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We demonstrate the universality of the gravitational classical deflection angle of massless particles
through OðG3Þ by studying the high-energy limit of full two-loop four-graviton scattering amplitudes in
pure Einstein gravity as well as N ≥ 4 supergravity. As a by-product, our first-principles calculation
provides a direct confirmation of the massless deflection angle in Einstein gravity proposed long ago by
Amati, Ciafaloni, and Veneziano, and is inconsistent with a recently proposed alternative.
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Introduction.—The high-energy behavior of gravita-
tional-scattering processes has a long and interesting
history as a fundamental probe of gravitational theories
at the classical and quantum level (see, e.g., Refs. [1–3]).
The simplicity of scattering in the high-energy limit makes
it a natural forum to extract information about high orders
in perturbation theory. Indeed, using insight from string
amplitudes and the analyticity of scattering amplitudes,
Amati, Ciafaloni, and Veneziano (ACV) [3] worked out the
high-energy limit of massless graviton scattering through
OðG3Þ long before it became technically feasible to
compute two-loop scattering amplitudes in quantum field
theory directly. Using this they calculated the correspond-
ing correction to the gravitational deflection angle of
massless particles in general relativity.
Recently the subject of scattering processes in gravita-

tional theories has been reinvigorated by the spectacular
observation of gravitational waves by the LIGO and Virgo
Collaborations [4]. While scattering processes may seem
rather different from the bound-state problem of gravita-
tional-wave generation, the underlying physics is the same.
In particular, classical two-body potentials can be extracted
from scattering processes [5], including new state-of-the-art
calculations [6,7]. This approach leverages the huge
advances in computing quantum scattering amplitudes that
stem from the modern unitarity method [8] and from
double-copy relations [9] between gauge and gravity
theories.
The possibility of using quantum scattering amplitudes

to obtain the classical deflection angle was also promoted
by Damour [10], who used the ACV result for the
conservative scattering angle to impose constraints on

classical two-body Hamiltonians of the type used for
gravitational-wave template construction [11]. In a very
recent paper [12], however, Damour has cast doubt on the
program of using quantum scattering amplitudes to extract
information on classical dynamics. His central claim is that
both the classical scattering angle derived by ACV and the
OðG3Þ two-body Hamiltonian derived in Refs. [6,7] are not
correct. His claims, based on information obtained from the
self-force (small mass ratio) expansion [13] of the bound-
state dynamics as well as structural properties in the results
of Ref. [7], provide results with a smooth transition
between massive and massless classical scattering.
In this Letter we confirm that the conservative scattering

angle as determined by ACV [3] is indeed correct. Our
confirmation follows as a by-product of studying univer-
sality of the classical scattering angle in massless theories.
Remarkably, we find that the scattering angle through
OðG3Þ is independent of the matter content for a variety of
theories, implying graviton dominance in the high-energy
limit. This dominance is well known at leading eikonal
order [2]. Reference [14] revealed early hints of such
dominance via analysis of gravitino contributions at the
next nonvanishing order.
Our study relies on having on hand the explicit expres-

sions for massless two-loop four-point amplitudes for N ≥
4 supergravity [15–17] and pure Einstein gravity [18]. The
latter result makes use of the latest advances in evaluating
multiloop amplitudes based on numerical unitarity fol-
lowed by analytic reconstructions [19]. Armed with the
fully evaluated amplitudes we then follow the standard [20]
and widely used (see, e.g., Refs. [21–25]) extractions of the
scattering angle, using both impact parameter space and
partial-wave analyses.
For the case of N ¼ 8 supergravity a recent paper [25]

analyzes the eikonal phase through OðG4Þ using the two-
and three-loop amplitudes from Refs. [17,26]. The same
work [25] observes that the N ¼ 8 scattering angle
matches the angle found by ACV through OðG3Þ [3],
despite having different matter content. Indeed, as we show
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here, this is not an accident, but part of a general pattern.
Our explicit calculations for the OðG3Þ contributions to the
classical scattering angle in N ≥ 4 and pure gravity give
the identical result as the angle found by ACV, demon-
strating its universality.
The classical limit of the amplitude.—We are interested

