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The conformal extension of the BMS3 algebra is constructed. Apart from an infinite number of
“superdilatations,” in order to incorporate superspecial conformal transformations, the commutator of the
latter with supertranslations strictly requires the presence of nonlinear terms in the remaining generators. The
algebra appears to be very rigid, in the sense that its central extensions as well as the coefficients of the
nonlinear terms become determined by the central charge of the Virasoro subalgebra. The wedge algebra
corresponds to the conformal group in three spacetime dimensions SO(3,2), so that the full algebra can also
be interpreted as an infinite-dimensional nonlinear extension of the AdS4 algebra with nontrivial central
charges. Moreover, since the Lorentz subalgebra [slð2; RÞ] is nonprincipally embedded within the conformal
(wedge) algebra, according to the conformal weight of the generators, the conformal extension of BMS3 can
be further regarded as a Wð2;2;2;1Þ algebra. An explicit canonical realization of the conformal extension of
BMS3 is then shown to emerge from the asymptotic structure of conformal gravity in three dimensions,
endowed with a new set of boundary conditions. The supersymmetric extension is also briefly addressed.
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Introduction.—The symmetries of special relativity are
embodied through the Poincaré algebra. Thus, extensions
thereof turn out to play a relevant role in theoretical
physics. Indeed, for relativistic systems with scale invari-
ance, the algebra is generically enhanced to that of the
conformal group, including special conformal transforma-
tions; see e.g., Refs. [1,2]. Conformal field theories,
formulated in terms of these enhanced symmetries, have
spanned a wealth of impressive results in a wide variety of
contexts [3–7]. Besides, extensions of the Poincaré algebra
that contain additional fermionic generators of spin 1=2,
known as super-Poincaré algebras, provide the building
blocks for most of the supersymmetric field theories,
enjoying a prominent and complementary source of excit-
ing developments [8–14]. Another very interesting exten-
sion of the Poincaré algebra, known as the BMS algebra,
emerged from the structure of asymptotically flat space-
times at null infinity [15,16], in which translations are
enhanced to an infinite-dimensional ideal of “super-
translations.” The BMS algebra can be further extended
to admit “superrotations” [17–21] and it has recently
attracted a great deal of attention due to its fascinating
connections with soft theorems [22–24], the memory effect

[25], and the information paradox [26,27]. More recently,
the robustness of the BMS algebra shows itself through its
canonical realization either at null [28] or spatial infinity
[29–31], and also near generic horizons [32].
It is then natural to wonder about the possible compat-

ibility of these three time-honored, but wildly different
extensions of the Poincaré algebra.
Conformal and supersymmetric extensions of the

Poincaré algebra turn out to be perfectly compatible
through the well-known superconformal algebra [8,33].
Nevertheless, the supersymmetric extension of the BMS
algebra remains intriguing. Indeed, among the infinite
number of supertranslations, only the subset of standard
translations possesses a fermionic “square root” being
spanned by four fermionic generators, at null [34] or
spatial infinity [35]. Inequivalent extensions with an infinite
number of fermionic generators have been proposed in
Refs. [34,36,37], and it is still unclear whether they could
be canonically realized even at the linearized level [38].
On the other hand, a conformal extension of BMS has

been recently constructed in Ref. [39], which successfully
accommodates “superdilatations.” However, its structure is
very different from that of the conformal group since
standard special conformal transformations are not
included. Thus, the BMS algebra seems to resist compat-
ibility with the full conformal extension.
In the case of three-dimensional spacetimes, the con-

formal, supersymmetric, and BMS extensions of the
Poincaré algebra are also well known. The compatibility
of conformal and minimal supersymmetric extensions is also
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firmly established by the superconformal algebra ospð1j4Þ
[40]. Interestingly, in contradistinction to the four-dimen-
sional case, the BMS3 algebra [41,42] is known to admit a
fully fledged supersymmetric extension, in the sense that
supertranslations possess suitable fermionic square roots,
spanned by an infinite number of fermionic canonical
generators [43]. However, as in four dimensions, a full
conformal extension of BMS3 has not been hitherto reported.
In fact, as it has been recently pointed out from entirely
different approaches in Refs, [44–46] the BMS3 algebra can
be suitably enlarged by superdilatations, but nonetheless,
some difficulties in the closure of the algebra seem to
preclude the inclusion of special conformal transformations.
The conformal BMS3 algebra.—Here we show that the

