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Spectroscopy is an important tool for probing the properties of materials, chemicals, and biological
samples. We design a practical transmitter-receiver system that exploits entanglement to achieve a provable
quantum advantage over all spectroscopic schemes based on classical sources. To probe the absorption
spectra, modeled as a pattern of transmissivities among different frequency modes, we employ broadband
signal-idler pairs in two-mode squeezed vacuum states. At the receiver side, we apply photodetection after
optical parametric amplification. Finally, we perform a maximum likelihood decision test on the
measurement results, achieving an error probability orders of magnitude lower than the optimum classical
systems in various examples, including “wine tasting” and “drug testing” where real molecules are
considered. In detecting the presence of an absorption line, our quantum scheme achieves the optimum
performance allowed by quantum mechanics. The quantum advantage in our system is robust against noise
and loss, which makes near-term experimental demonstration possible.
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Quantum sensing and metrology [1–4] harness non-
classical resources to substantially improve the perfor-
mance of positioning and timing [5], target detection
[6–11], digital reading [12], photometry [13,14], distrib-
uted sensing [15–20], and most prominently the Laser
Interferometer Gravitational Wave Observatory [21–23].
There have been attempts to develop quantum-metrology
protocols [24,25] for spectroscopy [26–30], an indispen-
sable tool for science and industry. In this regard, the
entangled NOON state [31,32] and its generalizations have
been considered in interferometric estimation of loss and
phase [33]. However, NOON states are hard to generate
and lack robustness against imperfections. As a more
experimentally accessible approach, entangled photons
produced by spontaneous parametric down conversion
have been used for loss estimation [34–39]. In particular,
Refs. [37–39] reported nonlinear interferometric probing of
midinfrared absorption lines using visible photons. Despite
the technical benefits, the quantum advantage over the
classical schemes remains unclear.
In this Letter, we investigate entanglement-assisted

absorption spectroscopy (EAAS) as an effective means
to achieve a provable quantum advantage over all schemes

using classical sources. As depicted in Fig. 1, EAAS uses a
source of multichromatic entangled signal-idler mode pairs
from a nonlinear media, each being in a two-mode
squeezed vacuum (TMSV) state and anticorrelated in the
frequency domain. The signals with different frequencies
interact with the sample and experience absorption differ-
ently, while the idlers are stored locally. Then an optical
parametric amplifier (OPA) is applied on the return signal-
idler pairs, followed by photodetection to classify samples
among a plural of possible compositions.
EAAS achieves a strict quantum advantage in the

discrimination of arbitrary absorption patterns. Before
addressing the general case, we begin with two basic
models: absorption detection—the binary testing of a single
absorption line at a specific frequency, and peak position-
ing—pinpointing a given number of absorption lines within
a frequency spectrum. Then we consider the classification

Signal

Idler

Source Sensor Quantum Receiver

Sample

FIG. 1. Diagram of the entanglement-assisted absorption spec-
troscopy. The source generates multichromatic entangled signal-
idler pairs via a nonlinear process. The signals interact with the
sample and then go through another nonlinear process jointly
with the idlers at the quantum receiver. Photodetection extracts
the absorption coefficients at different frequencies.
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of several large organic molecules and use real spectrum
data [40] to simulate the performance against the optimum
classical performance in “wine tasting” and “drug testing.”
Let us remark that all components in our EAAS are off the
shelf, and the quantum advantage is robust against excess
noise and idler storage loss, making experimental imple-
mentations possible in the near term.
Pattern recognition on absorption spectra.—In absorp-

tion spectroscopy [26], each specific composition is asso-
ciated with a unique absorption spectrum determined by
measuring the transmissivities across the spectrum of the
input light. Therefore, the overall problem of composition
identification can be formulated as a hypothesis testing
between several known patterns of the frequency-
dependent transmissivities, as formulated below.
The multichromatic input light is decomposed into m

discrete frequency modes, denoted by the annihilation
operators falgml¼1. The input-output relation for each mode
al is modeled as a thermal loss channel Lκl;NB [41]
described by the Bogoliubov transformation