in extracting the contributions to the conservative classical
scattering angle from the two-loop four-point scattering
amplitudes of Refs. [15–18]. Four-point scattering ampli-
tudes depend on the kinematic invariants s and t ¼ −q2,
which in the center of mass frame correspond to the squared
total energy and squared four-momentum transfer, respec-
tively. We consider the amplitude in the physical region
s > 0; t < 0; u ¼ −s − t < 0 (using a mostly minus sign
convention for the metric), commonly known as the s
channel. The contributions in the amplitude relevant for the
classical angle corresponds to the large angular momentum
limit, which for massless particles is J ∼

ffiffiffi
s

p
b ≫ 1, where b

denotes the usual impact parameter. In the absence of any
other kinematic scales such as masses in the momentum-
space scattering amplitude, the classical limit is equivalent
to the Regge or high-energy small-angle limit, s=q2 ≫ 1. It
is straightforward to argue that the singularity structure of
massless scattering amplitudes implies that only even loop
orders can give rise to classical contributions (see, e.g.,
Refs. [3,25] for a detailed argument). At one loop, in
particular, this is directly tied to the fact that no term
behaves as 1=q which would be required to contribute to
the classical deflection angle.
Following Ref. [3], we consider external graviton states.

For simplicity we focus on the configuration where the
incoming and outgoing gravitons in the s channel have
identical helicity; the situation where the incoming and
outgoing gravitons have opposite helicity gives the same
final classical scattering angle. We extract the classical
scattering angle from the Regge limit of the renormalized
scattering amplitudes, which take the following form,

ð1Þ

wherewedropped subdominant termsofOðq2=sÞ in the loop
amplitudes, and where K is a local factor depending on the
external states, μ̄2 ≡ 4πe−γEμ2 is a rescaled renormalization
scale and rΓ ≡ eϵγEΓð1þ ϵÞΓð1 − ϵÞ2=Γð1 − 2ϵÞ. For con-
venience we introduced L ¼ logðs=q2Þ, and the finite
remainders FðiÞ, which depend on the theory and are
implicitly defined in Eq. (1). This result is given in the
conventional dimensional regularization scheme, where all
internal states and momenta are analytically continued into
D ¼ 4 − 2ϵ dimensions. For the purposes of this Letter, we
only need Fð1Þ to OðϵÞ and Fð2Þ to Oðϵ0Þ. The two-loop
infrared singular part is related to the square of the one-loop
amplitude via ½Mð1Þ�2=2Mð0Þ which follows from the fact
that to all loop orders the infrared singularity is given by an
exponential of the ratio of the one-loop and tree ampli-
tudes [16,27].
The pure gravity one-loop amplitudes were originally

computed in Ref. [28]. These were recomputed in an
intermediate step [29] of the two-loop analysis of
Ref. [30]. This is matched by the expressions in Ref. [18]
that include theOðϵÞ contributions. The latter contributions
are neededwhen extracting the two-loop finite remainders in
the presence of infrared singularities, with the result,

Fð1Þ
GR ¼ 2L2 þ 2iπLþ 4π2 −

87

10
Lþ 841

90

þ ϵ

�
−
2

3
L3 − π2Lþ 6ζ3 þ

47

20
L2 − 3π2 −

6913

225
L

þ 35597

1200
þ iπ

�
−L2 þ π2

3
þ 10Lþ 1957

360

��
; ð2Þ

where Fð1Þ
GR is the pure gravity result for Fð1Þ in Eq. (1). The

N ≥ 4 supergravity amplitudes can be found in
Ref. [17,28,31] in a scheme that preserves supersymmetry.
For these cases, theRegge limit of theOðϵ0Þ contributions to
the finite remainders can be read off from Eq. (4.6)
of Ref. [22].
Reference [18] provides the complete Einstein-gravity

