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We derive a theorem for the lower bound on the energy dissipation rate by a rigid surface-driven active
microswimmer of arbitrary shape in a fluid at a low Reynolds number. We show that, for any swimmer, the
minimum dissipation at a given velocity can be expressed in terms of the resistance tensors of two passive
bodies of the same shape with a no-slip and perfect-slip boundary. To achieve the absolute minimum
dissipation, the optimal swimmer needs a surface velocity profile that corresponds to the flow around the
perfect-slip body, and a propulsive force density that corresponds to the no-slip body. Using this theorem,
we propose an alternative definition of the energetic efficiency of microswimmers that, unlike the
commonly used Lighthill efficiency, can never exceed unity. We validate the theory by calculating the
efficiency limits of spheroidal swimmers.

DOI: 10.1103/PhysRevLett.126.034503

Microswimmers are natural or artificial self-propelled
microscale objects moving through a fluid at low Reynolds
numbers, such that viscous forces dominate over inertia [1].
The swimming motion can arise from periodic changes
in the shape of the swimmer, which have to be non-
reciprocal in time [2–4]. Organisms propelled by bacterial
or eukaryotic flagella rely on nonreciprocal shape changes
of their flagella. Many other microorganisms are propelled
by thousands of cilia that all beat in an asymmetric fashion.
Their beating could in principle be described as a shape
change, but it is usually more insightful to use a coarse-
grained approach in which the cilia are replaced by a
propulsive layer that generates an effective tangential slip
velocity along the surface [5–12]. Most artificial micro-
swimmers rely on the self-phoretic mechanism and are
therefore driven by a slip velocity by design [13–17].
The energetic efficiency of microswimmers is commonly

defined by Lighthill’s criterion as the power, needed when
an external force moves a swimmer with drag coefficient R
with a speed V, divided by the dissipated power P when
the self-propelled swimmer moves with the same speed,
namely ηL ¼ RV2=P [5]. Maximizing ηL will always
provide the minimum power needed to achieve a certain
swimming speed, or, conversely, the maximum speed that
can be achieved with a given power. However, ηL is not an

efficiency in the thermodynamic sense and it can, in
principle, exceed 100% [18]. For instance, Leshansky et al.
[19] showed that the Lighthill efficiency of a prolate
spheroid diverges with the aspect ratio, becoming infinite
for a thin needle. It is possible to introduce an efficiency
that has an upper bound by evaluating the potential ability
of the swimmer to tow a tethered cargo [18,20], although
this definition will depend on the specific (geometric)
features of the cargo [21].
Microswimmers driven by an effective surface slip veloc-

ity have two contributions to the dissipation: external (in the
outer problem), due to the shearing motion of the surrounding
fluid, and internal (in the inner problem), due to losses in the
propulsive layer. The latter, which focuses on the dissipation
in the propulsive layer [10], has been the focus of
several studies on the grounds that this is often the dominant
contribution, for example, in ciliated microorganisms [22,23].
The former, on the other hand, concerns the energy loss
due to viscous dissipation, which has also been discussed
analytically for spherical [24,25] and spheroidal [19]
swimmers or computationally for more general axisymmetric
swimmers [26]. Studies on phoretic swimmers also add the
dissipation of the chemical mechanism that leads to the
surface slip [27,28]. Here, our focus is on the external
dissipation, which can set a fundamental limit on swimming
efficiency, independent of the details of the driving mecha-
nism. Since 1973, when John Blake proposed that minimum
energy dissipation theorems be formulated [29], a number of
analytical and numerical studies on efficiency limits of
microswimmers have emerged. However, general statements
on efficiency bounds have remained scarce.
In this Letter, we propose a theorem that sets a

fundamental lower bound on the external dissipation PA
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around a surface-driven active microswimmer of any
arbitrary shape with any swimming velocity (Fig. 1).
The swimmer moves with translational and angular

velocities VA and ΩA (or in short VA ¼ ½VAΩA�), which
result from a surface slip velocity profile vsA that is always
tangential to the surface (i.e., vsA · n ¼ 0, where n is the
surface normal). We prove that in the space of all possible
configurations of vsA that lead to the same VA, the
dissipation satisfies the inequality

