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In the presence of magnetic fields, gravitational waves are converted into photons and vice versa. We
demonstrate that this conversion leads to a distortion of the cosmic microwave background (CMB), which
can serve as a detector for MHz to GHz gravitational wave sources active before reionization. The
measurements of the radio telescope EDGES can be cast as a bound on the gravitational wave amplitude,
hc < 10−21ð10−12Þ at 78 MHz, for the strongest (weakest) cosmic magnetic fields allowed by current
astrophysical and cosmological constraints. Similarly, the results of ARCADE 2 imply hc < 10−24ð10−14Þ
at 3–30 GHz. For the strongest magnetic fields, these constraints exceed current laboratory constraints by
about 7 orders of magnitude. Future advances in 21 cm astronomy may conceivably push these bounds
below the sensitivity of cosmological constraints on the total energy density of gravitational waves.
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Gravitational waves (GWs) produced in the early
Universe [1,2] can traverse cosmic distances without experi-
encing any interactions, making them a unique probe of very
high energy physics. Since the comoving Hubble horizon
grows with time, GWs produced at energies around the scale
of grand unification have frequencies in the MHz and GHz
regime today, far beyond the reach of the laser interfero-
meters LIGO, VIRGO, or KAGRA. See Refs. [3–8] for
some existing laboratory bounds at these frequencies.
Here we focus on searching for high-frequency GWs

exploiting the (inverse) Gertsenshtein effect [9,10], which
describes the conversion of GWs into photons in the
presence of a magnetic field (see, e.g., Refs. [7,8,11–16]).
As an immediate consequence of general relativity and
classical electromagnetism, this is a purely SM process.
Involving gravity, the conversion probability is extremely
small which may, however, be compensated by considering a
“detector” of cosmological size. In fact, magnetic fields with
cosmological correlation lengths might well permeate our
Universe with certain astrophysical observations strongly
suggesting a lower limit of order 10−16 G [17–19], and the
CMB setting an upper bound in the pG-nG range [20–22].
See Ref. [23] for a comprehensive review.
The pioneering study [24] proposed the inverse

Gertsenshtein effect in cosmic magnetic fields to search

for GWs but neglected the plasma mass of photons, as
pointed out in Ref. [25]. The idea was revisited in Ref. [26]
suggesting an observable effect, however as noted in
Ref. [15] decoherence effects were not correctly accounted
for. More recently, Ref. [27] studied the production of GWs
from CMB photons. In this Letter, we focus on CMB
distortions arising from the Gertsenshtein effect during the
dark ages, i.e., the period between recombination and
reionization. Because of the small fraction of free electrons
in this period, the effective plasma mass of the photons is
suppressed, increasing the conversion probability between
GWs and photons. Taking into account inhomogeneities in
the thermal plasma and in the cosmic magnetic fields, we
demonstrate that existing measurements of the Rayleigh-
Jeans tail of the CMB spectrum, performed, e.g., by
ARCADE 2 [28] and by EDGES [29], can be translated
into constraints on GWs in the MHz-GHz regime. These
are competitive with, or even exceed, current laboratory
constraints, depending on the assumptions on the cosmic
magnetic fields.
The Gertsenshtein effect.—Calculating the conversion

rate for this oscillation process requires solving Maxwell’s
equations for the vector potential Aμ, describing the
electromagnetic radiation, together with the linearized
Einstein’s equations for the metric gμν ¼ ημν þ hμν, in
which hμν describes the GWs. In this work we will adopt
ημν ¼ diagðþ − −−Þ and work with natural Heaviside-
Lorentz units (ℏ ¼ c ¼ 1), except in this section, where
we keep fundamental constants explicitly to emphasize that
the Gertsenshtein effect is a classical phenomenon.
Let us ignore the Universe expansion first and consider a

GW propagating in the ê3 direction inside a fixed box of
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size Δl that contains a uniform transverse magnetic field B
and a non-negligible uniform density of free electrons, ne.
Without loss of generality, we assume that the magnetic
field points in the ê1 direction. See Fig. 1. In this coordinate
system we introduce h× ¼ h12 ¼ h21 and A× ¼ A1 as well
as hþ ¼ −h22 ¼ h11 and Aþ ¼ −A2. This is because the
aforementioned equations can be elegantly cast as [12,15]
[30]

ð□þ ω2
pl=c

2ÞAλ ¼ −B∂lhλ; □hλ ¼ κ2B∂lAλ; ð1Þ

where λ ∈ fþ;×g, l is the third component, □ ¼ ∂2
t =

c2 − ∂2
l, κ ¼ ð16πGÞ1=2=c2. We include the plasma fre-

quency ωpl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ne=me

p
, which acts as an effective

mass term and gives electromagnetic waves of frequency

ω a refractive index μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

pl=ω
2

q
when B → 0.