conformal extension of the BMS3 algebra that incorporates
superspecial conformal transformations is a nonlinear
algebra. In particular, the commutator of supertranslations
with special conformal transformations strictly requires the
presence of nonlinear terms in the remaining generators,
which become well defined provided that the BMS3-Weyl
subalgebra is endowed with nonvanishing central exten-
sions. This can be seen as follows.
It is simple to verify that the BMS3 algebra, spanned by

superrotations J m and supertranslations Pm, once enlarged
by superdilatations Dm, admits only two nontrivial central
charges. The centrally extended BMS3-Weyl algebra then
reads

ifJ m;J ng ¼ ðm − nÞJ mþn þ cðm2 − 1Þmδmþn;0;

ifJ m;Png ¼ ðm − nÞPmþn;

ifJ m;Dng ¼ −nDmþn;

ifPm;Dng ¼ −iPmþn;

ifDm;Dng ¼ c̃mδmþn;0; ð1Þ

where m, n ∈ Z. Vanishing commutators are omitted here
and in the following. Note that in the presence of super-
dilatations, the Jacobi identity excludes the possibility of a
nontrivial central charge in the commutator of J m and Pn.
The generators of superspecial conformal transformations

Km can then be incorporated provided that the superdilata-
tions “level” c̃ coincides with the central charge of the
Virasoro subalgebra (c̃ ¼ c ≠ 0), so that the remaining
commutators of the full conformal BMS3 algebra are given by

ifJ m;Kng ¼ ðm − nÞKmþn;

ifKm;Dng ¼ iKmþn;

ifPm;Kng ¼ −2ðm − nÞJ mþn þ ðm − nÞΛð2Þ
mþn

− 2iðm2 −mnþ n2 − 1ÞDmþn

þ Λð3Þ
mþn − 2cðm2 − 1Þmδmþn;0; ð2Þ

where ΛðsÞ
m stands for nonlinear terms defined through

Λð2Þ
m ¼ 4

c

X
n

Dm−nDn; ð3Þ

Λð3Þ
m ¼ −

4i
c

X
n

J m−nDn þ
4i
c2

X
n;l

Dm−n−lDnDl; ð4Þ

with (anomalous)conformalweights. Indeed,with respect to the
Virasoro subalgebra, the conformal weight of J m, Pm
andKm isgivenbys ¼ 2,whileDm hasconformalweights ¼ 1.
It is worth highlighting that the central extensions as well

as the coefficients in front of the nonlinear terms of the
conformal BMS3 algebra turn out to be entirely determined
by the central charge c of the Virasoro subalgebra, and in
this sense, the algebra is very rigid. Indeed, the Jacobi
identity imposes very stringent conditions suggesting that
the nonlinear conformal extension of BMS3 is unique.
The wedge algebra reduces to that of the conformal

group SO(3,2). It is recovered by restricting the integers
that label the generators according to their conformal
weight s as jmj < s, dropping nonlinear terms [see
Eqs. (A12) and (A13)].
Remarkably, the conformal BMS3 algebra can then also

be interpreted as an infinite-dimensional nonlinear exten-
sion of the AdS4 algebra with nontrivial central charges. In
this way, the classical theorem of algebraic cohomology
that precludes nontrivial central extensions for semisimple
algebras (see, e.g., Ref. [47]) clearly does not apply in this
case due to the nonlinearity of the extended algebra.
Furthermore, as the Lorentz subalgebra [slð2;RÞ],

spanned by J m with m ¼ −1, 0, 1, is nonprincipally
embedded within the wedge algebra [soð3; 2Þ] [48], taking
into account the conformal weight of the generators, the
conformal extension of BMS3 can also be regarded as a
Wð2;2;2;1Þ algebra (see, e.g., Refs. [49,50]) [51].
It is also worth pointing out that, as it occurs for classicalW

algebras, the conformal BMS3 algebra is well defined provided
that the Virasoro central charge does not vanish; since other-
wise, the coefficients that give support to the nonlinear terms
would blow up. Nevertheless, this is not necessarily the case for
the quantum algebra because these coefficients as well as the
central extensions generically acquire corrections.
An explicit canonical realization of the conformal BMS3

algebra is performed in the next section, while the super-
conformal extension of BMS3 is briefly addressed in the
final section.
Explicit realization: asymptotic structure of conformal

gravity in 3D.—The aforementioned link between the
conformal BMS3 and Wð2;2;2;1Þ algebras naturally suggests
an explicit realization in terms of a WZW model for
SO(3,2) [50], so that the conformal BMS3 algebra could
be obtained from the Kac-Moody extension of so(3,2) by
virtue of a Sugawara-like construction [52]. The
Kac-Moody currents could also be endowed with suitable
constraints so that the conformal BMS3 algebra emerges
from the Dirac brackets. Equivalently, the latter option can
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be holographically realized along the lines of Ref. [53], so
that the constraints turn out to be automatically imple-
mented through an appropriate choice of boundary con-
ditions for a Chern-Simons theory of SO(3,2). This is
explicitly performed in what follows.
As shown in Ref. [54], a Chern-Simons theory for

