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Unsharp measurements are increasingly important for foundational insights in quantum theory and
quantum information applications. Here, we report an experimental implementation of unsharp qubit
measurements in a sequential communication protocol, based on a quantum random access code. The
protocol involves three parties; the first party prepares a qubit system, the second party performs operations
that return both a classical and quantum outcome, and the latter is measured by the third party. We
demonstrate a nearly optimal sequential quantum random access code that outperforms both the best
possible classical protocol and any quantum protocol that utilizes only projective measurements.
Furthermore, while only assuming that the involved devices operate on qubits and that detected events
constitute a fair sample, we demonstrate the noise-robust characterization of unsharp measurements based
on the sequential quantum random access code. We apply this characterization towards quantifying the
degree of incompatibility of two sequential pairs of quantum measurements.
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Introduction.—Textbook measurements in quantum
theory are represented by complete sets of orthogonal
projectors. However, general measurements in quantum
theory are described by positive operator-valued measures
(POVMs), i.e., an ordered set of positive operators fMigi
with normalization

P
i Mi ¼ 1. Evidently, projective mea-

surements are instances of POVMs but not all POVMs are
projective measurements. These nonprojective measure-
ments are well defined in Hilbert spaces of fixed dimension
(otherwise they can be viewed as projective measurements
in a larger space [1]). They are foundationally interesting
and relevant to many phenomena and applications of
quantum theory.
Some nonprojective measurements are extremal in the

space of all POVMs with fixed Hilbert space dimension and
number of outcomes i.e., they cannot be simulated with
stochastic implementation of other measurements [2].
Whereas such POVMs have been studied in broad contexts
[2–11], far from all nonprojective measurements are of this
type. In fact, many interesting POVMs are unsharp
measurements, in the sense that they are weaker (noisy)

variants of projective measurements. By suitably tuning the
noise parameter (sharpness), an experimenter can control
the information-disturbance trade-off [12]; continuously
from extracting no information and inducing no disturb-
ance (noninteractive measurement) to extracting maximal
information and inducing maximal disturbance (sharp
projective measurement). Sequential unsharp measure-
ments that individually induce only a small disturbance
can be used for real-time monitoring of the evolution of
single quantum systems [13–16]. When sufficiently fre-
quent, such sequences effectively constitute continuous
measurements, which have broad relevance in quantum
information science (see, e.g., the review in Ref. [17]). Two
key application of sequential unsharp measurements are
adaptive measurement protocols [18,19] and quantum
feedback protocols [20–22]. Interestingly, such sequences
are also versatile as they can be used to realize the most
general quantum measurements [23]. Moreover, unsharp
measurements have prominent roles in a number of other
topics including weak values [24], entanglement amplifi-
cation [25], quantum random number generation [26], tests
of the memory capacity of classical systems [27] and
sequential quantum correlations [12,28–31]. This has
prompted a number of experiments focused on the imple-
mentation of incompatible measurements [32–34], quan-
tum contextuality [30], and quantum nonlocality [35–37].
Recently, Refs. [38,39] considered unsharp measure-

ments in a sequential implementation of a frequently

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by Bibsam.

PHYSICAL REVIEW LETTERS 125, 080403 (2020)

0031-9007=20=125(8)=080403(7) 080403-1 Published by the American Physical Society

https://orcid.org/0000-0001-6286-5243
https://orcid.org/0000-0002-5160-9065
https://orcid.org/0000-0001-8046-382X
https://orcid.org/0000-0001-9136-7411
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.080403&domain=pdf&date_stamp=2020-08-19
https://doi.org/10.1103/PhysRevLett.125.080403
https://doi.org/10.1103/PhysRevLett.125.080403
https://doi.org/10.1103/PhysRevLett.125.080403
https://doi.org/10.1103/PhysRevLett.125.080403
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