al →
ffiffiffiffiffi
κl

p
al þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κl

p
el; ð1Þ

where κl is the transmissivity and el is a thermal mode with
mean photon number NB=ð1 − κlÞ to model the environ-
mental thermal noise, which is negligible (NB ∼ 0) at the
optical wavelengths. However, to demonstrate the robust-
ness of the quantum advantage, NB > 0 is considered for
generality.
The pattern of the transmissivity coefficient fκlgml¼1

reveals the sample’s absorption spectrum. We usually have
prior information about the possible patterns; therefore, the
task is to discriminate between H patterns, each described
by a vector κðhÞ ¼ fκðhÞl gml¼1 of transmissivities, where 1 ≤
h ≤ H is the index of the hypotheses and l is the
frequency-mode index (see Ref. [42] for a channel formu-
lation). In general, we allow M repetitions of the probing
attempt to make a decision.
Before addressing the general pattern-recognition prob-

lem described above (see Fig. 1), we consider two
simplified problems: absorption detection and peak
positioning.
In absorption detection, the goal is to determine whether

absorption occurs at a single frequency mode (m ¼ 1);
therefore, there areH ¼ 2 hypotheses, with transmissivities
κB and κT corresponding to the absence and the presence of
absorption. In peak positioning, one aims to pinpoint a
single absorption peak (target) within m frequencies;
therefore, we have H ¼ m possible patterns. Each pattern
h has a single absorption peak with transmissivity κT for
frequency mode ah, while all other frequency modes see a
background transmissivity κB, i.e., κ

ðhÞ
l ¼ κT if l ¼ h and

κB otherwise.
The problem of absorption detection can be generalized

to finding the positions of k absorption peaks in a spectrum

of m frequencies, which we call “k-peak positioning.” In
this more general problem, k targets with transmissivity κT
are hidden among m − k backgrounds of transmissivity κB,
so that we have a total of H ¼ Ck

m hypotheses, where Ck
m is

the binomial coefficient ofm-choose-k. Note that, while we
consider these simple examples to introduce our results, our
methodology applies to the recognition of arbitrary patterns
such as the complex molecules considered at the end of this
Letter.
Classical lower bounds.—In a classical spectroscopy

scheme, one sends an arbitrary mixture of coherent states as
input state. Given mMNS mean total number of photons at
the input, where NS is the average mean photon number per
frequency mode, the minimum error probability affecting
the discrimination between the ensemble of patterns
fκðhÞgHh¼1 is lower bounded by

PC;m;LB ¼ 2

ðH − 1ÞH3

×

�
min
fXlg

X
h0>h

exp

�
−
1

2

Xm
l¼1

½
ffiffiffiffiffiffiffi
κðhÞl

q
−

ffiffiffiffiffiffiffiffi
κðh

0Þ
l

q
�
2

νBXl

��
2

;

ð2Þ

where νB ¼ 1=ð1þ 2NBÞ and the minimization is under
the energy constraint

P
m
l¼1 Xl ≤ mMNS (see [42] for a

proof). Applying Eq. (2) to the absorption detection case,
we obtain the lower bound PC;1;LB ¼ e−νBMNSð ffiffiffiffi

κB
p − ffiffiffiffi

κT
p Þ2=4.

In this case, a slightly improved bound can be obtained
[12]:

PC;1;LB ¼ 1

2
½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−νBMNSð ffiffiffiffi

κB
p − ffiffiffiffi

κT
p Þ2

p
�: ð3Þ

Specifying Eq. (2) to the problem of k-peak positioning,
one obtains [42]