SO(3,2), described by

ICS½A� ¼
k
4π

Z �
AdAþ 2

3
A3

�
; ð5Þ

where the bracket h� � �i stands for the invariant bilinear form
in Eq. (A8), turns out to be related to conformal gravity in
three dimensions [55,56], which admits an interesting class
of black hole solutions [57] (see also Ref. [58]).
Some choices of asymptotic conditions for conformal
gravity in three dimensions have already been explored in
Refs. [59–61], being such that the asymptotic symmetry
algebra is given by the direct sum of a U(1) current with
either BMS3 or two copies of the Virasoro algebra.
Nevertheless, these choices do not accommodate the black
holes in Ref. [57]. Thus, in what follows we propose a new
set of boundary conditions that allows one to include them,
and also provides a canonical realization of the conformal
BMS3 algebra that emerges from the asymptotic symmetries.
Following Ref. [53], the radial dependence of the

asymptotic form of the gauge field can be completely
gauged away by virtue of a gauge choice of the form
A ¼ h−1ahþ h−1dh, with h ¼ hðrÞ, so that the compo-
nents of the auxiliary connection a ¼ atdtþ aφdφ depend
only on time and the angular coordinate.
It is useful to express the generators of SO(3,2) in a basis

that matches that of the wedge algebra described in the
previous section, being precisely defined in Eq. (A12).
Thus, the asymptotic behavior that we propose for aφ can
be readily written in terms of deviations with respect to a
reference configuration that go along highest weight gen-
erators [62]; i.e.,

aφ ¼ J1 −
π

k

�
J −

π

k
D2

�
J−1 −

π

2k
PP−1

−
π

2k
KK−1 þ

2π

k
DD0; ð6Þ

where the dynamical fields J , P, K, D are c-number
functions that depend on t, φ. This falloff is maintained
under gauge transformations δa ¼ dΩþ ½a;Ω�, whereΩ ¼
Ω½ϵJ ; ϵP; ϵK; ϵD� depends on four arbitrary functions of t, φ
[ϵX ¼ ϵX ðt;φÞ]. The explicit form of Ω as well as
the transformation law of the dynamical fields are
given in Eqs. (A14) and (A16), respectively. According
to Refs. [63,64], the asymptotic symmetries are preserved
by the evolution in time by choosing the asymptotic form of
at to be generically given by

at ¼ Ω½μJ ; μP ; μK; μD�; ð7Þ

where the “chemical potentials” μX ¼ μX ðt;φÞ are
assumed to be fixed at the boundary. The falloff of at is
then maintained by the asymptotic symmetries provided
that the field equations hold in the asymptotic region, and
the parameters ϵX fulfill suitable differential equations of
first order in time [see Eq. (A17)].
The asymptotic symmetry generators can then be

obtained from different approaches [65,66], and read

Q½ϵJ ; ϵP; ϵK; ϵD� ¼ −
Z

ðϵJ J þ ϵPP þ ϵKKþ ϵDDÞdφ:

ð8Þ

The algebra of the conserved charges (8) can then be
obtained from their Dirac brackets, or more directly from
the transformation law of the fields in Eq. (A16) by virtue of
fQ½η1�;Q½η2�g ¼ −δη1Q½η2�. It is explicitly given by

fJ ðϕÞ;J ðφÞg ¼ −2J ðϕÞδ0ðϕ − φÞ − δðϕ − φÞJ 0ðϕÞ þ c
2π

δ000ðϕ − φÞ;
fJ ðϕÞ;PðφÞg ¼ −2PðϕÞδ0ðϕ − φÞ − δðϕ − φÞP0ðϕÞ;
fJ ðϕÞ;KðφÞg ¼ −2KðϕÞδ0ðϕ − φÞ − δðϕ − φÞK0ðϕÞ;
fJ ðϕÞ;DðφÞg ¼ −DðϕÞδ0ðϕ − φÞ;
fPðϕÞ;DðφÞg ¼ −PðϕÞδðϕ − φÞ;
fKðϕÞ;DðφÞg ¼ KðϕÞδðϕ − φÞ;
fDðϕÞ;DðφÞg ¼ −

c
2π

δ0ðϕ − φÞ;

fPðϕÞ;KðφÞg ¼ 4ðJ ðϕÞ − Λð2ÞðϕÞÞδ0ðϕ − φÞ þ 2ðJ ðϕÞ − Λð2ÞðϕÞ þD0ðϕÞÞ0δðϕ − φÞ − k
c
δ000ðϕ − φÞ

