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We derive the generalized partial wave expansion for N → M scattering amplitude in terms of spinor
helicity variables. The basis amplitudes of the expansion with definite angular momentum j consist of the
Poincaré Clebsch-Gordan coefficients. Moreover, we obtain a series of selection rules that restrict the
anomalous dimension matrix of effective operators and how effective operators contribute to some 2 → N
amplitudes at the loop level.
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Introduction.—Scattering is the most important and
fundamental process in particle physics, which is formally
a quantum transition between asymptotic states. It is natural
to study the selection rules for transitions due to con-
servation laws, as practiced in theories of molecules, atoms,
nuclei, as well as particle decays such as the Landau-Yang
theorem [1,2]. The selection rule in particle scattering due
to angular momentum conservation is usually achieved by
partial wave expansion, formulated for limited cases such
as 2 → 2 scattering. It is therefore intriguing to apply the
selection rule to generic scattering processes.
Such a selection rule turns out to be very powerful.

Recent studies [3–7] in the on-shell approach to the
standard model effective field theory (SMEFT) have
observed nontrivial relations among operators and observ-
ables [8–14], shedding light on the precision test of the
standard model: a crucial task in particle physics. We show
that the selection rule from angular momentum conserva-
tion could explain many of these nontrivial relations.
One of the central roles in the explanation is played by

the one-to-one correspondence between effective operators
and the on-shell amplitude basis, established in [4,15],
where it helps construct a complete operator basis without
redundancy in the SMEFT. In short, the amplitude basis
is a basis in the space of contact amplitudes, with each
corresponding to a local operator that exclusively generates

it. For example, the partial wave amplitudes for 2 → 2
scattering of massless particles are the Wigner d matrices
djνν0 , which precisely form an amplitude basis up to
dimensionality. By the operator-amplitude basis correspon-
dence djνν0 induce an operator basis, which inherits the label
j as the total angular momentum in the particular scattering
channel. These operators thus only contribute to processes
with selected total angular momentum, which is the key of
our selection rule.
To set up the selection rule for generic scattering, we first

generalize the partial wave expansion for arbitrary N → M
scattering by utilizing the spinor helicity variables [16]. The
amplitude basis with definite total angular momentum is
obtained as a result; based on which, we find two types of
selection rules: First, we find nontrivial constraints on the
anomalous dimension matrix beyond the non-renormaliza-
tion relations shown in the literature [11,12]; and second,
operators are selected in certain cases while contributing
to some one-loop diagrams, verifying the discovery of
“vanishing rational terms” in [14] and leading to more
nontrivial patterns in one-loop amplitudes.
Generalized partial waves.—Multi-particle states in scat-

tering are conventionally tensor products of single-particle
asymptotic states jΨNi⊗ ¼⊗N

i¼1 jψ ii, with each classified
by the Poincaré algebra and labeled by the on-shell four-
momentum pμ and the little group representation [17]—
helicity for massless particles jψ ii ¼ jpi; hii, and spin for
massive ones jψ ii ¼ jpi; si; σii. However, due to the angular
momentum conservation, it is also convenient to work with
basis of definite total angular momentum j, dubbed the
partial wave basis, for which the S matrix is block diagonal.
Instead of computing j from the composition of total spin S
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and the orbital angular momentum L, which is mostly useful
for two-massive-particle states in the c.m. frame, we propose
to treat the eigenstates with definite j as irreducible
representations of the Poincaré group, which is now for
multiparticle states. Just like how we deal with the rotation
group in quantummechanics, we define the overlap between
the tensor representation states and the irreducible repre-
sentation states as the Poincaré CG coefficients:

⊗hΨN jΨNij ≡ Cj;jz
N ðP;ψ i¼1;…;NÞδ

�
P −

X
pi

�
: ð1Þ

The key distinction from the SO(3) CG coefficients is that
they already include the partial wave function of the
scattering angles via the dependence on pi—for two-
massive-particle states, the Poincaré CG coefficient is the
product of the SO(3) CG coefficient and the spherical
harmonics Ylmðθ;ϕÞ.
To evaluate the Poincaré CG coefficients in general, we

make use of the helicity spinor variables (λIα, λ̃
I
_α) [18],

where the superscript I is introduced for little group SU(2)
of the massive particles [16]. These spinors not only
indicate the momentum pμσ