amplitude needed for our analysis, including subdivergence
subtractions [29,30,32]. We note that these results pass
highly nontrivial checks. The amplitude yields the expected
IR pole structure [27] and the net ultraviolet poles cancel
against the known counterterms [30,33]. Furthermore the
amplitude only has the poles in the Mandelstam variables s,
t, and u dictated by factorization. The amplitudes have also
been validated against results in the literature and inde-
pendent computations. While not directly relevant for the
classical scattering angle, the results of Ref. [18] also match
the previously computed [29] identical-helicity amplitude
(in an all outgoing momentum convention), corresponding
to the case that both incoming gravitons flip helicity.
Starting from the full four-graviton two-loop amplitude

in pure Einstein gravity [18], we extract the finite remainder
in the Regge limit giving the result,
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Fð2Þ
GR ¼ −2π2L2 þ 4π2L −

π4

90
þ 13403π2

675
−
13049

2160

þ iπ
�
4

3
L3 −

47

10
L2 þ 26159

450
L − 20ζ3

þ 2621π2

210
−
11221

375

�
: ð3Þ

The constant parts are scheme dependent and in any case
they do not affect the scattering angle. A detailed dis-
cussion of scheme dependence and its effects on the final
angle, in the context of IR regulators inN ¼ 8 supergravity
is found in Section VI of Ref. [25].
The two-loop amplitudes for N ≥ 4 supergravity are

given in Ref. [17]. The N ¼ 8 supergravity result is the
simplest of these and was first given in Ref. [16] by
combining the integrand of Ref. [15] with the integrals of
Ref. [34]. Explicit results for the finite remainders in the
Regge limit are found in Eqs. (4.13)–(4.16) of Ref. [22].
Note that the remainders in Ref. [22] are normalized with
an extra factor of q2s relative to ours.
So far we have presented the classical scattering ampli-

tudes in perturbation theory, which assumes Gs ≪ 1.
Ultimately, we are interested in the limit Gs ≫ 1,
with Gs=J ≪ 1 corresponding to the classical post-
Minkowskian expansion used in classical general relativity
[35]. Implicitly this assumes that the relevant parts of the
perturbative series have been resummed. Standard ways to
do so use eikonal or partial wave methods which we utilize
in the following.
Scattering angle from eikonal phase.—Following the

usual procedure [3,20,21,25], we obtain the eikonal phase
by taking the transverse Fourier transform of the amplitude
in the classical limit,

−iðei2δðs;beÞ − 1Þ ¼
Z

μ2ϵd2−2ϵq
ð2πÞ2−2ϵ eiq⃗⋅b⃗e

Mðs; q2Þ
2sK

; ð4Þ

where δðs; beÞ is the eikonal phase, which we
expand perturbatively in Newton’s constant ðδ ¼ δð0Þþ
δð1Þ þ δð2Þ þ � � �Þ, q⃗ is the ð2 − 2ϵÞ-dimensional vector in
the scattering plane such that q⃗2 ¼ q2 and be ≡ jb⃗ej is the
eikonal impact parameter shown in Fig. 1. The basic
formula needed for calculating the Fourier transform is
given in Eq. (2.11) of Ref. [24].
The full phase shift is generically complex, and be

readily obtained from Eqs. (1), (2), and (3). Its imaginary
part at a given order captures inelastic (e.g., radiation)
effects. Here we are only interested in the conservative part,
as in Ref. [3] so we do not display it in the following and
focus only on the elastic phase. However, these imaginary
parts are needed to extract the elastic contributions at higher
orders because of the exponentiation. The Fourier trans-
form of polynomial terms corresponds to short-range

contact interactions, which are not relevant for the problem
of long-range scattering.
The universalOðGÞ result for the eikonal phase extracted

