
 

Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder

Yu Duan ,1 Benoît Mahault ,2 Yu-qiang Ma ,1 Xia-qing Shi ,3 and Hugues Chaté 4,5
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We show that spatial quenched disorder affects polar active matter in ways more complex and far
reaching than heretofore believed. Using simulations of the 2D Vicsek model subjected to random
couplings or a disordered scattering field, we find in particular that ergodicity is lost in the ordered phase,
the nature of which we show to depend qualitatively on the type of quenched disorder: for random
couplings, it remains long-range ordered, but qualitatively different from the pure (disorderless) case. For
random scatterers, polar order varies with system size but we find strong non-self-averaging, with sample-
to-sample fluctuations dominating asymptotically, which prevents us from elucidating the asymptotic
status of order.
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Spatial quenched disorder is known to be able to affect
qualitatively the asymptotic properties of various systems
[1–10]. Its influence on active matter has recently attracted
interest and rightly so, since in many of the corresponding
real situations active particles have to avoid obstacles, or
move on a rough substrate or in a disordered mesh [11].
While some interesting results were obtained for scalar

active matter [12–18], many of these studies have dealt with
the case of dry polar flocks, in continuity with the seminal
role played by the Vicsek model and Toner-Tu theory
[19–24]. Most efforts were devoted to the fate of the two-
dimensional (2D) ordered liquid phase moving on some
random substrate. It was found that an optimal amount of
noise or disorder can maximize polar order [25–28].
Experiments studied how flocks of Quincke rollers found
in [29] are altered and eventually destroyed by quenched
disorder [30,31]. Recently, Toner and Tu [32,33] extended
their theory of the homogeneous ordered phase to take
quenched disorder into account, predicting in particular
quasi-long-range order in 2D. Numerical work has pro-
duced partial results compatible with these predictions
[25,26,33–35].
The study of disordered systems has a long history

outside active matter. Important concepts in this context are

ergodicity and self-averaging, both of which can be broken
by disorder. Ergodicity is lost when multiple configurations
coexist for a given sample (realization of disorder). Systems
for which spatial and sample averages are not equivalent in
the thermodynamic limit are non-self-averaging [36–42].
It is also known that the type of quenched disorder can
make a difference [43]. Somewhat surprisingly, ergodicity,
self-averaging, and the influence of the type of quenched
disorder have all been largely ignored in the active matter
studies published so far [47].
In this Letter, we show that quenched disorder affects

polar active matter in ways more complex and far-reaching
than heretofore believed. Using simulations of the 2D
Vicsek model, we find that quenched disorder breaks
ergodicity and rotational invariance in the ordered phase:
several dynamical attractors coexist for a given realization
of disorder. In the disordered phase, ergodicity is recovered,
but the short correlation length dynamics are organized
around an underlying sample-dependent skeleton best
revealed in time-averaged fields. The type of disorder
applied does not influence the aforementioned properties,
but it can fundamentally change the structure of the phase
diagram, self-averaging, and the nature of the ordered
phase: a random coupling- (or noise-) strength landscape
does not alter the phase diagram and yields a self-averaging
long-range ordered phase, albeit different from the Toner-
Tu liquid of the pure case. Random scatterers, on the other
hand, deeply modify the layout of the phase diagram and
leave nonergodic and non-self-averaging ordered regimes
where three types of fluctuations compete (dynamical
(thermal), sample to sample, but also between attractors
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existing for a given sample), a numerically challenging
situation that prevents us from elucidating the asymptotic
nature of this phase.
We consider extensions of the standard Vicsek model