μ
α _α ¼ ϵIJλ

I
αλ̃

J
_α but are also able

to represent the spin. For instance, the scattering amplitude
involving a massive spin-s particle should have 2s totally
symmetric little group indices I coming from the spinor
variables of this particle, i.e.,

AfI1…I2sg ¼ Afα1…α2sgλI1α1 � � � λI2sα2s ; ð2Þ

so that it transform correctly under the little group. The
factor Afα1…α2sg is the amputated amplitude whose sym-
metrized spinor indices come from the spinor variables
of the other particles. A simple example would be the
Zēe coupling hZI1eihZI2 jpejē�, where we use the bracket
convention for spinor contractions. Now that we introduce
the auxiliary spinor variables ðχI; χ̃IÞ for the total
momentum Pμ of a multiparticle state, the Poincaré CG
coefficient should have the same property as Eq. (2); thus,
we define [19]

Cj
NðχI χ̃I;ψ i¼1;…;NÞ ¼ fjðψ i¼1;…;NÞ · ðχI1 � � � χI2jÞ; ð3Þ

where fj is the multiparticle wave function consisting of
spinor variables of all the constituting particles,
and the symmetrized spinor contractions are abbreviated
by a dot. Note that the projection jz is represented by
the 2jþ 1 independent components of the little group
tensor.
In this Letter, we will be focusing on the multi-massless-

particle states that are relevant for the massless effective
field theories (EFTs), although it is straightforward to
extend to states with massive particles by decorating the
wave function f with more little group SU(2) indices. Let
us take the simplest example of a two-massless-particle

state with helicity h1, h2. The Poincaré CG coefficient can
be constructed as amplitudes for two massless particles and
one massive spin-j particle, whose general form is shown in
[16] as

Cj
h1;h2

∼
½12�jþh1þh2

sð3jþh1þh2Þ=2 ðh1χi
j−h1þh2h2χijþh1−h2Þ; ð4Þ

where the normalization by a power of s ¼ P2 keeps it
dimensionless.
With the partial wave basis, the scattering amplitudes can

be expanded on a basis with definite angular momentum as

AN→M ≡ ⊗hΨMjMjΨNi⊗
¼

X
j

jhΨMjMjΨNij
X
jz

Cj;jz
M ðCj;jz

N Þ�

≡X
j;a

Mj;aðsÞBj;a
N→M; ð5Þ

while the coefficient functionMðsÞ carries the information
of the dynamics. The basis fBj;agN→M with possible
degeneracy labeled by a is therefore defined as the partial
wave amplitude basis, or j basis for short, which is an
alternative type of amplitude basis introduced in [4,15].
The sum over jz turns into the contraction of little group
indices in the helicity spinor representation [Eq. (3)]

Bj;a
N→M ≡X

jz

Cj;jz
M ðCj;jz

N Þ�

¼ fjðψ1;…;MÞ · ðχI χ̃IÞ2j · fjðψ1;…;NÞ�: ð6Þ

The auxiliary spinors χ can be eliminated via the identity
χIαχ̃I _α ¼ Pμσ

μ
α _α such that the amplitude basis Bj;a only

depends on the wave functions fj of the external particles.
As a cross-check, one can verify that for 2 → 2 scattering of
massless particles, the j basis derived from the two-particle
wave function [Eq. (4)] precisely matches with the classical
Wigner d matrices djν;ν0 in the c.m. frame. The derivation is
also provided in the Supplemental Material for readers
interested [18]. The advantage of our construction is the
application of scattering of an arbitrary number of massive
or massless particles.
Poincaré algebra in helicity spinor representation.—In

quantum mechanics, we use the nonrelativistic J2 operator
to obtain the angular momentum of a wave function. But in
relativistic scenario, we need to use the Pauli-Lubanski
operator Wμ ¼ 1

2
ϵμνρσPνMρσ, which induces a Casimir

invariant W2 for the Poincaré group with eigenvalue
−P2jðjþ 1Þ, where j is the covariant version of the total
angular momentum. In this section, we propose to apply
this operator to the multiparticle wave functions f and the
amplitude basis B in order to construct the partial wave
(amplitude) basis systematically.
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In the helicity spinor representation [20], the Lorentz
generators are given as Mμνσ