encountered communication task known as a quantum
random access code (QRAC) [40–42]. In a (Q)RAC, a
sender, Alice, receives two input bits ðx0; x1Þ which she
encodes into a (qu)bit that is sent to a receiver, Bob. Bob
receives an input bit y and then attempts to choose his
output b such that it equals to Alice’s yth bit, i.e., b ¼ xy. In
an optimal classical protocol, Alice always sends x0; thus
Bob succeeds when y ¼ 0 and takes a random guess when
y ¼ 1, leading to an average success probability of 0.75.
However, a quantum advantage is obtained if Alice
prepares four qubit states forming a square on the equator
of the Bloch sphere and Bob measures two suitably aligned
Pauli observables, resulting in a success rate of ≈0.85.
From an alternative perspective, a QRAC can be viewed as
a certification tool that allows an experimenter to character-
ize the involved preparation and measurement devices
solely from its success rate, while assuming only that
the setup operates on qubits [43].
However, unsharp measurements in standard QRACs are

unremarkable as their outcome statistics can be simulated
by a measurement device that stochastically implements
projective measurements. Therefore, Refs. [38,39] consid-
ered a sequential scenario (see Fig. 1) in which the
postmeasurement state of Bob is relayed to another
receiver, Charlie, who receives an input bit z and analo-
gously attempts to recover the zth bit of Alice. Thus, Alice
sequentially implements a QRAC with Bob and Charlie in
the respective order. Here, unsharp measurements become
indispensable: in order for both QRACs to achieve a high
success rate, Bob must interact with the incoming system in
such a way that sufficient information is extracted to power
his guess of xy, while simultaneously the disturbance is
limited to allow Charlie to accurately guess xz.
Furthermore, it was shown [38,39] that sequential
QRACs can serve as certification tools for characterizing
the unsharpness of Bob’s operations while only assuming
that the states are qubits.
In this Letter, we report experimental implementation of

sequential QRACs using measurements of tunable unsharp-
ness and demonstrate nearly optimal quantum correlations
that outperform both all classical protocols as well as all
quantum protocols based only on projective qubit mea-
surements. We harvest these quantum communication

advantages to certify the unsharpness parameter by con-
fining it to a narrow interval. Subsequently, we theoretically
develop and experimentally demonstrate how the sequen-
tial QRACs can be applied to quantify the degree of
incompatibility [44] between two sequential pairs of
quantum measurements.
Scenario and theoretical background.—Based on

Refs. [38,39], we describe the sequential QRAC experi-
ment. It involves three parties, Alice, Bob, and Charlie (see
Fig. 1). Alice receives an input x≡ x0; x1 ∈ f0; 1g and
prepares some uncharacterized qubit state denoted ρx,
which she sends to Bob. Bob receives an input y ∈
f0; 1g and performs a corresponding operation on ρx.
This operation produces a classical output b ∈ f0; 1g
and some postoperation qubit state denoted ρy;bx , which
is sent to Charlie. Charlie receives an input z ∈ f0; 1g and
then measures ρy;bx , yielding an outcome c ∈ f0; 1g. All
inputs ðx; y; zÞ are statistically independent and uniformly
distributed. The limit of many rounds yields conditional
probability distributions pðb; cjx; y; zÞ.
The conditional probability distributions pðb; cjx; y; zÞ

are used to evaluate the success rate of two QRACs: one
between Alice and Bob, and one between Alice and
Charlie. The former is successful when b ¼ xy and the
latter is successful when c ¼ xz. The two respective success
rates read

WAB ¼ 1

8

X
x;y

Pðb ¼ xyjx; yÞ;

WAC ¼ 1

8

X
x;z

Pðc ¼ xzjx; zÞ: ð1Þ

Note that we can always take WAB;WAC ∈ ½1
2
; 1�.