(VM) with angular noise [19,49,50]. Like in the VM,
particles i ¼ 1;…; N with position ri and orientation ei
move at discrete time steps with constant speed v0:
rtþ1
i ¼ rti þ v0e

tþ1
i . They locally align their velocities with

neighbors, but they evolve on a static disordered landscape
that influences their motion. Herewe present results obtained
with two types of such quenched spatial disorder hereafter
called random couplings (RC) and random scatterers (RS).
We use square domains of linear size L with periodic
boundary conditions, divided into unit boxes in which
quenched disorder variables are defined. Orientations are
governed by one of the following equations:

etþ1
i ¼ ðRn

ε∘Ri;t
η ∘UÞ½hetjij∼i� ðRSÞ; ð1aÞ

etþ1
i ¼ ðRi;t

ηðnÞ∘UÞ½hetjij∼i� ðRCÞ; ð1bÞ

where n is the index of the unit box containing rti, h·ij∼i is
the average over all particles j within unit distance of i
(including i), and U½u� ¼ u=juj returns unit vectors. In the
RS case,Ri;t

η ½u� is the angular noise of the standard VM—it
rotates vector u by a random angle drawn for each particle i
at each time step t from a uniform distribution inside an arc
of length 2πη centered on u—while Rn

ε rotates vectors by
some fixed angle defined initially on each box n, drawn from
a zero-mean uniform distribution of width 2πε. In the RC
case, Ri;t

ηðnÞ is similar to Ri;t
η , but the noise amplitude ηðnÞ,

different in each box n, is drawn once and for all from a
uniform distribution over ½η; ηþ ε�. Note that the aforemen-
tioned models reduce to the “pure,” disorderless VM for
ε ¼ 0.
Finite-size phase diagrams.—The VM is well known to

be governed by two main parameters, the global number
density of particles ρ0 and the (annealed) noise strength η.
For large ρ0 or small η, a polar liquid with true long-range
order is observed, whereas only a disordered gas (with
short-range correlations) exists at low densities and strong
noise. In the ðρ0; ηÞ plane, these two phases are separated
by a coexistence domain in which dense, ordered bands
travel in a sparse gas [24,50,51].
A detailed study of the three-parameter ðρ0; η; εÞ phase

diagrams of our RS and RC quenched disorder models is a
very demanding task. Our efforts have led to the “stylized”
finite-size phase diagrams presented in Fig. 1 (the protocol
followed to define them is detailed in [52]). The RC phase
diagram in the ðρ0; εÞ plane, but also in the ðρ0; ηÞ plane
(not shown), looks identical to that of the VM [Figs. 1(a)
and 1(b)]. On the other hand, quenched disorder substan-
tially modifies the layout in the RS case [Figs. 1(c)
and 1(d)]: the bands region remains present but its extent
is bounded away from both low and high ρ0 or η values at

any finite ε. The ordered region is also bounded
similarly. These RS results extend and clarify the findings
of [25,26].
We now turn to the characterization of the encountered

phases, focusing on ergodicity, self-averaging, fluctua-
tions, and memory. We use the modulus and direction
of the instantaneous global polar order, m ¼ jhetjijj and
θm ¼ arghetjij, as well as coarse-grained fields calculated
on the unit boxes on which quenched disorder is defined,
notably the momentum field mðr; tÞ. All numerical details
can be found in [52]. All results presented in the text that
follows were obtained for ρ0 ¼ 1, as in Figs. 1(b) and 1(d).
Most phases are qualitatively different from those of the

disorderless case. The only exception is the coexistence
phase: with any type of disorder, we found that its
characteristic traveling bands retain their main properties
and notably lead to global long-range order [53].
Ergodicity is broken by quenched disorder in the globally

ordered regimes found at finite size: for a typical realization
of disorder (sample) of a large-enough system, different
initial conditions typically lead to different polarly ordered
steady states. However, one finds only a rather small number
of these attractors, each of which attracts many different
initial conditions (Fig. 2). Each attractor is best characterized
by the long-time-averaged momentum field, m∞ðrÞ¼
limT→∞mTðrÞ with mTðrÞ ¼ ð1=TÞPt¼t0þT

t¼t0 mðr; tÞ.
However, θm remains quasiconstant in time in most cases,
and different from attractor to attractor, so that following it is
sufficient to distinguish them. Quenched disorder thus fixes
global order at particular angles, in contrast with the pure,
disorderless case, for which θm wanders slowly in a diffusive
manner [Figs. 2(a) and 2(b)].