PA ≥ VA · ðR−1
PS − R−1

NSÞ−1 · VA: ð1Þ

Here, RPS and RNS are the rigid-body resistance tensors
corresponding to the perfect-slip (PS) and no-slip (NS), and
they map the translational and angular velocities to the net
hydrodynamic forces and torques, namely FPS ¼ ½FPS LPS�
and FNS ¼ ½FNS LNS�. We thus demonstrate that the mini-
mum dissipation at a given swimming speed—or the
maximum swimming efficiency—of an active swimmer
can be determined solely by the knowledge of the viscous
resistance tensors of the same body with no-slip and
perfect-slip boundary conditions. We use the theorem
to propose a new expression for the microswimmer
efficiency as

ηm ≡ VA · RPS · VA

PA
≤ 1; ð2Þ

which compares the absolute minimum power needed to
move the body with the same exact velocity (corresponding
to dragging a perfect-slip body) and the power expended by
the active swimmer. We demonstrate that our proposed

microswimmer efficiency is bounded by unity, unlike
Lighthill efficiency.
We consider an active swimmer of arbitrary shape,

shown in Fig. 1. The motion of the swimmer is governed
by the Stokes equations ∇ · σ ¼ 0 and ∇ · v ¼ 0 subject to
boundary condition vðx ∈ SÞ ¼ VA þΩA × xþ vsA. Here,
v is the velocity field, σ ¼ −pI þ 2μE is the stress field, p
is the pressure field, E ¼ ð∇vþ ∇v⊤Þ=2 is the strain-rate
tensor, μ is the fluid viscosity, S describes the surface of the
particle, and x is the position vector.
The power dissipated due to any motion in a viscous

fluid can be equivalently expressed either as a surface
integral of the mechanical energy flux, P¼−

R
SdSn ·σ ·v,

or as a volume integral of the density of dissipated power,
P ¼ 2μ

R
V dV E∶E. Here, V represents the volume of the

surrounding fluid and the symbol ∶ denotes a twofold
contraction (i.e., E∶E ¼ EijEji). The equivalence between
the two expressions follows from the divergence theorem
[30,31]. In the absence of any external force or torque (i.e.,R
S dS fA ¼ 0 and

R
S dS x × fA ¼ 0), the power dissipated

by the swimmer then follows

PA ¼ −
Z

S
dS fA · vsA; ð3Þ

where fA ¼ n · σA is the traction. Here, our main goal is to
find a slip velocity profile vsA that minimizes PA for a
swimmer of arbitrary shape, while keeping the swimming
velocity VA constant.
We start our derivation by first showing that among all

flows around a body of a given shape, the flow that satisfies
the perfect-slip boundary condition on the surface has the
minimal dissipation. For this purpose we adapt the standard
derivation of the Helmholtz minimum dissipation theorem
(see Guazzelli and Morris [31]), which states that the
Stokes flow has the minimum dissipated power compared
to any other flow that satisfies the same boundary condition
on velocity. In our derivation, we compare the dissipation in
the flow with the perfect-slip boundary with that in a flow
with any other slip velocity. We consider the motion of a
passive perfect-slip body with tangential slip velocity vsPS
and rigid-body motion VPS ¼ ½VPSΩPS�. By definition,
the tangential component of the traction in such a motion

is zero, namely f kPS ¼ ðI − nnÞ · f PS ¼ 0. Any tangential
perturbation in the slip profile of this motion (denoted by 0)
then alters the viscous dissipated power by

ΔP ¼ 2μ

Z

V
dV½ðEPS þ E0Þ∶ðEPS þ E0Þ − EPS∶EPS�;

¼ 2μ

Z

V
dVE0∶E0 þ 4μ

Z

V
dVE0∶EPS; ð4Þ

where ΔP is the change in the dissipation due to the
perturbation in the slip profile and E0 is the strain-rate

FIG. 1. A surface-slip driven swimmer of arbitrary shape with
normal vector n. The fluid at the boundary has a slip velocity vsA
relative to the swimmer body. The swimmer moves with the rigid-
body velocity VA ¼ ½VA ΩA�, where VA and ΩA are the transla-
tional and rotational velocities. The magenta and light-blue
arrows show the schematic of the slip velocity and the stream-
lines, in the comoving frame.
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tensor for the perturbation flow. Since both E0 and EPS are
traceless symmetric tensors, and ∇ · v0 ¼ 0, we have
2μE0∶EPS ¼ ∇v0∶σPS, where σPS ¼ −pPSI þ 2μEPS is the
stress field for the perfect-slip flow and pPS is the
corresponding pressure field. Using ∇ · σPS ¼ 0, one
obtains ∇v0∶σPS ¼ ∇ · ðv0 · σPSÞ. Thence, by once again
using the divergence theorem, we find 4μ