þ Λð3ÞðϕÞδðϕ − φÞ þ 6½DðϕÞδ0ðϕ − φÞ�0: ð9Þ
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so that once expanded in Fourier modes,
X ¼ ð1=2πÞPm Xmeimφ, it reduces to that in Eqs. (1)
and (2), with c̃ ¼ c ¼ k, provided that the zero mode of J n
is shifted as J 0 → J 0 − ðk=4πÞ.
It is worth highlighting that the central extensions of the

conformal BMS3 algebra, in this context are determined by
the Chern-Simons level k. This goes hand in hand with the
fact that the conformal group SOð3; 2Þ is semisimple, and
hence, it admits a unique invariant bilinear form being
given by the Cartan-Killing metric [up to a normalization
that can fixed as in Eq. (A8)].
As pointed out at the beginning of this section, the

conformal BMS3 algebra can also be directly reproduced
from the WZW model for SO(3,2) that is obtained once
the solution of the constraints with our gauge choice
(aϕ ¼ g−1∂ϕg) is substituted back into the Chern-Simons
action (5), endowed with the boundary terms that yield the
conserved charges in Eq. (8). The corresponding
currents that fulfill the Kac-Moody extension of the so
(3,2) algebra can then be supplemented with second
class constraints, being precisely implemented through
requiring that g−1∂ϕg is given by Eq. (6), so that
the algebra in Eq. (9) is recovered from the Dirac
brackets.
A remarkable fact of the asymptotic behavior

described above is that, since it accommodates the black
holes in Ref. [57], it includes asymptotically (A)dS or
flat three-dimensional spacetimes. Indeed, the precise
value of the “cosmological constant” can be seen to be
fixed by a suitable quotient of the chemical potentials.
The structure of the generic form of the black holes
that fit within our asymptotic conditions turns out
to be very rich and intricate, and it can be carefully
analyzed in terms of the conserved charges that span the
conformal BMS3 algebra. This is left for a forthcom-
ing work.
The superconformal BMS3 algebra.—The conformal,

supersymmetric, and BMS extensions of the Poincaré
algebra in three dimensions can be shown to be fully
compatible. Indeed, the fermionic generators of the
superconformal algebra ospð1j4Þ, associated to the
square roots of translations (Q) and special conformal
transformations (S), admit infinite-dimensional exten-

sions that we denote by ψ ½þ�
m and ψ ½−�

m , corresponding to
the square roots of supertranslations and superspecial
conformal transformations, respectively.
The superconformal BMS3 algebra is then spanned by

the set (J m, Pm, Dm, Km, ψ
½þ�
m , ψ ½−�

m ), so that the com-
mutators of the BMS3-Weyl subalgebra ðJ m;Pm;DmÞ are
given by Eq. (1) with c̃ ¼ c; while the commutators of the
generators of superspecial conformal transformations (Km)
with the remaining bosonic generators read as in Eq. (2),
where the nonlinear term of conformal weight 3 in Eq. (4)
acquires a quadratic shift in the fermionic generators,
according to

Λð3Þ
m → Λð3Þ

m þ 2i
c

X
n

ψ ½−�
m−nψ

½þ�
n : ð10Þ

The (anti-)commutators that involve fermionic generators
read as

ifJ m;ψ
½��
n g ¼

�
m
2
− n

�
ψ ½��
mþn;

ifDm;ψ
½��
n g ¼ � i

2
ψ ½��
mþn;

ifPm;ψ
½−�
n g ¼ 2

�
m
2
− n

�
ψ ½þ�
mþn þ Λ½þ�ð5=2Þ

mþn ;

ifKm;ψ
½þ�
n g ¼ −2

�
m
2
− n

�
ψ ½−�
mþn − Λ½−�ð5=2Þ

mþn ;

ifψ ½þ�
m ;ψ ½þ�

n g ¼ Pmþn;