from the tree amplitude is

δð0Þ ¼Gs
2
ðμ̄2b̃2eÞϵ

�
−
1

ϵ
− ϵ

π2

12
−
1

3
ϵ2ζ3þOðϵ3Þ

�
; ð5Þ

where we introduced b̃e ¼ eγEbe=2 for convenience.
As explained above, the pieces relevant for the one-loop

scattering angle are given by the real part of the nonanalytic
part,

ReFð1Þ ¼ −
N − 4

2
L2 þ cLþ � � � ; ð6Þ

where N denotes the amount of supersymmetry and c is a
constant that takes on the values 0;−1;−87=10 for N > 4,
N ¼ 4 and pure gravity, respectively. The leading loga-
rithms (L2) arise from backward-scattering diagrams [22]
and the subleading logarithm (L) from bubble integrals. We
conclude that they are nonuniversal and depend on the
specific theory. As mentioned above, the OðG2Þ one-loop
phase can contribute to the angle only at the quantum level,
so this nonuniversality does not affect the classical scatter-
ing angle. These contributions, including the OðϵÞ parts,
are however crucial for extracting the OðG3Þ classical
pieces because of cross terms with infrared singularities.
The OðG2Þ phase extracted from the one-loop ampli-

tude is

Reδð1Þ ¼ 2G2s
πb2e

ðμ̄2b̃2eÞ2ϵ

×
�
1

ϵ
−
ðN − 6Þ

2
logðsb̃2eÞ þ

cþ 2

2
þOðϵÞ

�
; ð7Þ

where c is the same theory-dependent constant appearing
in Eq. (6). Additionally, there is an imaginary part atOðϵÞ,
needed to obtain the real part of δð2Þ, which is not
displayed here but is readily obtained from the Fourier
transform of the full amplitudes in Eqs. (1) and (2) as well
from Refs. [28–30].

FIG. 1. The scattering configuration showing the impact
parameter, b, eikonal impact parameter, be, and the scattering
angle, χ.
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The relevant terms at two loops arise from the nonana-
lytic terms in the imaginary part of the remainder at one
loop and from the real part at two loops

ImFð1Þ ¼ 2πL − ϵπL2 þ � � � ;
ReFð2Þ ¼ −2π2L2 þ 4π2Lþ � � � ; ð8Þ

where the dots indicate nonuniversal terms which do not
contribute to the phase atOðϵ0Þ. This includes nonuniversal
ϵL terms in ImFð1Þ that could naively contribute but
ultimately cancels against the iteration −2iδð0Þδð1Þ coming
from expanding the exponential.
TheOðG3Þ terms in the phase can thus be extracted from

the two-loop amplitude after subtracting the iteration from
the leading and subleading phases in the exponential (4).
The leading eikonal exponentiation also predicts a univer-
sal OðϵÞ contribution to the two-loop amplitude which
needs to be taken into account. [See the discussion in
Ref. [25] near Eq. (3.7)]. We obtain the universal result,

Reδð2Þ ¼ 2G3s2

b2e
ðμ̄2b̃2eÞ3ϵ þOðϵÞ; ð9Þ

valid for N ≥ 4 supergravity as well as pure Einstein
gravity. We are not displaying the imaginary parts since
they are not universal and do not contribute to the
conservative dynamics at this order.
The classical scattering angle is given in terms of the

eikonal phase via the usual stationary-phase argument (see,
e.g., [2]),

sin
1

2
χðs; beÞ ¼ −

2ffiffiffi
s

p ∂
∂be δðs; beÞ: ð10Þ

Applying this formula to Eq. (9), which holds for all
theories evaluated here, we obtain the universal result

sin
1

2
χðs; beÞ ¼

2G
ffiffiffi
s

p
be

þ ð2G ffiffiffi
s

p Þ3
b3e

; ð11Þ

matching the ACV pure gravity angle given in Eq. (5.28) in
Ref. [3], as well as the recently obtained angle in N ¼ 8
supergravity [25]. The scheme dependence cancels, as
expected. The result above is written in terms of the
symmetric impact parameter, b⃗e which appears naturally
in the eikonal formula. This points in the direction of the
momentum transfer q⃗, while the more familiar impact
parameter b⃗ is perpendicular to the incoming momenta,
as shown in Fig. 1. (See also Ref. [23].) The relation
between their magnitudes is b ¼ be cosðχ=2Þ. Rewriting
the universal scattering angle in terms of the usual impact
parameter b gives,