R
V dVE

0∶EPS ¼
−2

R
S dS f PS · v

0 ¼ 0 (since f kPS ¼ 0 and n · v0 ¼ 0). Now,
noting that 2μ

R
V dVE

0∶E0 is positive definite, we can
conclude that the minimum dissipated power can be only
achieved when E0 ¼ 0, thereby indicating that the optimal
slip velocity profile is that of a perfect-slip body. We can
alternatively state that the dissipation of any motion with
rigid-body velocity VPS is more than (or equal to) that of a
perfect-slip body. For a perfect-slip body, the dissipated
power is found PPS ¼ −

R
S dS f PS · vPS ¼ VPS · RPS · VPS.

Thus, we have proven

P ≥ V · RPS · V; ð5Þ

where P is the dissipated power in any flow with rigid-body
motion V. We note that there is an interesting difference
between the implications of the Helmholtz theorem for
no-slip and perfect-slip bodies. For no-slip bodies, the
Helmholtz theorem implies that adding extra volume to the
body, such that the old shape is fully contained in the new
one, will always increase its drag coefficient [32]. This is
because the flow around the enlarged body can be viewed
as a non-optimal solution to the original problem. For
perfect-slip bodies, however, no such statement is possible.
For example, a perfect-slip spheroid reduces its drag
coefficient upon elongation in the direction of motion
while keeping the equatorial radius constant [33].
We now need to show how the inequality given in Eq. (5)

sets an absolute lower bound for the dissipated power of an
active swimmer of the same shape with velocity VA. Let us
consider the motion of a body that is a linear superposition
of an active swimmer with velocity VA and a no-slip body
of the same shape with velocity VNS. From (5), we have a
lower bound on the dissipated power in the superposition
system

PAþNS ≥ ðVA þ VNSÞ · RPS · ðVA þ VNSÞ: ð6Þ

On the other hand, the dissipated power can be directly
expressed as PAþNS ¼ −

R
S dSðfA þ fNSÞ · vAþNS, where

vAþNS ¼ vsA þ VA þ VNS þ ðΩA þΩNSÞ×x at the boun-
dary. This dissipated power then evaluates to

PAþNS ¼ −
Z

S
dSðfA þ fNSÞ · vsA − FNS · ðVA þ VNSÞ: ð7Þ

Now we can employ the Lorentz reciprocal theorem to
connect the active swimming problem to the no-slip one
[24,30,37–40]. Since the flow field in the active problem is

force- and torque-free, we find
R
S dS fNS · v

s
A ¼ −FNS · VA,

which simplifies Eq. (7) to

PAþNS ¼ PA − FNS · VNS; ð8Þ

where PA and −FNS · VNS represent the dissipated power of
the active and the no-slip particles, respectively. Thus, for
the superposition of a force- and torque-free active particle
and a no-slip body with arbitrary velocity, the dissipation
rate is the sum of the two corresponding individual
dissipation rate contributions.
The lower bound on the dissipation rate—given by

Eqs. (6) and (8)—is valid for a superposition of an active
swimmer with any slip profile vsA (resulting in the swim-
ming velocity VA) and a no-slip body with any velocity
VNS. The equality (i.e., the minimum dissipation for the
swimmer) is fulfilled if and only if the superposition
represents a flow around a perfect-slip body. Among all
VNS, we therefore obtain the strictest bound on the
dissipation when the velocities fulfill the conditions of
the superposition described in Fig. 2(a). The velocities then
must follow VPS ¼ VA þ VNS, and the force balance of the

(a)

(b)

(c)

FIG. 2. (a) Schematic of the superposition. A perfect-slip body
is represented as a superposition of the optimal active swimmer
and a no-slip body. The cyan-colored arrows schematically show
the velocity profile near the surface of the swimmer (in the
comoving frame). Magenta-colored arrows show the tangential
traction force density. This superposition is shown for two
examples of (b) a sphere of radius a and (c) a prolate spheroid
with aspect ratio b=a ¼ 2. The white arrows show the streamlines
and the colors indicate the value of the velocity scaled by the
swimming speed of the active particle. All the figures are in the
comoving Cartesian x − z frame set at the center of the particle.
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superposition dictates RPS · VPS ¼ RNS · VNS (since
FPS ¼ FNS). The velocities can then be expressed in terms
of VA as