Equation (1) also applies for arbitrary uniform fields with
B interpreted as the corresponding transverse component.
See the Supplemental Material [31] for more details.
Assuming a plane wave traveling in the positive direction
with ω ≥ ωpl, the exact solution of Eqs. (1) (see also
Ref. [16]) can be written as

ψðt;lÞ≡
� ffiffiffi

μ
p

Aλ

1
κ hλ

�
¼ e−iωteiKlψð0; 0Þ; ð2Þ

with K being the Hermitian matrix
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It is convenient to introduce ψ because its magnitude
jψðt;lÞj2 is conserved. This easily follows from the
unitarity of the matrix UðlÞ ¼ eiKl. In particular,
ψð0; 0Þ ¼ ð0; hλ;0=κÞ for a pure GW state entering the
box, and, consequently, ψðt;ΔlÞ ¼ e−iωt½U12ðΔlÞ;
U22ðΔlÞ�hλ;0=κ after leaving the box. Since jU12ðΔlÞj2þ
jU22ðΔlÞj2 ¼ 1, the quantity PðΔlÞ≡ jU12ðΔlÞj2 can be
interpreted as the probability of GW conversion after
traversing a distance Δl. Simple algebra shows

PðΔlÞ ¼ jK12j2l2
osc sin2ðΔl=loscÞ; ð4Þ

with l−1
osc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ð1 − μÞ2=c2 þ κ2B2

p
=2. These expressions

reduce to the approximated formulae previously found (see,
e.g., Refs. [12,33]).
Although cosmic magnetic fields are not expected to be

perfectly homogeneous, coherent oscillations take place in
highly homogeneous patches, for which losc ≪ Δl and
therefore PðΔlÞ ¼ jK12j2l2

osc=2 on average. Taking into
account inhomogeneities in ne [34] and B, the coherence of
the g ↔ γ oscillations is lost on distances larger than Δl,
that is, the smallest distance on which B and ne are uniform.
Denoting the total distance traveled by the GW as D, this
corresponds to traversing N ¼ D=Δl independent regions
with a conversion probability PðΔlÞ each. As long as
NPðΔlÞ ≪ 1, this gives a total conversion probability of
PðDÞ ¼ DjK12j2l2

osc=ð2ΔlÞ [25,26], corresponding to an
average conversion rate (i.e., probability per time) [31]
given by

hΓg↔γi ¼
cjK12j2l2

osc

2Δl
: ð5Þ

In the Supplemental Material [31] we demonstrate that this
simple estimate correctly captures the essential features of a
more involved computation based on the expected power
spectrum of the magnetic field. Note that any additional
inhomogeneities would further enhance the conversion rate
by limiting the coherence of the g ↔ γ oscillations.
We now include the effect of the Universe expansion

during the dark ages. This is the period between photon
decoupling and reionization, zdec ≃ 1100≳ z≳ zrei ≃ 10,
beginning with the formation of the CMB and ending when
the first stars were formed. During this time, the refractive
index of MHz-GHz CMB photons is determined by the tiny
electron density, with the contributions of neutral hydro-
gen, helium, and birefringence being subdominant [39–41].
This allows us to adopt Eq (5), after a few modifications.
The conversion probability in an adiabatic expanding
Universe is simply the line-of-sight integral of the rate

P ≡
Z

l:o:s:
hΓg↔γidt ¼

Z
zini

0

hΓg↔γi
ð1þ zÞHdz; ð6Þ

where we use null geodesics Hdt ¼ dT=T ¼ dz=ð1þ zÞ.
Also, zini ≤ zdec is an initial condition to be specified below
and H ¼ HdecðT=TdecÞ3=2 is the Hubble parameter during
the dark ages, which are matter dominated. Furthermore,
the average magnetic energy density of the Universe ρB ¼
B2=2 redshifts as ρB ¼ ρB0ð1þ zÞ4 [42]. Additionally,
such a field is associated with a coherence length,
λB ¼ λ0B=ð1þ zÞ, because it is not expected to be homo-
geneous everywhere. Concerning these two quantities we
emphasize three important facts here and refer the reader to
Ref. [23] for a more comprehensive discussion: (i) a recent
CMB analysis gives B0 ≲ 47 pG [20], (ii) blazar