FIG. 1. Stylized finite-size phase diagrams drawn from the data
presented in [52]. Top: RC case. (a) ðρ0; εÞ plane for η ¼ 0;
(b) ðη; εÞ for ρ0 ¼ 1. Bottom: RS case. (c) ðρ0; ηÞ plane at fixed
ε ¼ 0.03 (the inset shows the small-ρ0, small-η region). (d) ðη; εÞ
for ρ0 ¼ 1. The blue dashed line in (b) and (d) marks ergodicity
breaking at the system size considered. The pure VM (ε ¼ 0) lies
on the x axis in (a), (b), and (d).
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To be true, global order continues to wander in small
systems with weak quenched disorder, presumably because
then no local configuration of disorder is strong enough to
pin θm. For a given sample, there exists, within the ordered
phase, an L-dependent region bordering the ε ¼ 0 axis
inside which ergodicity is not yet broken, located below the
dashed lines in Figs. 1(b) and 1(d). With increasing L, this
region shrinks: “nonsteady,” i.e., ergodic, samples domi-
nate at small size, but their fraction quickly decreases,
while more and more attractors are found on average
[Figs. 2(g) and 2(h)].
While the above observations hold for both RC and RS

disorder, there are important differences, notably in the
spatial structure of attractors, which is much more homo-
geneous in the RC case than in the RS case [compare
Figs. 2(c) and 2(d) with 2(e) and 2(f)]. Moreover, the global
angle of attractors is almost always along the “easy axes” of
the L × L domain, and their number is 4 for large enough L
in the RC case [Figs. 2(a) and 2(g)]. With RS disorder,
attractors have more varied angles, and most often two are
found in the accessible L range, although their mean
number slowly increases with L [Figs. 2(b) and 2(h)].
Memory.—Quenched disorder induces permanent

memory of the underlying frozen landscape in both the

ordered and disordered phases. This is best seen from
the existence of well-defined nontrivial long-time-averaged
fields such as m∞ðrÞ and the fact that Edwards-Anderson–
like order parameters such as QEA ¼ limT→∞QðTÞ with
QðTÞ ¼ hmðr; tÞ ·mðr; tþ TÞir;t take finite values. In the
disordered phase, ergodicity holds and all initial conditions
eventually lead to the same long-time dynamics and
momentum field m∞ðrÞ [Figs. 3(a) and 3(b)]. In the
steady state, QðTÞ converges to some small but finite,
sample-dependent QEA value, in contrast with the disor-
dered phase of the VM (ε ¼ 0) for which QðTÞ fluctuates
around zero [Fig. 3(c)]. In the ergodicity-broken ordered
phase, QEA takes rather large values that are not only
sample dependent but also attractor dependent in the RS
case (not shown).
The ergodicity and memory properties presented above

were found in both types of quenched disorder considered.
However, as indicated by the layout of their phase diagrams
and the structure and statistics of attractors, the RC and RS
cases are fundamentally different, as we now show more
quantitatively.
Fluctuations in the ordered phase.—The breakdown of

ergodicity in polarly ordered phases implies considering
three sources of fluctuations: dynamical, sample-to-sample,
and attractor-to-attractor, illustrated in Fig. 4. For a given
attractor of a given sample,m fluctuates in time, yielding an
asymmetric probability distribution function [PDFðmÞ].
Attractors of a given sample give near-identical PDFðmÞ
in the RC case but not in the RS case [Figs. 4(a) and 4(b)].
The sample- and attractor-averaged PDFðhmitÞ is a very
narrow Gaussian in the RC case but is wide and asymmetric
in the RS case [green symbols in Figs. 4(a) and 4(b)]. This
means that, for the RC case presented, not only attractor-to-
attractor but also sample-to-sample fluctuations are
negligible compared to dynamical ones. In the RS case
of Fig. 4(b), on the other hand, neither source of fluctua-
tions can be neglected a priori.