VPS ¼ ðI − R−1
NS · RPSÞ−1 · VA; ð9Þ

VNS ¼ ðR−1
PS · RNS − IÞ−1 · VA; ð10Þ

where I is the six-dimensional identity tensor. Inserting
these velocities in Eqs. (6) and (8) yields our main result
that is presented in Eq. (1). Equation (1) shows that the
minimum dissipated power by a swimmer can be obtained
explicitly by evaluating the resistance tensors of two
passive problems: the perfect-slip body and the no-slip
body motion of the same geometry. This result is general
and holds for any swimmer of any arbitrary shape (the
simplified version for axisymmetric swimmers is presented
in the Supplemental Material [33]). The optimization
problem is remarkably reduced down to finding the
resistance tensor of two passive systems in the same
domain.
As discussed, the power dissipated in active swimming

reaches its lower bound when the superposition of the
active and no-slip cases conspires to exactly recreate the
perfect-slip motion. Note that an unlimited variety of slip
profiles can lead to the same swimming velocity, but only
the superposition of the optimal swimmer and the no-slip
body can amount to the flow field of a perfect-slip body. In
other words, such a decomposition of the perfect-slip body
uniquely demands vsA ¼ vsPS. From this, one can claim that
the optimal slip velocity profile for any swimmer with
swimming velocity VA is identical to that of a perfect-slip
body moving with a velocity given in Eq. (9). Furthermore,
since for the perfect-slip body f kPS ¼ 0, the superposition
also necessitates f kA ¼ −f kNS. Thus, we can similarly claim
that the force density of an optimal swimmer is the negative
of that induced by a passive motion of a no-slip body with
the velocity given in (10).
The expression for the minimum power can also be used

to find the maximum Lighthill efficiency. Recalling that the
total power needed for dragging a no-slip body with
velocity VA is VA · RNS · VA, we find

ηL ≤
VA · RNS · VA

VA · ðR−1
PS − R−1

NSÞ−1 · VA
: ð11Þ

Expression (11) is also general and sets the upper bound for
the efficiency of a swimmer with a given shape and
swimming velocity. If the motion is axisymmetric with
no rotation, the limit on efficiency takes the very simple
form

ηL ≤
RNS

RPS
− 1; ð12Þ

where RNS and RPS are now the scalar drag coefficients of
the no-slip and perfect-slip passive bodies. For instance, for
a spherical swimmer (i.e., a squirmer [5,6,41]), we have
RNS ¼ 6πμa and RPS ¼ 4πμa, where a is the radius [30].
This gives ηmax

L ¼ 1=2, a result which was also found by
Michelin and Lauga [25]. From the known solutions for the
flow around a bubble we know that the slip velocity of the
optimal spherical swimmer is vsA ¼ 3

2
VA sin θ with θ being

the polar angle, also in agreement with Refs. [7,25]. The
force density, which is identical to the force on a no-slip
sphere translating with velocity ðRNS=RPS − 1Þ−1VA, is
then simply found as fkA ¼ 3μðVA=aÞ sin θ. The flow
decomposition for an optimal spherical swimmer is shown
in Fig. 2(b).
To highlight the strength of expression (12), we may also

use it to evaluate the maximum efficiency of an axisym-
metric spheroidal swimmer. The exact expression for the
flow field and the drag coefficient of a no-slip spheroidal
body is well documented [30], and we can similarly find the
flow field and the drag coefficient for the perfect-slip body
using an exact approach [33] [see Fig. 2(c) for an example].
By using these results, we can evaluate the maximum
Lighthill efficiency for any value of the spheroid aspect
ratio b=a. As shown in Fig. 3, our results precisely match
the recent computational data for optimal swimming of
spheroidal particles obtained with the boundary element
method and numerical optimization by Guo et al. [26].
These results provide a fully independent validation of our
theorem.
Our simple expression for the maximum efficiency also

shows how the Lighthill efficiency diverges once the aspect
ratio becomes increasingly large b=a → ∞ (spheroid trans-
forms to a needle) [19]. In that case, RNS ∝ b= logðb=aÞ →
∞ while RPS ∝ a2=b → 0, resulting in ηmax