FIG. 1. The Gertsenshtein effect.
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observations strongly suggest a lower limit on B0 [43]
because otherwise their gamma-ray spectra cannot be
explained under standard cosmological assumptions [17–
19,44], and (iii) magnetohydrodynamic turbulence damps
out large magnetic fields at small distances, imposing an
additional (theoretical) upper limit [23]. Figure 2 shows these
constraints.
In addition, the electron number density during this

epoch is neðzÞ¼ nb0ð1þ zÞ3XeðzÞ, where nb0 ¼ 0.251 m−3

is the baryon number density today [45] and XeðzÞ is the
ionization fraction, taking values 1,0.68,0.0002, and 0.15 at
z ¼ 0, 10, 20, and 1100, respectively [46]. This gives
plasma frequencies today, ωpl;0, lying in the Hz range,
which allows us to take 1 − μðzÞ ¼ ð1þ zÞXeðzÞω2

pl;0=
ð2ω2

0Þ ≪ 1, for waves of frequency ω ¼ ω0ð1þ zÞ with
ω0 ∼ GHz. Moreover, B0 ≲ 47 pG results in the oscillation
length being numerically dominated by the plasma fre-
quency so that l−1

osc ¼ ð1þ zÞ2XeðzÞω2
pl;0=ð4ω0cÞ. This

gives losc ≪ 1 pc ≪ Δl, as anticipated above. Here, in
order to account for electron inhomogeneities we con-
servatively take Δl ¼ Δl0=ð1þ zÞ to be given by
Δl0 ¼ min½λEQ; λ0B�, where λEQ=ð2πÞ ¼ 95 Mpc is the
characteristic comoving scale for the onset of structure
formation (corresponding to the perturbation mode entering
the horizon at matter-radiation equality). Putting all this
together, we obtain

P ≃ 6.3 × 10−19
�
B0

nG

�
2
�
ω0

T0

�
2
�
Mpc
Δl0

��
IðziniÞ
106

�
; ð7Þ

with T0=ð2πÞ¼ 2.725K=ð2πÞ¼ 56.78GHz and IðziniÞ ¼R zini
0 dzð1þ zÞ−3=2X−2

e ðzÞ. The left panel of Fig. 2 displays
contours of ðT0=ω0Þ2P in the parameter space of cosmic
magnetic fields. The inset shows I 0ðziniÞ, explaining the
weak redshift dependence of IðziniÞ, with the largest
contribution arising from z ∼ 10.
CMB distortions.—The CMB photon distribution,

fγðω; TÞ, retains its equilibrium form during the dark ages,
i.e., is given by a blackbody spectrum, feq ¼ 1=ðeω=T − 1Þ
with ω=T ¼ ω0=T0. Our aim here is to calculate deviations
from such a spectrum, δfγ ¼ fγ − feq.
The spectrum of GWs is commonly characterized by

ΩGW, which parametrizes the corresponding energy density
per logarithmic frequency bin. This quantity can be used to
introduce—in an analogous manner to fγ—the distribution
function for GWs, fg. More precisely, in terms of it, the
energy density is given by

ρgðTÞ¼
Z

d lnω
π2

ω4fg≡ρcðTÞ
Z

d lnωΩGW

�
ω

2π
;T

�
; ð8Þ

with ρcðTÞ denoting the Universe total energy density.