FIG. 2. Ergodicity breaking in the RC (left, η ¼ 0, ε ¼ 0.2) and
RS (right, η ¼ 0.18, ε ¼ 0.035) ordered phases [L ¼ 2048 in
(a)–(f)]. (a),(b) θmðtÞ observed on a single sample from initial
conditions ordered along eight (left) and six (right) different
directions. Time increases radially outward (log scale) for 2 × 106

time steps. Gray curves: pure case (VM, ε ¼ 0). (c),(d) long-time-
averaged momentum field m∞ðrÞ of two of the RC-case
attractors shown in (a) (color map in top row). (e),(f) Same as
(c),(d) but for RS-case attractors of (b). (g),(h) Fraction of
nonsteady and 1-, 2-, 3-, 4-attractor samples vs system size.

FIG. 3. Ergodicity and memory in the disordered phase (RS
case, η ¼ 0.18, ε ¼ 0.055, L ¼ 2048). (a) hjmTðrÞ −m∞ðrÞj2ir
vs T for different initial conditions, either ordered (orange curves)
or taken in the steady state (blue curves). All converge like 1=T to
m∞ðrÞ. (b) Long-time-averaged momentum field m∞ðrÞ used in
(a) (color map as in Fig. 2). (c)QðTÞ vs T in the steady state (gray
curve: pure case ε ¼ 0).
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To gauge which fluctuations will dominate and the
nature of orientational order in the L → ∞ limit, we
now turn to finite-size effects. We define the following
“connected” (dynamical), “disconnected” (sample to
sample), and “attractor” susceptibilities [54]:

χcon ¼ ½hm2i − hmi2� ; ð2aÞ

χdis ¼ ½hmi2� − ½hmi�2; ð2bÞ

χatt ¼ ½hmi2 − hmi2�; ð2cÞ

where angle and square brackets respectively stand for
averages over time and samples, while the upper bar
denotes average over attractors.
In the RC case, χcon remains dominant at all sizes and

decreases quickly with increasing L (not shown): this phase
is self-averaging. Strikingly, in the RS case, both χdis and
χatt grow like Lα with α ∼ 0.7, while χcon decreases and
seems to level off [Fig. 4(c)]. This divergence of χdis and χatt
means that the system is strongly non-self-averaging [55]
and that sample-to-sample fluctuations will dominate
asymptotically (since χatt ≪ χdis, assuming this behavior
holds for L → ∞). As a result, for the system presented in
Fig. 4(c), the total susceptibility χtot ≡ χcon þ χdis þ χatt ≃
χcon þ χdis first decreases with L but then increases at large
sizes when χdis dominates.
Strong non-self-averaging implies that estimating

numerically the scaling of the main global polar order

parameter M ¼ ½hmi� is numerically challenging in the RS
case. Figure 4(d) showsMðLÞ for the same parameters as in
the rest of the figure, after averaging over typically 1000
samples and recording m for millions of time steps after
transients (see numerical details in [52]). Whereas MðLÞ
decreases more slowly than a power law in the RC case,
indicating true long-range polar order, it decreases faster in
the RS case. The local slope (exponent) σðLÞ of these log-
log plots offers more insight [Fig. 4(e)]. In the RC case, σ
first goes to zero as L−ω withω ≃ 2=3 as in the VM [24,56],
but then adopts a steeper decay with ω ≃ 1.75 beyond
some crossover scale, which we believe to be related to
the system size at which nonsteady samples vanish
[cf. Fig. 2(g)]. That ω ≠ 2=3 indicates that the RC long-
range ordered phase is not a Toner-Tu liquid [52]. In the
RS case, σ first decreases slightly, levels off, but then
increases: a simple quasi-long-range order (algebraic decay
of M, constant σ) is excluded.
Asymptotic nature of the quasiordered phase in the RS