PC;m;LB ¼ Ck
m − 1

2Ck
m

e−2wm;kνBMNSð ffiffiffiffi
κB

p − ffiffiffiffi
κT

p Þ2 ; ð4Þ

where wm;k ¼ kCk
m−1=ðCk

m − 1Þ. The latter term is equal to
1 for a single peak, and wm;k ≃ kð1 − k=mÞ for k peaks.
When NB ¼ 0, the lower bound is tight in the
error exponent for absorption detection and 1-peak
positioning.
Entanglement-assisted strategy.—To achieve a quantum

advantage, we exploit entanglement at the input, as given
byM copies of a TMSV state ϕME for each signal-idler pair
[42]. Each idler mode is stored locally, with imperfections
modeled as a pure-loss channel LκI ;0 of transmissivity κI
(with a mode transformation aI →

ffiffiffiffi
κI

p
aI þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κI

p
v and

v being a vacuum mode), while the signal modes are sent to
probe the patterns. For the special binary case of absorption
detection, the error probability is bounded by the asymp-
totically tight quantum Chernoff bound (QCB), which can
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be efficiently calculated [50,51] from the return Gaussian
states ΞðT=BÞ composed of M identical copies of
LκT=B;NB ⊗ LκI ;0ðϕMEÞ. For the general pattern case, a
simple tool like the QCB is missing, and, for this reason,
we need to design an explicit receiver that is able to show a
quantum advantage.
Entanglement-assisted receiver design.—We begin our

description of the receiver design with a simple case so as to
provide its basic modus operandi. Consider the ideal case
of κB ¼ κI ¼ 1 and NB ¼ 0. Then the returned state
ΞðBÞ ¼ ϕ⊗M

ME consists of M copies of the ideal TMSV state
(while ΞðTÞ is mixed because κT < 1). Suppose that we
perform a two-mode squeezing (TMS) operation S (via an
OPA), that precisely antisqueezes each TMSV state ϕME.
Then we can “null” SðΞðBÞÞ to tensor products of vacuum,
while SðΞðTÞÞ is nonvacuum. Therefore, a simple photon
counting on all the signals and idlers after the TMS
operation can identify the input state ΞðBÞ if there is any
photon count. Errors only occur if we obtain a zero count
on SðΞðTÞÞ: when this happens, we can only guess
randomly, with an error probability Rm. Note that this
nulling strategy has been used in classical schemes [42],
whose performance is bounded by Eqs. (3) and (4). OPA
has also been used in quantum illumination [52], however
without exploiting correlations in the patterns.
Let us use a compact notation, wherem ¼ 1 corresponds

to absorption detection, for which R1 ¼ 1=2, and m ≥ 2
corresponds to single-peak positioning, with one copy of
SðΞðTÞÞ among m − 1 copies of SðΞðBÞÞ so that
Rm ¼ ðm − 1Þ=m. Accounting for the zero counts, the
error probability for absorption detection (m ¼ 1) and
single-peak positioning (m ≥ 2) is given by [42]

PE;m ¼ Rm

�
1

1þ NSð1 − ffiffiffiffiffi
κT

p Þ
�
2M

: ð5Þ

When NS ≪ 1 and M ≫ 1, we have PE;m≃
Rm exp ½−2MNSð1 − ffiffiffiffiffi

κT
p Þ�. Comparing this with the

classical lower bounds in Eqs. (3) and (4), we see that
EAAS has an exponential advantage: PE;m=PC;m;LB ≃
2 exp ½−MNSð1 − κTÞ� for absorption detection, and
≃2 exp ½−2MNSð ffiffiffiffiffi

κT
p − κTÞ� for single-peak positioning.

In fact, Eq. (5) achieves the QCB [42] and therefore it is
optimal for absorption detection.
The above receiver design, and the resulting entangle-

ment advantage, can be generalized to cope with more
complex spectrum patterns and the presence of noise and
idler loss (NB > 0; κI < 1), as described by the following
strategy (see Fig. 2): (i) Apply TMS operation with gain
Gl to each of the return signal-idler pairs a00Sl; a