L ∝ ðb=aÞ2=
logðb=aÞ → ∞. To resolve this, we propose an alternative
microswimmer efficiency via Eq. (2), which yields

ηm ≤
VA · RPS · VA

VA · ðR−1
PS − R−1

NSÞ−1 · VA
; ð13Þ

and consequently

ηm ≤ 1 −
RPS

RNS
; ð14Þ

for axisymmetric bodies. Using this definition, for a
spherical swimmer ηmax

m ¼ 1=3, and for a needle ηmax
m → 1,

see Fig. 3. We have demonstrated that the motion of a
perfect-slip body has the minimum dissipation among all
other types of motion, and therefore, unlike the Lighthill
efficiency, ηm is clearly bounded by unity.
In conclusion, we were able to express the minimum

dissipation needed by an active swimmer using only two
rigid-body resistance tensors of bodies with the same
shape: a no-slip boundary condition in the first case and
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a perfect-slip boundary in the second. We showed that the
surface slip velocities and forces that reach this minimal
dissipation correspond to the flow around a perfect-slip
body and the tangential force on the no-slip body. We have
thus reduced a complex optimization problem to the
calculation of two resistance tensors, for which numerous
analytical solutions and numerical methods are available.
In this study, we found a general theorem on the

minimum dissipation of surface-driven microswimmers.
An outstanding challenge will be to generalize this theorem
to swimmers that propel themselves by changing their
shapes [3,42,43].

We thank Evelyn Tang for comments on the manuscript.
This work has been supported by the Max Planck Society.
A. V. acknowledges support from the Slovenian Research
Agency (Grant No. P1-0099).

*andrej.vilfan@ds.mpg.de
[1] G. Gompper et al., The 2020 motile active matter roadmap,

J. Phys. Condens. Matter 32, 193001 (2020).
[2] E. M. Purcell, Life at low Reynolds number, Am. J. Phys.

45, 3 (1977).

[3] A. Najafi and R. Golestanian, Simple swimmer at low
Reynolds number: Three linked spheres, Phys. Rev. E 69,
062901 (2004).

[4] B. Nasouri, A. Vilfan, and R. Golestanian, Efficiency limits
of the three-sphere swimmer, Phys. Rev. Fluids 4, 073101
(2019).

[5] M. J. Lighthill, On the squirming motion of nearly spherical
deformable bodies through liquids at very small Reynolds
numbers, Commun. Pure Appl. Math. 5, 109 (1952).

[6] J. R. Blake, A spherical envelope approach to ciliary
propulsion, J. Fluid Mech. 46, 199 (1971).

[7] J. Blake, A finite model for ciliated micro-organisms, J.
Biomech. 6, 133 (1973).

[8] F. Jülicher and J. Prost, Generic theory of colloidal trans-
port, Eur. Phys. J. E 29, 27 (2009).

[9] N. Osterman and A. Vilfan, Finding the ciliary beating
pattern with optimal efficiency, Proc. Natl. Acad. Sci.
U.S.A. 108, 15727 (2011).

[10] A. Vilfan, Optimal Shapes of Surface Slip Driven Self-
Propelled Microswimmers, Phys. Rev. Lett. 109, 128105
(2012).

[11] T. J. Pedley, D. R. Brumley, and R. E. Goldstein, Squirmers
with swirl: A model for Volvox swimming, J. Fluid Mech.
798, 165 (2016).

[12] A.W. Zantop and H. Stark, Squirmer rods as elongated
microswimmers: Flow fields and confinement, Soft Matter
16, 6400 (2020).

[13] J. L. Anderson and D. C. Prieve, Diffusiophoresis caused by
gradients of strongly adsorbing solutes, Langmuir 7, 403
(1991).

[14] R. Golestanian, T. B. Liverpool, and A. Ajdari, Propulsion
of a Molecular Machine by Asymmetric Distribution of
Reaction Products, Phys. Rev. Lett. 94, 220801 (2005).

[15] A. I. Campbell, S. J. Ebbens, P. Illien, and R. Golestanian,
Experimental observation of flow fields around active Janus
spheres, Nat. Commun. 10, 3952 (2019).

[16] B. Nasouri and R. Golestanian, Exact Phoretic Interaction of
Two Chemically Active Particles, Phys. Rev. Lett. 124,
168003 (2020).