Evidently, WAB is independent of Charlie. However,
WAC is not independent of Bob because he operates on
the system before it reaches Charlie.
Bob’s two operations (y ¼ 0, 1) are described by the

notion of a quantum instrument [45], which captures both
the measurement statistics and the evolution of the mea-
sured state. A quantum instrument is defined as an ordered
set of trace-non-increasing completely positive maps
fΛbjygb with the property that for any state ρ it holds
that pðbjyÞ ¼ tr½ΛbjyðρÞ�. Having observed the classical
output b, the quantum output of the instrument is
ρy;b ¼ ΛbjyðρÞ=tr½ΛbjyðρÞ�. Since we consider qubits and
Bob has binary outcomes, the extremal quantum instru-
ments are written as ΛbjyðρÞ ¼ KbjyρK

†
bjy, where fKbjygb

are Kraus operators satisfying
P

b Kbjy†Kbjy ¼ 1, with the
convenient property that Kbjy†Kbjy ¼ Bbjy where fBbjygb
are the two POVMs of Bob [46]. For simplicity, we can
represent Bob’s measurements in terms of two observables
which, in general, read By ≡ B0jy − B1jy ¼ αy1þ n⃗y · σ⃗,
where n⃗y are Bloch vectors, σ⃗ are the Pauli matrices, and
jαyj ≤ 1 − jn⃗yj. The sharpness of Bob’s measurements is

Alice 

      b    {0,1}

Input Input Input

Output Output

FIG. 1. Alice receives two bits x0, x1 and sends the qubit state
ρx0;x1 to Bob who receives an input y and produces a classical
output b and a quantum output ρy;bx0;x1 , which is measured by
Charlie according to his input z, yielding an outcome c.
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defined as ηy ¼ jn⃗yj. Notice that for ηy ∈ f0; 1g, the
measurements are noninteractive and sharp, respectively,
whereas ηy ∈ ð0; 1Þ corresponds to intermediate cases. We
consider the case of η≡ η0 ¼ η1. We emphasize that one
can stochastically simulate Bob’s unsharp POVMs using
only projective measurements, but one cannot simulate his
quantum instrument in this manner. Therefore, we can
distinguish a projective simulation from a genuine unsharp
measurement by considering both the classical and quan-
tum output.
By inspecting the witnesses ðWAB;WACÞ, one may

characterize the sharpness parameter η. References [38,39]
showed that for a given value of WAB, the optimal value of
WAC in quantum theory is given by

WAC ¼ 1

8

�
4þ

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16WAB − 16W2

AB − 2

q �
; ð2Þ

and that such an optimal pair implies a precise value of η.
However, in the experimentally realistic case in which
perfectly optimal quantum correlations are not relevant, a
suboptimal witness pair can be used to deduce upper and
lower bounds on η,

η ≥
ffiffiffi
2

p
ð2WAB − 1Þ≡ ηmin;

η ≤ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ

ffiffiffi
2

p
− 4WACÞð2WAC − 1Þ

q
≡ ηmax: ð3Þ

Thus, the closer the experimentally observed correlations are
to the optimal ones in Eq. (2), the narrower is the interval
IðWAB;WACÞ≡ ½ηmin; ηmax� to which we can confine the
sharpness η.
Experiment.—The optimal quantum correlations (2) are

obtained with a unique quantum strategy (up to a global
unitary) [38]. Alice needs to prepare four states forming a
square on a great circle on the Bloch sphere. For simplicity
we choose the xz plane and Alice’s four states
jψx0x1i ¼ cos αx0x1 j0i þ sin αx0x1 j1i, corresponding to the
four values fðπ=8Þ;−ð3π=8Þ; ð9π=8Þ; ð5π=8Þg of αx0x1 ,
respectively, where ρx ¼ jψx0x1ihψx0x1 j. Similarly, the
optimal quantum instruments of Bob correspond to the

Kraus operators Kbjy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ ð−1ÞbByÞ=2

q
for a suitably

chosen η, where By ∈ fησx; ησzg are the corresponding
observables of Bob. The quantum output is sent to Charlie
whose observables are two complementary projective
measurements C0 ¼ σx and C1 ¼ σz. In an ideal experi-
ment, for every η, we obtain the witness pair,