ifψ ½−�
m ;ψ ½−�

n g ¼ −Kmþn;

ifψ ½þ�
m ;ψ ½−�

n g ¼ J mþn − iðm − nÞDmþn

−
1

4
Λð2Þ
mþn þ 2c

�
m2 −

1

4

�
δmþn;0; ð11Þ

where Λ½��ð5=2Þ
m ¼ �ð2i=cÞPnDm−nψ

½��
n , and the brackets

between fermionic generators are symmetric. The fer-
mionic generators are labeled by integers or half-integers
for fermionic parameters with periodic or antiperiodic
boundary conditions, respectively.
Note that the conformal weight of the fermionic gen-

erators ψ ½��
m is given by s ¼ 3=2. For antiperiodic boundary

conditions, the wedge algebra reduces to ospð1j4Þ, being
recovered once nonlinear terms are dropped and the labels
of the generators are restricted according to jmj < s, where
s is their conformal weight. Therefore, the conformal
weight of the generators of the superconformal BMS3
algebra, naturally suggests that it could be regarded as a
Wð2;2;2;3

2
;3
2
;1Þ algebra.

As in the bosonic case, the superalgebra also appears to
be very rigid, in the sense that the coefficients that
characterize the nonlinear terms and all of the central
extensions become completely determined by the central
charge of the Virasoro subalgebra.
It is also worth pointing out that the superconformal

extension of the BMS3 algebra can be interpreted as an
infinite-dimensional centrally extended nonlinear extension
of the super AdS4 algebra [ospð1j4Þ], suggesting the
possibility of a different version of the AdS4=CFT3

correspondence [67], presumably topological and with
enhanced symmetries.
A canonical realization of the superconformal BMS3

algebra can also be seen to arise from the asymptotic
structure of conformal supergravity in three dimensions
[68,69], by virtue of a suitable supersymmetric extension of
the new boundary conditions described by Eqs. (6) and (7)
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(work in progress). Our results could also be regarded as a
(super)conformal completion of flat-space chiral (super)
gravity [70,71].
As a final remark, it might be interesting to explore whether

the super BMS3 algebras with N > 1 in Refs. [72–78],
as well as the bosonic and fermionic higher spin extensions of
BMS3 in Refs. [79–82] and [83,84], respectively, could also
be compatible with the conformal extension developed here.
The compatibility with other possible extensions of BMS3 as
in, e.g., Refs. [85,86] also deserves attention.
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Appendix: Remarks on soð3; 2Þ and the conformal BMS3
algebra.—The so(3,2) algebra, spanned by generators
JAB, which reads

½JAB;JCD� ¼ ηACJBD−ηBCJADþηADJCB−ηBDJCA; ðA1Þ

is well known to be isomorphic to the conformal algebra in
three dimensions. Indeed, choosing ηAB¼diagð−1;1;1;1;−1Þ
and splitting the index A according to A ¼ fa; 3; 4g, the
following change of basis

Ja ¼
1

2
ϵabcJbc; Pa ¼ Ja3 − Ja4; ðA2Þ

Ka ¼ Ja3 þ Ja4; D ¼ J34; ðA3Þ

makes the algebra in Eq. (A1) to read as

½Ja; Jb� ¼ ϵabcJc; ½Pa; Jb� ¼ ϵabcPc; ðA4Þ

½Ka; Jb� ¼ ϵabcKc; ½Pa;D� ¼ Pa; ðA5Þ

½Ka;D� ¼−Ka; ½Pa;Kb� ¼−2ϵabcJcþ2ηabD: ðA6Þ

Therefore, if the Cartan-Killing metric is normalized
according to

hJAB; JCDi ¼ −δABCD; ðA7Þ

in the “conformal basis” the nonvanishing components of
the invariant bilinear metric are given by

hJa;Jbi¼ ηab; hPa;Kbi¼−2ηab; hD;Di¼ 1: ðA8Þ

Besides, so(3,2) also corresponds to the wedge algebra of
the conformal extension of BMS3. In order to see that
explicitly, it is useful to choose the Minkowski metric ηab in
light-cone coordinates, so that its nonvanishing components
read η01 ¼ η10 ¼ η22 ¼ 1, and an orientation for which the
Levi-Civita symbol fulfills ϵ012 ¼ 1. The suitable change of
basis can then be defined as