[17] R. Pöhnl, M. N. Popescu, and W. E. Uspal, Axisymmetric
spheroidal squirmers and self-diffusiophoretic particles,
J. Phys. Condens. Matter 32, 164001 (2020).

[18] S. Childress, A thermodynamic efficiency for Stokesian
swimming, J. Fluid Mech. 705, 77 (2012).

[19] A. M. Leshansky, O. Kenneth, O. Gat, and J. E. Avron, A
frictionless microswimmer, New J. Phys. 9, 145 (2007).

[20] O. Raz and A. M. Leshansky, Efficiency of cargo towing by
a microswimmer, Phys. Rev. E 77, 055305(R) (2008).

[21] R. Golestanian, Three-sphere low-Reynolds-number
swimmer with a cargo container, Eur. Phys. J. E 25, 1
(2008).

[22] S. R. Keller and T. Y. Wu, A porous prolate-spheroidal
model for ciliated micro-organisms, J. Fluid Mech. 80, 259
(1977).

[23] H. Ito, T. Omori, and T. Ishikawa, Swimming mediated by
ciliary beating: Comparison with a squirmer model, J. Fluid
Mech. 874, 774 (2019).

[24] H. A. Stone and A. D. T. Samuel, Propulsion of Micro-
organisms by Surface Distortions, Phys. Rev. Lett. 77, 4102
(1996).

FIG. 3. Maximum Lighthill efficiency ηmax
L (black line) of

spheroidal swimmers as a function of the aspect ratio b=a,
obtained using our theorem. The Lighthill efficiency diverges for
prolate spheroids as b=a increases. The red line shows our
proposed microswimmer efficiency ηmax

m , which is bounded by
unity. For a sphere (b=a ¼ 1), our theorem recovers the well-
documented maximum Lighthill efficiency of 1=2 [25], which
corresponds to 1=3 in the case of our proposed microswimmer
efficiency. The grey squares show optimal efficiencies obtained
by Guo et al. [26] using the boundary element method and
numerical optimization.

PHYSICAL REVIEW LETTERS 126, 034503 (2021)

034503-5

https://doi.org/10.1088/1361-648X/ab6348
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://doi.org/10.1103/PhysRevE.69.062901
https://doi.org/10.1103/PhysRevE.69.062901
https://doi.org/10.1103/PhysRevFluids.4.073101
https://doi.org/10.1103/PhysRevFluids.4.073101
https://doi.org/10.1002/cpa.3160050201
https://doi.org/10.1017/S002211207100048X
https://doi.org/10.1016/0021-9290(73)90082-1
https://doi.org/10.1016/0021-9290(73)90082-1
https://doi.org/10.1140/epje/i2008-10446-8
https://doi.org/10.1073/pnas.1107889108
https://doi.org/10.1073/pnas.1107889108
https://doi.org/10.1103/PhysRevLett.109.128105
https://doi.org/10.1103/PhysRevLett.109.128105
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1017/jfm.2016.306
https://doi.org/10.1039/D0SM00616E
https://doi.org/10.1039/D0SM00616E
https://doi.org/10.1021/la00050a035
https://doi.org/10.1021/la00050a035
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1038/s41467-019-11842-1
https://doi.org/10.1103/PhysRevLett.124.168003
https://doi.org/10.1103/PhysRevLett.124.168003
https://doi.org/10.1088/1361-648X/ab5edd
https://doi.org/10.1017/jfm.2011.561
https://doi.org/10.1088/1367-2630/9/5/145
https://doi.org/10.1103/PhysRevE.77.055305
https://doi.org/10.1140/epje/i2007-10276-2
https://doi.org/10.1140/epje/i2007-10276-2
https://doi.org/10.1017/S0022112077001669
https://doi.org/10.1017/S0022112077001669
https://doi.org/10.1017/jfm.2019.490
https://doi.org/10.1017/jfm.2019.490
https://doi.org/10.1103/PhysRevLett.77.4102
https://doi.org/10.1103/PhysRevLett.77.4102


[25] S. Michelin and E. Lauga, Efficiency optimization and
symmetry-breaking in a model of ciliary locomotion, Phys.
Fluids 22, 111901 (2010).

[26] H. Guo, H. Zhu, R. Liu, M. Bonnet, and S. Veerapaneni,
Optimal slip velocities of micro-swimmers with arbitrary
axisymmetric shapes, J. Fluid Mech. 910, A26 (2021).