WAB ¼ 2þ ffiffiffi
2

p
η

4
; WAC ¼ 4þ ffiffiffi

2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − 2η2

p

8
; ð4Þ

which satisfies the optimality condition (2).
We implemented this optimal strategy, using single-

photon polarization qubits where the computational basis
corresponds to horizontal (H) and vertical (V) polarization,
i.e., jHi≡ j0i and jVi≡ j1i. The complete optical setup is

shown in Fig. 2. Alice’s preparation device also encloses a
heralded single photon source that produces photons at
wavelength 780 nm through spontaneous parametric down
conversion (SPDC) by pumping a type-I beta barium borate
(BBO) single crystal of thickness 2 mm using 390 nm fs
laser pulses. Time correlated idler and signal photons are
spectrally and spatially purified by passing through 3 nm
(FWHM) wide optical filters (F) and coupling into single
mode fibers (SMF), respectively. The idler photons in mode
“a” are detected by an avalanche photodiode (APD),
marked as DTrigger, with detection efficiency ∼60%, which
produces a trigger signal indicating the presence of a
photon in mode “b.” Alice prepares this photon in one
of the four desired states jψx0;x1i using a polarizer when it
only passes through jHi and a half-wave plate, HWP(A), at
angles 11.25°, −11.25°33.75° and −33.75°, respectively,
and sends it to Bob.
Bob’s unsharp measurements on the received photons

are performed using a shifted Sagnac interferometer as
described in Refs. [30,36]. In this setup the strength of the
measurement is controlled by rotating half-wave plate
HWP(1) to θ and HWP(2) to ðπ=4Þ − θ, that are placed,
respectively, in the path of horizontally and vertically
polarized beams after the polarization beam splitter
(PBS) such that η ¼ cosð4θÞ. To switch between the bases
By according to the input y, Bob rotates both his wave-
plates HWP(B1) and HWP(B2) to 22.5° and 0°, respec-
tively. The outcome of these measurements b ∈ f0; 1g is
encoded in the output path of the interferometer such that
b ¼ 0 (b ¼ 1) corresponds to the detection of the photon in
the output path “1” ≡ transmission (“2” ≡ reflection). In a
sequential scenario, we choose to consider only one output
path at a time to simplify the setup and by adding an
additional rotation to the HWP(B1) and HWP(B2), we can

SMF

SMF

D Trigger

F

Lens

BBO
2 mm

FC

Alice 

Polarizer

   HWP(A)

Heralded
source 

Charlie

PBS

MMF

FC

HWP(C)   

Bob HWP   (B2)   HWP     

HWP    (B1)   HWP     

FC

MMF

( )
HWP(1)

( /4 - )
HWP(2)

PBS
 (B1)   

a

b

FIG. 2. Experimental setup. Alice prepares her states using a
heralded photon source, a polarizer and a half-wave plate HWP
(A). Bob’s instrument is realized by a shifted Sagnac interfer-
ometer where the sharpness parameter η ¼ cosð4θ) is tuned using
half-wave plates HWP(1) and HWP(2). HWP(B1) and HWP(B2)
are used to switch between the observables B0 and B1 as well as
selecting the output corresponding to the outcome b ¼ 0 and
b ¼ 1. Charlie performs projective (sharp) measurements on the
received qubit from Bob using a HWP(C) and a polarization
beam splitter (PBS).
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select the output we want to analyze at a given time. Using
output 2, Bob will locally be able to learn the outcome of
his measurement counterfactually when using perfect
detectors. Also, when the fair sampling assumption is
invoked, which is the case in this experiment, Bob can
still infer his outcome of the measurement locally using
average photon rates.
Finally, Charlie’s projective measurement setup consists

of HWP(C), PBS, a pair of fiber couplers (FC) and
multimode fibers (MMF) that propagate the photons to a
pair of APDs. He performs Cz ∈ fσx; σzg on the received
qubits according to his random input z ∈ f0; 1g, by rotating
HWP(C) to 22.5° and 0°, respectively. The results of
Charlie’s marginal probabilities (for evaluating WAC) are
obtained by averaging out the inputs and outputs of Bob.
Results.—To evaluate ðWAB;WACÞ from the data, we