case.—Scanning the whole phase at fixed ρ0 and η varying
ε clarifies the situation described above at a single ε value
without bringing definitive answers. Figures 5(a) and 5(b)
show σðLÞ and χtotðLÞ at various ε values. At very small ε,
σ and χtot first decay with L like in the VM, then depart
from this trend at a crossover scale that decreases with
increasing ε. In line with the data in Fig. 4 obtained for a
particular ε value, we find no evidence at any ε of “simple”
quasi-long-range order in the range of scales studied: once
σ has stopped decreasing, it does not really plateau and
starts increasing slowly.
At the largest ε values considered, σ and χtot increase

with L, then σ levels off at þ1, the value characteristic of
the short-range order of the disordered phase (M ∼ 1=L),
while χtot decreases. The maximum of χtot is a measure of
the correlation length, which seems to diverge when ε
decreases. Correspondingly, χtotL2 exhibits a maximum as
a function of ε, whose height scales as Lγ=ν with γ=ν ≃ 1.9,
while its location ε�ðLÞ seems to converge to a finite
asymptotic value [Figs. 5(d) and 5(e)]. All this points to a
continuous phase transition separating the disordered phase
from the quasiordered one. But sample-to-sample fluctua-
tions diverge with L all over the quasiordered regimes with
the same exponent as reported above, χdis ∼ L0.7 [Fig. 5(c)].
As these fluctuations have barely started to dominate χtot at
the largest accessible scales [Fig. 5(b)], it is premature to
draw conclusions about the asymptotic nature of the phase
corresponding to the quasiordered states observed at finite
size and a fortiori about the transition.
To summarize, quenched disorder affects polar active

matter in more ways than believed so far. In particular, it
breaks ergodicity in the ordered regimes observed at finite
size, but not in the disordered phase, which shows only
infinite memory of the frozen landscape. We also showed
that the ordered phase depends qualitatively on the type
of quenched disorder: for random couplings, it remains

FIG. 4. Fluctuations and order in the ordered phases (same
parameters as in Fig. 2). (a) PDF(m) for two attractors of the same
sample (blue and orange) and PDFðhmitÞ over samples and
attractors (green) in the RC case (L ¼ 512). (b) Same as (a) but
for the RS case (L ¼ 512) (c) χcon, χdis, χatt, and χtot vs L for the
RS case. (d) M vs L for RC, RS, and VM (ε ¼ 0). (e) Local
exponent σ vs L, extracted from data in (d), calculated as
σð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LnLnþ1

p Þ ¼ − log½MðLnþ1Þ=MðLnÞ�= logðLnþ1=LnÞ, where
Ln;nþ1 are two consecutive system sizes.
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long-range ordered, but differently from the pure case.
For random scatterers, we find strong non-self-averaging,
with sample-to-sample fluctuations dominating asymptoti-
cally. Unfortunately, the nature of this asymptotic regime
remains largely inaccessible numerically.
We have started exploring other implementations of

quenched disorder, such as random field or dilute scatterers,
and we find that their properties are similar to those in the
RS case. Moreover, it is relatively easy to build systems
similar to the RC case presented here [53]. We thus believe
the two cases studied represent large classes of disordered
active systems.
Some of our results should be observable experimentally,

e.g., in the Quincke roller system of [29,57,58], which is
believed to be a realization of (effectively) dry polar active
matter. However, our findings seem to contradict the
conclusions of [31]: there the breakdown of polar flocks
was argued to lead to a “dynamical vortex glass”with many
coexisting attractors, while we have shown that sufficiently
long averages reveal an ergodic disordered phase with
infinite memory (Fig. 3). We hope that further experiments
will clarify this important point.
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be published).

[54] For convenience, we omit the usual L2 factor here.
[55] A self-averaging system would have α ¼ −2; weak self-

averaging (α < 0) is also possible see, e.g., [38].
[56] B. Mahault, F. Ginelli, and H. Chaté, Phys. Rev. Lett. 123,
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