J0 → −
1

2
J−1; J2 → J0; ðA9Þ

P0 → −
1

2
P−1; P2 → P0; ðA10Þ

K0 → −
1

2
K−1; K2 → K0; ðA11Þ

and hence, the so(3,2) algebra in the new basis spanned by
(Jm, Pn, Km, D), with m; n ¼ −1, 0, 1, reduces to

½Jm; Jn� ¼ ðm − nÞJmþn;

½Jm; Pn� ¼ ðm − nÞPmþn;

½Jm; Kn� ¼ ðm − nÞKmþn;

½Pm;D� ¼ Pm;

½Km;D� ¼ −Km;

½Pm;Kn� ¼ −2ðm − nÞJmþn − 2ðm2 −mnþ n2 − 1ÞD;

ðA12Þ

which agrees with the wedge algebra of the conformal
BMS3 algebra provided that if; g → ½; �, and

J m→ Jm; Pm→Pm; Km →Km; iD0→D: ðA13Þ

In the basis (A12), the so(3,2)-valued parameter Ω that
preserves the asymptotic form of the gauge field aφ in
Eq. (6) is given by

Ω½ϵJ ;ϵP;ϵK;ϵD�¼ ϵJ J1−ϵKP1−ϵPK1þ
�
ϵDþ

2π

k
DϵJ

�
D

þη½ϵJ ;ϵP ;ϵK;ϵD�; ðA14Þ

with
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η½ϵJ ; ϵP; ϵK; ϵD� ¼ −ϵ0J J0 þ
�
ϵ0K −

2π

k
DϵK

�
P0 þ

�
ϵ0P −

2π

k
DϵP

�
K0 −

π

k

��
J −

π

k
D2

�
ϵJþKϵK þ PϵP −

k
2π

ϵ00J

�
J−1

þ π

k

��
J −

3π

k
D2 þD0

�
ϵK þ 2Dϵ0K−

1

2
PϵJ −

k
2π

ϵ00K

�
P−1 þ

π

k

��
J −

3π

k
D2 −D0

�
ϵP − 2Dϵ0P

−
1

2
KϵJ −

k
2π

ϵ00P

�
K−1; ðA15Þ

so that the transformation law of the dynamical fields reads

δJ ¼ 2J ϵ0J þ J 0ϵJ −
k
2π

ϵ000J þ 2Pϵ0P þ P0ϵP þ 2Kϵ0K þK0ϵK þDϵ0D;

δP ¼ 2Pϵ0J þ P0ϵJ − 4

�
J −

4π

k
D2

�
ϵ0K − 2

�
J −

4π

k
D2

�0
ϵK þ k
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�
D00 −
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�
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�
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− 6ðDϵ0KÞ0 þ PϵD;

δK ¼ 2Kϵ0J þK0ϵJ − 4
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ϵ0P − 2

�
J −

4π
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ϵP þ k

π
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�
D00 −

4π

k

�
J −

2π

k
D2

�
D
�
ϵP þ 6ðDϵ0PÞ0 −KϵD;

δD ¼ Dϵ0J þD0ϵJ − PϵP þKϵK þ k
2π

ϵ0D: ðA16Þ

As pointed out in Ref. [63], the asymptotic form of the field equations can be obtained from the fact that the evolution in
time corresponds to a gauge transformation spanned by Ω ¼ Ω½μJ ; μP ; μK; μD�, where μX stands for the chemical potentials.
Finally, in order to maintain the falloff of at, the parameters ϵX have to fulfill the following differential equations

_ϵJ ¼ μJ ϵ
0
J − ϵJ μ

0
J þ 2

�
ϵPμ

0
K − μKϵ

0
P −

4π

k
DμKϵP

�
þ 2

�
ϵKμ

0
P − μPϵ

0
K þ 4π

k
DμPϵK

�
;

_ϵP ¼ μPϵ
0
J − ϵJ μ

0
P − ½ðμD þ μ0J ÞϵP − μJ ϵ

0
P � þ μPϵD;

_ϵK ¼ μKϵ
0
J − ϵJ μ

0
K þ ½ðμD − μ0J ÞϵK þ μJ ϵ

0
K� − μKϵD;

_ϵD ¼ −ϵJ μ0D − 2

�
μ0K −

8π

k
DμK

�
ϵ0P þ 2μKϵ

00
P þ 2

�
μ00K −

4π

k

�
J μK þ 2Dμ0K −

6π

k
D2μK

��
ϵP
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�
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�
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k
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��
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�
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k
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�
ϵ0K − 2μPϵ

00
K þ μJ ϵ

0
D: ðA17Þ
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