require the marginal probabilities appearing in Eq (1). All
parties setting are set using motorized rotation stages that
are controlled by a computer program. To gather sufficient
statistics we measure 60 sec in each setting with a rate of
∼20 kHz and collected at least 1.2 million events. Each
measured value of ðWAB;WACÞ together with the (black
color) error bars (horizontal and vertical corresponding to
WAB andWAC, respectively) is shown in Fig. 3 and can be
compared to the optimal quantum correlations (red color)
and the optimal classical correlations (blue color, given by
ðWAB;WACÞ ≤ 3=4). Our obtained quantum correlations
are nearly optimal for all considered values of η. Also, in
the worst case, the classical limit is outperformed by at
least 15 standard deviations. Moreover, the data reliably
outperforms the optimal quantum correlations attainable
when Bob uses stochastic projective measurements (green
color) (see Ref. [39]). This certifies the advantage of
unsharp measurements in sequential QRACs. Notably, the
projective bound is not outperfromed for the two data

points corresponding to η ∈ f0; 1g since in these
cases the bound coincides with the optimal quantum
correlations.
From the inequalities in Eq. (3), we can determine an

upper and a lower bound on the sharpness parameter. Thus, η
can be confined to the interval IðWAB;WACÞ for each of the
measured values of the witness pair ðWAB;WACÞ. These
certified intervals are depicted by gray bars in Fig. 3 located
vertically from the corresponding witness’ and using the y
axis on the right side. We observe that the certification is
more precise (the interval is smaller) as the sharpness
parameter increases. The smallest (largest) interval, corre-
sponding to an essentially projective (noninteractive) meas-
urement, has a width of about 10−3 (0.2). This is due to the
fact that the bounds in Eq. (3) become more sensitive to
small imperfections when WAC increases. Further details
about the experimental data is presented in the Supplemental
Material [47]. Moreover, in Ref. [47], we also compare this
characterization of unsharp measurements to a simple tomo-
graphic model with an essentially trusted preparation device
subjected to comparably small errors.
Data analysis.—The experiment is influenced by sys-

tematic errors originating from, for instance, imperfect
wave plates as well as offsets in their marked zero position,
finite PBS extinction and cross talk, and limited interfer-
ence visibility. The magnitude of these errors is revealed by
the extent to which the experimental points are shifted away
from the optimal quantum correlations. In order to mini-
mize systematic errors, we carefully select and characterize
all the optical components. This brings us closer to the
optimal quantum correlation and the experimental points
correspond to a more than 98% total visibility estimation.
Nevertheless, random errors due to Poissonian statistics or
due to repetition of the experimental settings with limited
precision will spread the observed point on Fig. 3 to a
region contained within the black bars. To keep this error
low, all the settings are set by computerized controlled
motors with repetition precision < 0.02°. Errors together
with mean values are provided in the Supplemental
Material [47].
Quantifying sequentual measurement incompatibility.—

In order to witness quantum correlations, one requires
incompatible measurements. In that sense, violating the
classical constraint with WAB (WAC) certifies that Bob’s
(Charlie’s) two POVMs are incompatible [48,49]. It is,
however, more informative to consider a quantitative
inference; is it possible to deduce from ðWAB;WACÞ a
lower bound on the extent to which Bob’s and Charlie’s
POVMs are incompatible? In order to achieve such
quantification of Heisenberg uncertainty, one must first
define a measure of incompatibility valid for dichotomic
qubit observables. We use the degree of incompatibility
introduced in Ref. [44];

Dðn⃗0; n⃗1Þ ¼ jn⃗0 þ n⃗1j þ jn⃗0 − n⃗1j − 2; ð5Þ
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FIG. 3. Experimental results. Optimal quantum correlations
(red), optimal quantum correlations from stochastic projective
measurements (green), optimal classical correlations (blue), and
experimentally obtained values of witness pairs ðWAB;WACÞ
(black). The characterization of the sharpness parameter η is
depicted by gray bars corresponding to the interval to which it is
confined (y axis on the right-hand side).
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where n⃗0 and n⃗1 are the Bloch vectors of the observables.
All compatible observables obey D ≤ 0 whereas incom-
patible observables obey D ≤ 2ð ffiffiffi

2
p

− 1Þ. As expected, the
bound is saturated by two Pauli observables. Since we are
interested in incompatible observables, we simply reset
negative values of D to 0. As shown in Supplemental
Material [47], the success rate of a QRAC implies a lower
bound on D:

D ≥ 8W − 6: ð6Þ

Thus, whenever a QRAC exceeds the classical bound
of 3

4
, a degree of incompatibility is certified and quantified.