00
Il to

obtain new modes aSl ¼ ffiffiffiffiffiffi
Gl

p
a00Sl −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gl − 1

p
a†Sl and

aIl ¼ ffiffiffiffi
G

p
a00Il −

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
a†Sl. (ii) Perform photon counting

measurement on all signal and idler modes faSl; aIlg to
obtain the results as two vectors nS and nI. (iii) Finally,

apply maximum likelihood decision rule, i.e., make the
decision h̃ through

h̃ ¼ argmax
h

PmðnS; nIjhÞ; ð6Þ

where PmðnS; nIjhÞ is the conditional probability of
obtaining the outcomes nS, nI if the true hypothesis is h.
To complete the description of our receiver, we need to

determine the gain Gl and specify the conditional prob-
abilities. Let us begin with the cases of absorption detection
and peak positioning, where we adopt uniform gain
Gl ¼ G. The ideal situation is to get a quantum state close
to vacuum; however, if κB < 1, it is only possible to reduce
the signal part of ΞðBÞ to vacuum by choosing
G ¼ 1þ NSκB=½1þ NSð1 − κBÞ�. In the presence of noise
NB > 0 and idler loss 1 − κI > 0, “nulling” to vacuum is
not possible, but the same choice of gain still provides an
appreciable advantage over classical schemes. For general
patterns, due to the absence of symmetry, we consider
optimization over the gainGl at different frequency modes.
Moreover, as some frequency windows may contain more
essential information about the hypotheses, we also allow
the optimization over the energy distribution fNSlg of the
TMSV in different frequency modes. In these cases,
although the “nulling” decision rule does not apply, the
maximum likelihood decision rule in Eq. (6) still leads to an
advantage [42].
Now let us compute the conditional probabilities. With

M identical repetitions, the probability of obtaining the
mM-dimensional measurement results nS ¼ fnSL;kgM;m

L¼1;k¼1

and nI ¼ fnIL;kgM;m
L¼1;k¼1, conditioned on pattern h, is

PmðnS; nIjhÞ ¼
YM
L¼1

Ym
l¼1

P½nSL;l ; nIL;l jκðhÞl ; Gl; NSl�; ð7Þ

where each term is a function of the subsystem trans-

missivity κðhÞl , the TMSV source energy NSl, and the gain
choice Gl [42].

FIG. 2. Schematic of receiver. Signal beams are irradiated over
the sample, modeled by frequency-dependent transmissivities
κðhÞ ¼ fκðhÞl gml¼1. The modulated beams go through a single
optical parametric amplifier. Finally spectrally resolving photo-
detection offers a 2mM-dimensional count based on which the
maximum likelihood decision h̃ is made.
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With all these theoretical elements in our hands, we can
numerically evaluate the error probability PE;m for the
problems of absorption detection, peak positioning, and
general spectrum recognition via Monte Carlo simulations
[42]. Although we consider equal priors for simplicity, our
maximum likelihood decision can generally be applied to
arbitrary prior probabilities for the patterns.
Detecting and positioning absorption peaks.—In order

to investigate the problems of absorption detection and
peak positioning, we assume a background transmissivity
κB ¼ 0.95 and a target transmissivity κT ¼ 0.75. In par-
ticular, we study their error probabilities in terms of the
number of modes M. For absorption detection, Fig. 3(a)
shows that our EA nulling receiver asymptotically achieves
the QCB [12], outperforming both the best known receiver,
the EA homodyne receiver [42,51], and the classical lower
bound of Eq. (3). In fact, we can verify that our receiver can
asymptotically saturate the QCB for absorption detection
with general choices of κB and κT [42]. For peak position-
ing, as shown in Fig. 3(b), our EA receiver is able to
outperform the classical lower bound of Eq. (4) by orders of
magnitude.
In a practical scenario, we are interested in how much

