of local operators and that τth ¼ −1= log λmax, where
λmax ¼ limt→∞ ðmaxxh●xj●0ðtÞi∞Þ1=t. This is in agree-
ment with our numerical experiments, as shown Fig. 3
for a representative example.

In conclusion, we studied the GSFF in a class of local
quantum circuits with random fields, expressing it in
terms of (averaged) dynamical correlations of local
observables. By means of this correspondence, we
showed that in the regime where the correlations decay
exponentially in time (known as ergodic and mixing in
ergodicity theory), the GSFF approaches the prediction of
random matrix theory over the same timescale. Moreover,
we proved that the GSFF approaches the prediction of
random matrix theory also in the presence of a conserva-
tion law if the correlations take a diffusive form. In this
case, the timescale is proportional to the system size
squared divided by the diffusion constant. Finally, we
showed that when the correlations do not decay, the GSFF
does not approach the random matrix theory prediction.
The correspondence between quantum chaotic and quan-
tum ergodic and mixing regimes is expected on general
grounds [39,54–56] and provides an intuitive understand-
ing of quantum chaos. Our results in a specific setting
provide a rigorous proof of such a correspondence, and
pave the way for its quantitative understanding in more
general settings. Moreover, interpreting the Uð1Þ-noise-
averaged GSFF as a state-averaged return probability
for a general bistochastic brickwork Markov circuit
provides an analogous correspondence in classical sto-
chastic systems.
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FIG. 3. Symbols show the numerical results for deviations of the
spectral form factor jKðtÞ − 1jwith allowed splittings andmergers.
Solid lines show the decay of the skeleton correlation functions λt

from Eq. (12) and the true decay of the two-point correlation
function λtmax. In case 2, the two-point correlation function is well
described by the skeleton contributions (see Ref. [43] for when this
holds). In contrast, case 1 exhibits a slower decay of the deviations
thangivenby (12), agreeingwith the slower decayof the correlation
functions.Weobtained λmax fromdirect numerical evaluation of the
two-point correlation functions in infinite volume. The data shown
are for the last two gates in Table SM-1 of Sec. VII of the
Supplemental Material [45], L ¼ 8.
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