By choosing W ¼ WAB, we use Eq (6) to quantify the
incompatibility of Bob’s unsharp measurements. The
bound in Eq. (6) can also be applied to Charlie’s mea-
surements, but it would significantly underestimate their
degree of incompatibility due to the sequential nature of the
experiment. A more sophisticated quantification is possible
when exploiting both WAB and WAC and the fact that
η ∈ IðWAB;WACÞ. Considering unbiased observables for
Bob, i.e., By ¼ ηðn̂y · σ⃗Þ, where n̂y is the normalized Bloch
vector, we show in the Supplemental Material [47] that
Charlie’s degree of incompatibility respects

D ≥ min
η∈IðWAB;WACÞ

16WAC − 8

1þ gη þ fWAB
ð1 − gηÞ

− 2 ð7Þ

where gη≡
ffiffiffiffiffiffiffiffiffiffiffi
1−η2

p
and fWAB

≡2ðηmin=ηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ðηmin=ηÞ2

p
.

Notice that if we choose not to exploit the certified
interval IðWAB;WACÞ, we may simply take the limit of
η → 0 and recover the bound in Eq. (6) for W ¼ WAC. In
Fig. 4 we show the degree of incompatibility as obtained
from the twelve experimentally measured witness pairs
ðWAB;WACÞ corresponding to different targeted values of
the sharpness parameter η. As expected, we see that the
incompatibility of Bob’s measurements decreases with η
and vanishes in the vicinity of η ¼ 1=

ffiffiffi
2

p
, which is the

theoretical threshold. For Charlie, we always find a high

degree of incompatibility which stems from his projective
measurements.
Conclusions.—By precise control of unsharp quantum

measurements, we demonstrated nearly optimal sequential
quantum random access codes that outperform not only the
best possible classical protocols but also the best possible
quantum protocols based only on projective measurements.
We harvested the quantum advantage in the communication
task in order to certify the degree of unsharpness in the
preformed measurements. Exploiting both the sequential
QRACs and the certification of the unsharpness, we
quantitatively demonstrated the incompatibility of two
sequential pairs of measurements across a wide range of
sharpness parameters. Our results demonstrate the useful-
ness of unsharp measurements in quantum communication
tasks, the possibility of quantifying the degree of incom-
patibility of sequential pairs of unsharp observables and the
practical feasibility of characterizing them under weak
assumptions.
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M. Bourennane, Self-testing non-projective quantum mea-
surements in prepare-and-measure experiments, Sci. Adv. 6,
16 (2020).

[12] R. Silva, N. Gisin, Y. Guryanova, and S. Popescu, Multiple
Observers Can Share the Nonlocality of Half of an
Entangled Pair by Using Optimal Weak Measurements,
Phys. Rev. Lett. 114, 250401 (2015).

[13] A. N. Korotkov, Continuous quantum measurement of a
double dot, Phys. Rev. B 60, 5737 (1999).

[14] J. Audretsch, T. Konrad, and A. Scherer, Sequence of
unsharp measurements enabling a real-time visualization
of a quantum oscillation, Phys. Rev. A 63, 052102 (2001).

[15] T. Konrad, A. Rothe, F. Petruccione, and L. Diósi, Mon-
itoring the wave function by time continuous position
measurement, New J. Phys. 12, 043038 (2010).

[16] K.W. Murch, S. J. Weber, C. Macklin, and I. Siddiqi,
Observing single quantum trajectories of a superconducting
quantum bit, Nature (London) 502, 211 (2013).