EAAS can enhance the performance when classical
schemes fail to perform well. To showcase the advantage,
in Fig. 4 we fix the classical lower bounds in Eqs. (3) and
(4) to be 0.01 and plot the error probability PE;m of EAAS.
We start with tuning the transmissivities κB and κT in
Fig. 4(a),(b). Then we fix κT ¼ 0.75 and κB ¼ 0.95 and
study how the quantum advantage varies with idler loss
1 − κI and noise NB in Fig. 4(c),(d). The white dashed lines
divide the parameter space with or without quantum
advantage. We can see that the advantage is remarkable
and also survives for a large range of parameters, especially
when κB ≃ 1 as in practice. The robustness of the

advantages to imperfections reveals a clear possibility
for a near-term experimental demonstration. See
Figs. 6–9 in [42] for more parameter settings.
General spectrum recognition.—EAAS can also identify

actual molecules, each of which is associated with a unique
absorption spectrum. As a taste of flavor, we begin with
“wine tasting,” where one discriminates three common
alcohol-like liquids. Methanol could be lethal if mistaken
for ethanol (alcohol). Meanwhile, the alcohol, as time goes
by, will be dehydrogenated to ethanal, whose concentration
provides the age of a vintage [53]. To consider larger
molecules, the second example, “drug testing,” involves
three drugs: phenyl salicylate, methyl salicylate, and
benzoic acid. In both examples, a nondestructive testing
method is preferred, therefore we adopt the extremely weak
quantum light source. The transmissivities are taken from
real Fourier-transform infrared spectra [40]. These spectra
are sampled by averaging them within each of
m ¼ 4 frequency slots [42].
As the classical benchmark, we calculate the ultimate

lower bound using Eq. (2) and the performance of a
homodyne receiver on coherent-state input with the same
energy distribution (distribution of mean photon number
over frequency modes) optimized in Eq. (2). Figure 5
shows that EAAS with uniform energy distribution, and
G ¼ 1 (orange) outperforms the homodyne receiver (black
solid) in both cases. Then, in drug testing, EAAS beats the
classical lower bound by orders of magnitude, while in

FIG. 3. Error rate versus number of probing modes with
practical parameters NS ¼ 1, κT ¼ 0.75, and κB ¼ 0.95. (a) Ab-
sorption detection. EA nulling receiver (solid orange) is com-
pared to classical lower bound of Eq. (3) (dot-dashed black),
QCB (dashed black), and the EA homodyne receiver (solid
purple). (b) Peak positioning. Single-peak positioning (solid
green) and double-peak positioning (solid blue) with m ¼ 10
frequency slots. Single-peak positioning with m ¼ 100 (solid
red) provided as a reference. Classical lower bounds given by
Eq. (4) (dashed, accordingly colored). FIG. 4. (a),(b) Error probability of EAAS PE;m versus trans-

missivities κB and κT . (c),(d) log10PE;m versus idler loss 1 − κI
and thermal noise NB at fixed κT ¼ 0.75 and κB ¼ 0.95.
Absorption detection (m ¼ 1) in (a),(c) compared with single-
peak positioning (m ¼ 100) in (b),(d). M is chosen to fixed the
classical lower bounds to 0.01 [42]. NS ¼ 1 is assumed. Red-
crossed diagonal region in (a),(b) represents the degenerate case
κB ¼ κT .
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wine tasting, this advantage is less pronounced. This is
mainly due to the classical lower bound not being tight and
uniform energy being suboptimum, as we see EAAS with
energy optimization (purple) enables much better advan-
tages, although gain optimization only leads to a slight
advantage over the energy-optimized EAAS, as evident in
the inset plots of Fig. 5(c),(f). In the noisy case, gain
optimization enables a much better enhancement [42].
Now we address phase noise common in experiments.

Phase tracking can typically eliminate the time-invariant
phase noise, so the above results directly hold; when phase
tracking is not possible, we can model the phase noise by
adding al → eiθlal in Eq. (1). The random phase θl
clearly complicates the problem. However, if we choose
uniform G ¼ 1 (i.e., not applying OPA before photo-
detection), the same results of the orange curves in
Fig. 5(c),(f) hold, and the classical performance can only
be worse than the current benchmarks (black). Thus, the
quantum advantage sustains.
Conclusion.—We have devised a near-term feasible

EAAS scheme that outperforms any classical strategy in
determining the presence and position of spectral
absorption peaks. The EAAS scheme saturates the QCB
in binary detection of a single absorption line and offers an
orders-of-magnitude advantage in error probability in the

discrimination of sampled spectra of molecules even in the
presence of experimental nonidealities.
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