FIG. 2. Left: Parameter space for cosmic magnetic fields today. Gray shaded areas show the exclusion discussed in the text. The solid
(dashed) colored curves indicate contour lines for the rescaled conversion probability, ðT0=ω0Þ2P. See Eqs. (6) and (7). Right: Upper
bounds on the stochastic GW background derived from ARCADE2 and EDGES (this work), compared to existing laboratory bounds
from (a) superconducting parametric converter [3], (b) waveguide [4], (c) 0.75 m interferometer [5], (d) magnon detector [6], and
(e) magnetic conversion detector [7]. The solid lines indicate the allowed parameter space for cosmic magnetic fields, as given in the left
panel. The dashed lines mark the Neff constraint for broad GW spectra and for a peaked spectrum with Δω=ω ¼ 10−3. For reference, the
dotted lines indicate ρg ¼ ρc.
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Both distributions satisfy the Boltzmann equation
L̂fγ=g ¼ �hΓg↔γiðfg − fγÞ, where L̂≡ ∂t −Hω∂ω ¼
−HðT∂T þ ω∂ωÞ is the corresponding Lioville operator.
Its solution leads to

δfγðω0; T0Þ ¼ ½fgðωini; T iniÞ − feq�P þOðP2Þ; ð9Þ
with P defined as in Eq. (6). We solve the Boltzmann
equations from an initial temperature T ¼ T ini—when the
photon distribution is a blackbody spectrum, i.e.,
fγðω; T iniÞ ¼ feqðω=T iniÞ—until today. If decoupling is
prior to the GW emission, the latter fixes T ini. Otherwise,
we set T ini ¼ Tdec because the ionization fraction sharply
drops after z ∼ zdec rendering any prior contribution negli-
gible. This is illustrated in the inset of Fig. 2 (left panel),
which also shows that the conversion rate is anyways largely
insensitive to the precise value of T ini.
Equation (9) can alternatively be derived by considering

the density-matrix formalism. In that case, fγ and fg are
proportional to the diagonal entries of such a matrix, which
evolves by means of the Hamiltonian associated with
Eq. (3). See the Supplemental Material [31] for details.
The fact that using both methods we obtain the same
result—i.e., Eq. (9)—is reassuring and indicates that
decoherence effects are properly taken into account [15].
Because of this as well as the way we treat inhomogene-
ities, our results differ from those of Ref. [26].
Constraints on the stochastic GW background.—In this

Letter we focus on the Rayleigh-Jeans part of the CMB,
i.e., ω ≪ T implying feq ≃ T=ω. In this regime, a sub-
dominant GW contribution to the total radiation energy
density is compatible with fg ≫ fγ [47], and can thus
produce an enhancement of the low-frequency CMB tail
through the first term of Eq. (9). More precisely, the
assumption fg > fγ translates to ΩGW=Ωγ > 15=π4ðω=TÞ3
as can be seen by rewriting Eq. (8) as ΩGW¼ω4fgðω;TÞ=
ðπ2ρcÞ¼ ð15=π4Þðω=TÞ4fgðω;TÞΩγ with Ωγ ¼ ργ=ρc ¼
π2T4=ð15ρcÞ. Even a scale-invariant GW spectrum as small
as ΩGW ≃ 10−15 implies fg > fγ at, e.g., ω=T ≃ 10−3.
With ω ≪ T and fg ≫ fγ, Eq. (9) reads

δfγ
fγ

ðω0; T0Þ ¼
π4

15

�
T
ω

�
3

P
ΩGW

Ωγ
: ð10Þ

For a given detector sensitivity δfγ=fγ and a given value
of the conversion probability P, relation (10) sets stringent
bounds on the GW spectrum, which can be expressed in
terms of the characteristic strain by means of [49]

hc ¼
�
3H2

0

4π2
ΩGWf−2

�
1=2

: ð11Þ

This is related to the one-sided power spectral density Sh as
hc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fShðfÞ

p
. Figure 2 contrasts the resulting constraints

with existing bounds in the literature.

Neff bound.—GWs contribute to the energy budget of the
Universe in the form of radiation and are as such con-
strained by the BBN and CMB bounds on the effective
number of massless degrees of freedom Neff [50],

ρgðTÞ ≤
7

8

�
4

11

�
4=3

ΔNeffργðTÞ; ð12Þ

with ΔNeff ≲ 0.1 [45,51]. For a spectrum ΩGW which is
approximately scale invariant between fmin and fmax with
lnðfmax=fminÞ ∼Oð1Þ, this implies

ΩGW

Ωγ
≲ 7

8

�
4

11

�
4=3

ΔNeff ; ð13Þ

whereas for a narrow spectrum peaked at ω̃ with width
Δω̃≲ ω̃ this bound is relaxed by a factor ðω̃=Δω̃Þ. Note
that this bound applies only to GWs present already at
CMB decoupling.
Probing the Rayleigh-Jeans tail of the CMB spectrum.—