μ
α _ασ

ν
β _β

¼ ϵαβM̃ _α _β þMαβϵ _α _β

and [21]

MI ;αβ ¼ i
X
i∈I

�
λiα

∂
∂λβi

þ λiβ
∂
∂λαi

�
;

M̃I ; _α _β ¼ i
X
i∈I

�
λ̃i _α

∂
∂λ̃ _βi

þ λ̃i_β
∂
∂λ̃ _αi

�
: ð7Þ

The sum is taken over a group of particles I for which we
want to compute the angular momentum; hence, for an
amplitude, we sum over only the initial or only the final
state particles. It defines a scattering channel I → Ī
that the angular momentum is associated with (Ī is the
complement of I).
Using Eq. (7) and

PI ¼
X
i∈I

λiλ̃i;

the Casimir invariant W2 takes the following form:

W2
IB ¼ P2

I

8
½TrðM̃2

IBÞ þ TrðM2
IBÞ�

−
1

4
P _αα
I P

_ββ
I ðMIαβM̃I _α _βBÞ; ð8Þ

where M2
I ;αβB≡Mγ

I ;αMI ;γβB. It is tempting to show
the conservation of angular momentum defined by this
operator. We can easily prove that

MIB ¼ −MĪB; TrM2
IB ¼ TrM2

ĪB: ð9Þ

Together with PI ¼ −PĪ , we find W2
IB ¼ W2

Ī
B, which

means that for any channel I → Ī of an amplitude B, the
angular momentum defined by the operatorW2

I is the same
for the initial and the final states.
We also show that the operator W2

I has the correct
eigenvalues. Let us take a simple example of amplitude
Bψ1ϕ2→ψ̄3ϕ4

¼ h13i, which in the c.m. frame has the angular

distribution h13i ¼ cosðθ=2Þ ≡ d1=21=2;−1=2ðθÞ, implying
j ¼ 1=2. This is reproduced by the Casimir operator as

W2
f1;2gh13i ¼ −

3

4
sh13i: ð10Þ

The eigenvalue −P2
Ijðjþ 1Þ ¼ − 3

4
s agrees on the j ¼ 1=2

with the Wigner d matrix.
Selection rules.—In [3,4,15], it is proposed that

effective operators subject to the equation of motion and
integration by part should one-to-one correspond to
the unfactorizable amplitudes they generate, dubbed the
“operator-amplitude correspondence.” It suggests that the

multiparticle state generated by an operator must have the
quantum number indicated by the corresponding ampli-
tude: especially the angular momentum that we just
explored. With this property, we propose the following
selection rules in two types of calculations: operator
renormalization and one-loop amplitudes.
Operator renormalization: Since the counterterm of an

effective operator Om should correspond to the same
amplitude basis Bm, it is renormalized at one loop when
the UV divergence of the one-loop amplitude contains the
amplitude basis

16π2A1−loop
m ⊃ −

�X
n

γmnCn

�
Bm

1

ϵ
;

where the sum is taken over contributions from different
operatorsOn with Wilson coefficients Cn, and γmn is called
the anomalous dimension matrix. Suppose On connects
multiple external legs in the diagram; our previous claim
implies that Bn and Bm have the same quantum number
(especially j) for this multiparticle state. When the two
operators do not match, they should not renormalize each
other, and γmn ¼ 0.
In Table I, we list all the classes of dimension 6 operators

[22] (except for F3) according to their angular momentum
at different channels. For any two operators in the same
channel, a diagram specified by the shared particles exists
for the renormalization, but only those appearing in the
same entry could renormalize each other due to the
selection rule. There may be operators of the same class
that have different angular momenta in a certain channel.
Hence, this class may appear in multiple columns in a row,

TABLE I. Dimension 6 operators classified by their angular
momentum in the specified channel. Numbers in brackets
are (anti)holomorphic weights ðw; w̄Þ so that one can further
obtain non-renormalization relations for operators in the same
entry in [12].