[17] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Introduction to quantum noise, measure-
ment, and amplification, Rev. Mod. Phys. 82, 1155 (2010).

[18] M. A. Armen, J. K. Au, J. K. Stockton, A. C. Doherty, and
H. Mabuchi, Adaptive Homodyne Measurement of Optical
Phase, Phys. Rev. Lett. 89, 133602 (2002).

[19] J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and
C. Bamber, Direct measurement of the quantum wave-
function, Nature (London) 474, 188 (2011).

[20] R. L. Cook, P. J. Martin, and J. M. Geremia, Optical
coherent state discrimination using a closed-loop quantum
measurement, Nature (London) 446, 774 (2007).

[21] G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida,
M. Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D.
Bartlett, and A. G. White, Experimental Feedback Control
of Quantum Systems Using Weak Measurements, Phys.
Rev. Lett. 104, 080503 (2010).

[22] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybar-
czyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini,
M. Brune, J-M. Raimond, and S. Haroche, Real-time
quantum feedback prepares and stabilizes photon number
states, Nature (London) 477, 73 (2011).

[23] O. Oreshkov and T. A. Brun, Weak Measurements Are
Universal, Phys. Rev. Lett. 95, 110409 (2005).

[24] Y. Aharonov, D. Z. Albert, and L. Vaidman, How the Result
of a Measurement of a Component of the Spin of a Spin-1=2
Particle can turn out to be 100, Phys. Rev. Lett. 60, 1351
(1988).

[25] Y. Ota, S. Ashhab, and F. Nori, Entanglement amplification
via local weak measurements, J. Phys. A 45, 415303 (2012).

[26] F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban,
P. Wittek, and A. Acín, Unbounded randomness certifica-
tion using sequences of measurements, Phys. Rev. A 95,
020102(R) (2017).

[27] A. Tavakoli and A. Cabello, Quantum predictions for an
unmeasured system cannot be simulated with a finite-
memory classical system, Phys. Rev. A 97, 032131 (2018).

[28] A. Bera, S. Mal, A. Sen(De), and U. Sen, Witnessing
bipartite entanglement sequentially by multiple observers,
Phys. Rev. A 98, 062304 (2018).

[29] A. H. Shenoy, S. Designolle, F. Hirsch, R. Silva, N. Gisin,
and N. Brunner, Unbounded sequence of observers exhibit-
ing Einstein-Podolsky-Rosen steering, Phys. Rev. A 99,
022317 (2019).

[30] H. Anwer, N. Wilson, R. Silva, S. Muhammad, A. Tavakoli,
and M. Bourennane, Noise-robust preparation contextuality
shared between any number of observers via unsharp
measurements, arXiv:1904.09766.

[31] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion,
D. Esteve, and A. N. Korotkov, Experimental violation of a
Bell’s inequality in time with weak measurement, Nat. Phys.
6, 442 (2010).

[32] F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida,
I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi,
F. Zappa, and M. Genovese, Measuring Incompatible
Observables by Exploiting Sequential Weak Values, Phys.
Rev. Lett. 117, 170402 (2016).

[33] Y. Kim, Y-S. Kim, S-Y. Lee, S-W. Han, S. Moon, Y-H. Kim,
and Y-W. Cho, Direct quantum process tomography via
measuring sequential weak values of incompatible observ-
ables, Nat. Commun. 9, 192 (2018).

[34] J.-S. Chen, M.-J. Hu, X-M. Hu, B.-H. Liu, Y.-F. Huang,
C.-F. Li, C.-G. Guo, and Y.-S. Zhang, Experimental reali-
zation of sequential weak measurements of non-commuting
Pauli observables, Opt. Express 27, 6089 (2019).

[35] M. Schiavon, L. Calderaro, M. Pittaluga, G. Vallone, and P.
Villoresi, Three-observer Bell inequality violation on a two-
qubit entangled state, Quantum Sci. Technol. 2, 015010
(2017).