sin
1

2
χðs; bÞ ¼ 2G

ffiffiffi
s

p
b

þ 1

2

ð2G ffiffiffi
s

p Þ3
b3

: ð12Þ

We note that the quantum corrections to the scattering angle
do not display a corresponding universality, analogous to
previously observed nonuniversal spin dependence in
quantum corrections [36].
Scattering angle from partial-wave expansion.—

Alternatively, we can extract the scattering angle from
the partial-wave expansion of the amplitude (see, e.g.,
Ref. [12]). Here we note that the partial waves are given by

alðsÞ ¼
ð16πμ2=sÞϵ
Γð1 − ϵÞ

Z
1

−1
dxð1 − x2Þ−ϵC1−2ϵ

2

l ðxÞMðs; xÞ
16πK

;

ð13Þ

where x ¼ cos χ ¼ 1þ 2t=s and the Cð1−2ϵÞ=2
l ðxÞ are

Gegenbauer polynomials (normalized to take unit value
at x ¼ 1), which reduce to the more familiar Legendre
polynomials when ϵ → 0.
If we ignore inelastic contributions, the partial waves can

be parametrized in terms of phase shifts as

alðsÞ ¼ −iðei2δlðsÞ − 1Þ; ð14Þ

and once again a stationary-phase argument gives the
scattering angle as

1

2
χðs; lÞ ¼ −

∂δlðsÞ
∂l : ð15Þ

Using this approach we find the phase shifts,

δð0Þl ðsÞ ¼ Gs
2

�
μ̄2J̃2

s

�
ϵ
�
−
1

ϵ
−

1

3J2
þOðϵ; J−4Þ

�
;

Reδð1Þl ðsÞ ¼ G2s2

2πJ2

�
μ̄2J̃2

s

�
2ϵ

×

�
1

ϵ
−
ðN − 6Þ

2
logðJ̃2Þ þ cþ 2

2
þOðϵ; J−2Þ

�
;

Reδð2Þl ðsÞ ¼ G3s3

3J2

�
μ̄2J̃2

s

�
3ϵ

þOðϵ; J−4Þ; ð16Þ

where J̃2 ¼ e2γEJ2 and J2 denotes the Casimir of the
rotation group, i.e., J2∶≡ lðlþ 1 − 2ϵÞ, which has a
well-defined classical limit. The classical deflection angle
is then

1

2
χðs; JÞ ¼ Gs

J
þ 2

3

G3s3

J3
; ð17Þ

written in terms of the classical variables, or, equivalently,
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sin
1

2
χðs; JÞ ¼ Gs

J
þ 1

2

G3s3

J3
: ð18Þ

Using the relation between the angular momentum and the
impact parameters

J ¼
ffiffiffi
s

p
2

b ¼
ffiffiffi
s

p
2

be cos
1

2
χ; ð19Þ

we find that Eq. (18) reproduces Eqs. (11) and (12).
We can directly compare our results to Damour’s

conjectured angle given in Eq. (5.37) of Ref. [12],

sin
1

2
χDðs; JÞ ¼ Gs

J
−
3

4

G3s3

J3
: ð20Þ

As noted in Ref. [12], this disagrees with the angle obtained
by ACV, which is matched by Eq. (18). As emphasized by
Damour [12], because the sign of the G3 term in Eq. (20) is
opposite to that of Eq. (18) the disagreement between the
two formulas is robust.
Here we focused on the scattering of identical-helicity