Channels j ¼ 0 j ¼ 1=2 j ¼ 1

FþFþ F2ϕ2ð2; 6Þ
Fþψþ Fψ2ϕð2; 6Þ
Fþϕ Fψ2ϕð2; 6Þ,

F2ϕ2ð2; 6Þ
ψþψþ ψ4ð2; 6Þ,

ψ2ψ̄2ð4; 4Þ,
ψ2ϕ3ð4; 6Þ

ψ4ð2; 6Þ,
Fψ2ϕð2; 6Þ

ψþψ− ψψ̄ϕ2Dð4; 4Þ,
ψ2ψ̄2ð4; 4Þ

ψþϕ ψ2ϕ3ð4; 6Þ,
Fψ2ϕð2; 6Þ,
ψψ̄ϕ2Dð4; 4Þ

ϕϕ ϕ4D2ð4; 4Þ,
ψ2ϕ3ð4; 6Þ,
ϕ6ð6; 6Þ

ψψ̄ϕ2Dð4; 4Þ,
ϕ4D2ð4; 4Þ
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like ψ4 in Table I, whose j ¼ 0 and j ¼ 1 bases could
renormalize ψ2ϕ3 and Fψ2ϕ, respectively, but. In the
Warsaw basis [23], it asserts that among O1

lequ and
O3

lequ, OeH can only be renormalized by the former,
whereas OeW is only by the latter [9,24,25].
The selection rule can also be applied to gauge quantum

numbers, or even the mixture of gauge and j. One example
in the SMEFT is the H4D2 operator, whose corresponding
amplitude basis includes both j ¼ 0, 1 and I ¼ 0, 1
components in the fH†; Hg channel [26]. We denote the
basis amplitudes with definite quantum numbers as the j
basis of the scattering channel, and we denote the coef-
ficients as Cj;I. By expanding the amplitudes generated by
the Warsaw basis operators OHD and OH□ on the j basis
(shown in the Supplemental Material [18]), we derive

C0;0 ¼ 3CH□; C0;1 ¼ CHD − CH□;

C1;0 ¼ −CH□ − CHD; C1;1 ¼ −CH□; ð11Þ

as the combinations of Wilson coefficients that contribute
to certain processes of given quantum numbers. From
Table I, the class ψψ̄ϕ2D is only renormalized at j ¼ 1 in
the ϕϕ channel. In the Warsaw basis, the operators O1

Hl,
OHe, O1

Hq, OHu, and OHd of this class have I ¼ 0 in the
fH†; Hg channel and are renormalized by exactly the
combination C1;0; whereas O3

Hl and O3
Hq of the same class

but I ¼ 1 are renormalized by the other combination C1;1.
These are verified by the results in [9,24,25].
One should keep in mind that γmn is basis dependent.

Our selection rules are directly applicable for the j basis,
and the conclusions need to be translated to other
components before cross-check. Table I shows that the
operators ψψ̄ϕ2D and ϕ6 could not renormalize each other.
However, for the Warsaw basis, as shown in [25], _CH ⊃
λg22C

3
Hl has a nonvanishing coefficient. The fact is thatO

3
Hl,

with (j ¼ 1, I ¼ 1) in the fH†; Hg channel, only directly

renormalizes the j-basis operator ðH†iτiD
↔

μHÞ2, which by
the EOM is equivalent to the Warsaw basis combination

ðH†iτiD
↔

μHÞ2 → OH þ 8
3
λOH□. The ratio between the two

terms also agrees with [25].
Our selection rule distinguishes operators with different

Lorentz structures in the same type, which differs from the
non-renormalization relation proposed in [12]. At higher
dimensions, our selection rule becomes more important as
more Lorentz structures exist within a type of operators.
In this case, we need a systematic way to obtain the j basis,
which is to diagonalize the Casimir W2 in the space of the
amplitude basis. A nontrivial example illustrates it in the
Supplemental Material [18]. We find a selection rule for
the anomalous dimension matrix between the operators of
classes ψ1ϕ2ϕ3ψ4ϕ5D2 and ψ1ϕ2ϕ3ψ̄4F5D operators: both
of which have multiple Lorentz structures.