[36] M.-J. Hu, Z.-Y. Zhou, X.-M. Hu, C.-F. Li, G.-C. Guo, and
Y.-S. Zhang, Observation of non-locality sharing among
three observers with one entangled pair via optimal weak
measurement, Quantum Inf. 4, 63 (2018).

[37] G. Foletto, L. Calderaro, A. Tavakoli, M. Schiavon,
F. Picciariello, A. Cabello, P. Villoresi, and G. Vallone,
Experimental Certification of Sustained Entanglement and
Nonlocality after Sequential Measurements, Phys. Rev.
Applied 13, 044008 (2020).

[38] K. Mohan, A. Tavakoli, and N. Brunner, Sequential random
access codes and self-testing of quantum measurement
instruments, New J. Phys. 21, 083034 (2019).

[39] N. Miklin, J. J. Borkała, and M. Pawłowski, Semi-device-
independent self-testing of unsharp measurements, Phys.
Rev. Research 2, 033014 (2020).

[40] A. Ambainis, A. Nayak, A. Ta-Shama, and U. Varizani,
Dense quantum coding and a lower bound for 1-way
quantum automata, in Proceedings of 31st ACM Symposium
on Theory of Computing (Association for Computing
Machinery (ACM), New York, 1999), pp. 376–383,
https://doi.org/10.1145/301250.301347.

[41] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols,
Quantum random access codes with shared randomness,
arXiv:0810.2937.

[42] A. Tavakoli, A. Hameedi, B. Marques, and M. Bourennane,
Quantum Random Access Codes using Single d-Level
Systems, Phys. Rev. Lett. 114, 170502 (2015).

PHYSICAL REVIEW LETTERS 125, 080403 (2020)

080403-6

https://doi.org/10.1103/PhysRevLett.119.190501
https://doi.org/10.1126/sciadv.aaw6664
https://doi.org/10.1126/sciadv.aaw6664
https://doi.org/10.1103/PhysRevLett.114.250401
https://doi.org/10.1103/PhysRevB.60.5737
https://doi.org/10.1103/PhysRevA.63.052102
https://doi.org/10.1088/1367-2630/12/4/043038
https://doi.org/10.1038/nature12539
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevLett.89.133602
https://doi.org/10.1038/nature10120
https://doi.org/10.1038/nature05655
https://doi.org/10.1103/PhysRevLett.104.080503
https://doi.org/10.1103/PhysRevLett.104.080503
https://doi.org/10.1038/nature10376
https://doi.org/10.1103/PhysRevLett.95.110409
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1088/1751-8113/45/41/415303
https://doi.org/10.1103/PhysRevA.95.020102
https://doi.org/10.1103/PhysRevA.95.020102
https://doi.org/10.1103/PhysRevA.97.032131
https://doi.org/10.1103/PhysRevA.98.062304
https://doi.org/10.1103/PhysRevA.99.022317
https://doi.org/10.1103/PhysRevA.99.022317
https://arXiv.org/abs/1904.09766
https://doi.org/10.1038/nphys1641
https://doi.org/10.1038/nphys1641
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1103/PhysRevLett.117.170402
https://doi.org/10.1038/s41467-017-02511-2
https://doi.org/10.1364/OE.27.006089
https://doi.org/10.1088/2058-9565/aa62be
https://doi.org/10.1088/2058-9565/aa62be
https://doi.org/10.1038/s41534-018-0115-x
https://doi.org/10.1103/PhysRevApplied.13.044008
https://doi.org/10.1103/PhysRevApplied.13.044008
https://doi.org/10.1088/1367-2630/ab3773
https://doi.org/10.1103/PhysRevResearch.2.033014
https://doi.org/10.1103/PhysRevResearch.2.033014
https://doi.org/10.1145/301250.301347
https://doi.org/10.1145/301250.301347
https://doi.org/10.1145/301250.301347
https://doi.org/10.1145/301250.301347
https://arXiv.org/abs/0810.2937
https://doi.org/10.1103/PhysRevLett.114.170502


[43] A. Tavakoli, J. Kaniewski, A. Vértesi, D. Rosset, and
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