[27] B. Sabass and U. Seifert, Efficiency of Surface-Driven
Motion: Nanoswimmers Beat Microswimmers, Phys. Rev.
Lett. 105, 218103 (2010).

[28] B. Sabass and U. Seifert, Dynamics and efficiency of a self-
propelled, diffusiophoretic swimmer, J. Chem. Phys. 136,
064508 (2012).

[29] John Blake predicted that “The problem of maximizing the
velocity of propulsion while keeping the rate of energy
dissipation fixed is likely to lead to interesting minimum
energy dissipation theorems” [7].

[30] J. Happel and H. Brenner, Low Reynolds Number Hydro-
dynamics (Springer Netherlands, Dordrecht, 1983).

[31] E. Guazzelli and J. F. Morris, A Physical Introduction to
Suspension Dynamics (Cambridge University Press,
Cambridge, England, 2009).

[32] R. Hill and G. Power, Extremum principles for slow viscous
flow and the approximate calculation of drag, Q. J. Mech.
Appl. Math. 9, 313 (1956).

[33] See the Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.034503 for the
summary of the theorem for axisymmetric swimmers and
the details of the calculations for the motion of a perfect-slip
spheroidal particle, which includes Refs. [34–36].

[34] G. Dassios, M. Hadjinicolaou, and A. C. Payatakes,
Generalized eigenfunctions and complete semiseparable
solutions for Stokes flow in spheroidal coordinates,
Q. Appl. Math. 52, 157 (1994).

[35] S. Deo and S. Datta, Stokes flow past a fluid prolate
spheroid, Indian J. Pure Appl. Math. 34, 755 (2003).

[36] L. E. Payne and W. H. Pell, The Stokes flow problem for a
class of axially symmetric bodies, J. Fluid Mech. 7, 529
(1960).

[37] H. A. Lorentz, Eene algemeene stelling omtrent de beweg-
ing eener vloeistof met wrijving en eenige daaruit afgeleide
gevolgen, Zittingsverslag K. Akad. Wet. Amsterdam 5, 168
(1896).

[38] G. J. Elfring, Force moments of an active particle in a
complex fluid, J. Fluid Mech. 829, R3 (2017).

[39] B. Nasouri and G. J. Elfring, Higher-order force
moments of active particles, Phys. Rev. Fluids 3, 044101
(2018).

[40] H. Masoud and H. A. Stone, The reciprocal theorem in fluid
dynamics and transport phenomena, J. Fluid Mech. 879, P1
(2019).

[41] O. S. Pak and E. Lauga, Generalized squirming motion of a
sphere, J. Eng. Math. 88, 1 (2014).

[42] M. A. Jalali, M.-R. Alam, and S. H. Mousavi, Versatile low-
Reynolds-number swimmer with three-dimensional maneu-
verability, Phys. Rev. E 90, 053006 (2014).

[43] M. Mirzakhanloo, M. A. Jalali, and M.-R. Alam, Hydro-
dynamic choreographies of microswimmers, Sci. Rep. 8,
3670 (2018).

PHYSICAL REVIEW LETTERS 126, 034503 (2021)

034503-6

https://doi.org/10.1063/1.3507951
https://doi.org/10.1063/1.3507951
https://doi.org/10.1017/jfm.2020.969
https://doi.org/10.1103/PhysRevLett.105.218103
https://doi.org/10.1103/PhysRevLett.105.218103
https://doi.org/10.1063/1.3681143
https://doi.org/10.1063/1.3681143
https://doi.org/10.1093/qjmam/9.3.313
https://doi.org/10.1093/qjmam/9.3.313
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.034503
https://doi.org/10.1090/qam/1262325
https://doi.org/10.1017/S002211206000027X
https://doi.org/10.1017/S002211206000027X
https://doi.org/10.1017/jfm.2017.632
https://doi.org/10.1103/PhysRevFluids.3.044101
https://doi.org/10.1103/PhysRevFluids.3.044101
https://doi.org/10.1017/jfm.2019.553
https://doi.org/10.1017/jfm.2019.553
https://doi.org/10.1007/s10665-014-9690-9
https://doi.org/10.1103/PhysRevE.90.053006
https://doi.org/10.1038/s41598-018-21832-w
https://doi.org/10.1038/s41598-018-21832-w