Vanishing loops: In the above case, the “target operator”
to be renormalized fixes the angular momentum at a
particular channel so that the contributing operator is
selected. In computing the full amplitude, however, the
angular momentum is usually unconstrained. We find the
following two exceptions where we can still apply selection
rules based on angular momentum conservation:
Selection rule A: In the c.m. of a two-particle state, as

the orbital angular momentum L ¼ r × p has vanishing
projection along p̂, we deduce σ ≡ J · p̂ ¼ S · p̂. If they are
massless, it is further given by S · p̂ ¼ Δh, which is
the difference of their helicities; hence, we must have
j ≥ jσj ¼ jΔhj [27]. This constraint holds for any frame as
long as we determine j from the eigenvalue of W2.
Consider a generic 2 → N scattering that has a contributing
diagram as in Fig. 1. The helicity difference on the lhs
selects the j ≥ jΔhj partial waves for the scattering states
on both the lhs and rhs due to the conservation law.
Therefore, operators corresponding to the amplitude basis
with lower j should not contribute.
In Table II, we list all the 2 → 2 processes for which the

contributions from specific operators to the one-loop ampli-
tude vanish. For dimension 6 cases, this table gives the
same results as the “absent rational terms” found in [14],
where the underlying mechanism—angular momentum
conservation—was not pointed out. For dimension 8 cases,
which are not studied in [14], we also find two vanishing
contributions, namely, the contribution from F2ϕ2D2 to
AðϕϕFþF−Þ and from F2F̄2 to Aðψþψ−F�F�Þ. For the
other dimension 8 classes that are partially constrained, the
one-loop amplitude has to receive contributions from a
subspace of operators spanned by the j ≥ jΔhj j basis.
For example, the amplitude AðBþB−HαH†βÞ has j ≥ 2 for
the fH†; Hg channel, which selects the (j ¼ 2, I ¼ 0) j
basis among the contributing H4D4-type operators. Similar
to Eq. (11), we find the contributing combination as
(the Wilson coefficients are defined in the Supplemental
Material [18])

C2;0 ¼ 1

6

�
CH4D4

1 þ 1

3
CH4D4

2 þ CH4D4

3

�
: ð12Þ

FIG. 1. One-loop diagram for 2 → N scattering in EFT. The
square on the right-hand side represents a contact interaction;
whereas on the left-hand side, the interactions in the shaded
region can be arbitrary.
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Selection rule B: From Eq. (4), we find that if
h1 ¼ h2 ¼ h, the permutation symmetry of the two par-
ticles in the CG coefficient is determined by the exponent
in ½12�jþ2h. Thus, by spin statistics, once the two particles
are identical, the permutation symmetry is allowed only
if j is even. If the lhs state in Fig. 1 consists of two
identical particles, the j ¼ 1 partial wave is forbidden also
on the rhs, which selects the operator inserted in this
diagram. As an example, consider the one-loop amplitude
Aðψþψ−F�F�Þ with operator ψψ̄ϕ2D or ψ2ψ̄2 inserted.
Because the two-fermion state created by these effective
operators have j ¼ 1, their contributions must vanish.
The above discussion can be extended by considering

two particles that are not necessarily identical but in the
same gauge multiplet so that the spin statistics constrains
the combination of permutation symmetries for both the
Lorentz structure and the gauge structure [15,28]. For
example, the two-W-boson state (in the unbroken phase)
can have j ¼ 1 as long as the SU(2) indices are taken to be
antisymmetric ϵijkWjWk, namely, the j ¼ 1, I ¼ 1 state is
allowed but the j ¼ 1, I ¼ 0 state is forbidden. Therefore,
we can assert, for instance, that the operator O3

Hl contrib-
utes to the amplitude Aðlþl−W�W�Þ at one loop, whereas
O1

Hl does not.
In this Letter, we construct the partial wave amplitude

basis Bj in terms of spinor helicity variables. The definite
angular momentum can be understood via the Poincaré
CG coefficients. We further develop the technique to get the

complete eigenbasis of angular momentum using the
Casimir invariant W2. Although we mainly present the
massless amplitude basis in SMEFT, the technique works
for massive ones and other EFTs as well, as shown in the
recent paper on monopoles [29], as well as the papers on
the QCD chiral Lagrangian [30,31]. In all these scenarios,
the partial wave basis allows us to find new selection rules
for operator renormalization and loop amplitudes based on
angular momentum conservation. When identical particles
are present, the additional gauge quantum number and spin
statistics have to be taken into account, which we will
elaborate on in an upcoming paper [32]. While we are
mainly focused on the one-loop cases, the selection rules
can be naturally extended to higher loops. Our method can
also be applied to calculate the nonvanishing elements of
the anomalous dimension matrix with the unitarity method,
generalizing the result in [33] to a broader range of loop
diagram topologies.
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