Below ω0=T0 ∼ 10−2, galactic foregrounds dominate the
radio sky. Here we focus on the results reported by
ARCADE2 [28] which covers the sweet spot of the low-
frequency Rayleigh-Jeans spectrum before galactic fore-
grounds become important [f ¼ ω0=ð2πÞ ¼ 3, 8, 10, 30,
and 90 GHz] and by EDGES [29], which is a recent
measurement of the global 21 cm absorption signal at
78 MHz.
ARCADE2 was a balloon experiment equipped with a

radio receiver measuring the blackbody temperature of sky
[28]. The cleanest frequency band is around 10 GHz
enabling a mK resolution, δfγ=fγ ¼ δT=TCMB ≲ 4 × 10−4

at ω0=T0 ≃ 0.18. At smaller frequencies, ARCADE2
observed a significant radio excess beyond the expected
galactic foreground whose origin remains an open question
(see, e.g., Refs. [52,53]). Assuming that this excess is
entirely astrophysical, we can impose an upper bound on an
additional contribution from a stochastic GW background
using the 3, 8, 10, and 30 GHz frequency bands. In Fig. 2,
these frequencies are marked by crosses, the solid lines
connecting them serve only to guide the eye.
Recently, the first observation of the global (i.e., sky-

averaged) 21 cm absorption signal was reported by the
EDGES Collaboration [29]. The absorption feature was
found to be roughly twice as strong as previously expected,
which if true, would indicate that either the primordial gas
was significantly colder or the radiation background was
significantly hotter than expected. Conservatively, we may
assume that the deviation from the expected value is due to
foreground contamination, and place a bound on any
stochastic GW background by using δfγ=fγ ≲ 1 at ω=T ¼
1.4 × 10−3 (78MHz). Thewidth of the observed absorption
feature (19 MHz) determines the width of the frequency
coverage.
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Discussion.—Cosmological sources of GWs typically
produce stochastic GW backgrounds with a frequency
roughly related to the comoving Hubble horizon at the
time of production. Processes in the very early Universe at
energy scales far beyond the reach of colliders thus
generically produce GWs in the MHz and GHz regime.
Despite the large amount of redshift, these violent proc-
esses can produce sizable GW signals, saturating the Neff
bound (12). Some examples are axion inflation [54,55],
metastable cosmic strings [57] and evaporating light
primordial black holes [58,59]. Further significant contri-
butions may be expected from preheating [60–64] and first
order phase transitions occurring above 107 GeV [65–69].
The sensitivity of radio telescopes can, however, not yet
compete with the cosmological Neff bound, unless one
considers essentially monochromatic signals (which may
arise, e.g., from large monochromatic scalar perturba-
tions [70,71]).
Since the dominant contribution to P arises around

reionization, particularly interesting targets are GW sources
active around 10≲ z≲ 103, which would not be con-
strained by the Neff bound. During the dark ages, there
is no generic reason to expect GW production in the GHz
regime but there are models which predict such a signal for
suitable parameter choices. For example, mergers of light
primordial black holes in this epoch (with masses of about
10−9::−7 M⊙) would result in GHz GW signals today [49],
see Refs. [72,73] for a discussion of possible rates.
Superradiant axion clouds around spinning black holes
yield an essentially monochromatic GW signal with f ≲
MHz [74–76], with higher frequency possible when con-
sidering primordial black holes with masses below the
Chandrasekhar limit.
We emphasize that the use of radio telescopes allows us

to search for GWs in a wide frequency regime. While the
absence of any excess radiation can already constrain some
models under the assumption of strong cosmic magnetic
fields, the potential of this method will truly unfold with
further improvements in the sensitivity of radio telescopes–
driven in particular by the advances in 21 cm cosmology—
or in the case of a positive detection of excess radiation.
An example of future advances in radio astronomy is the

case of the Square Kilometer Array (SKA). Assuming an
effective area per antenna temperature of at least 102 m2=K
[77,78] in the 0.1–10 GHz range, a few hours of obser-
vation will lead to sensitivities in the ballpark of μJy,
which must be compared against CMB fluxes of at least
103 Jy. SKA measurements are thus very promising
although sufficient foreground subtraction will be extremely
challenging.
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