gravitons in the initial state. We have repeated the calcu-
lation for the case of opposite-helicity gravitons with the
same results for the classical scattering angle. Furthermore,
we expect the result to be identical for any massless
external states. Indeed, for the supersymmetric cases that
we analyzed, supersymmetry identities [37] relate graviton
scattering to scattering of other massless states.
Conclusions.—By studying gravitational scattering

amplitudes through OðG3Þ in a variety of theories, we
found the classical scattering angle to be independent of
their matter content, thus demonstrating graviton domi-
nance at a higher order than had been previously under-
stood [2]. In addition, we confirmed that the classical
scattering angle found by ACV [3] is indeed correct. The
results of our calculation are, however, in conflict with
Damour’s recent conjecture [12].
There are a number of interesting directions to pursue.

First and foremost, it would be desirable to systematically
complete a proof of universality through OðG3Þ for any
massless gravitational theory. An obvious, if nontrivial, next
step would be to check whether some form of universality
remains at higher orders as well. It would also be important
to understand the constraints that the high-energy behavior
of scattering amplitudes imposes on classical binary black
hole interactions [10]. The recent advances [19,38] that
make it possible to obtain the complete four-graviton two-
loop amplitude of pure Einstein gravity [18] can be expected
to lead to further advances, including for the important case
of massive multiloop amplitudes relevant for the gravita-
tional-wave two-body problem.

We thank Alessandra Buonanno, Clifford Cheung,
Marcello Ciafaloni, Thibault Damour, Paolo Di Vecchia,
David Kosower, Andrés Luna, Stephen Naculich, Radu

Roiban, Rodolfo Russo, Donal O’Connell, Chia-Hsien
Shen, Mikhail Solon, Jan Steinhoff, Justin Vines, Zahra
Zahraee, and especially Simon Caron-Huot and Gabriele
Veneziano for many helpful comments and discussions. We
thank the U.S. Department of Energy (DOE) for support
under Grant No. DE-SC0009937. J. P. M. is supported by
the U.S. Department of State through a Fulbright scholar-
ship. M. S. R.’s work is funded by the German Research
Foundation (DFG) within the Research Training Group
GRK 2044. We are also grateful to the Mani L. Bhaumik
Institute for Theoretical Physics for generous support.

Note added.—Recently, new calculations [39] confirm that
terms in the 6th post-Newtonian order agree with the results
of Refs. [6,7], but they are inconsistent with the conjecture
of Ref. [12].

[1] P. D. D’Eath, Phys. Rev. D 18, 990 (1978); S. J. Kovacs and
K. S. Thorne, Astrophys. J. 217, 252 (1977); 224, 62 (1978).

[2] D. Amati, M. Ciafaloni, and G. Veneziano, Phys. Lett. B
197, 81 (1987); G. ’t Hooft, Phys. Lett. B 198, 61 (1987); D.
Amati, M. Ciafaloni, and G. Veneziano, Int. J. Mod. Phys. A
03, 1615 (1988); I. J. Muzinich and M. Soldate, Phys. Rev.
D 37, 359 (1988); S. B. Giddings, M. Schmidt-Sommerfeld,
and J. R. Andersen, Phys. Rev. D 82, 104022 (2010).

[3] D. Amati, M. Ciafaloni, and G. Veneziano, Nucl. Phys.
B347, 550 (1990).

[4] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016); 119, 161101
(2017).

[5] Y. Iwasaki, Prog. Theor. Phys. 46, 1587 (1971); Y. Iwasaki,
Lett. Nuovo Cimento 1, 783 (1971); 1, 783 (1971); H.
Okamura, T. Ohta, T. Kimura, and K. Hiida, Prog. Theor.
Phys. 50, 2066 (1973); S. N. Gupta and S. F. Radford, Phys.
Rev. D 19, 1065 (1979); J. F. Donoghue, Phys. Rev. D 50,
3874 (1994); B. R. Holstein and J. F. Donoghue, Phys. Rev.
Lett. 93, 201602 (2004); D. Neill and I. Z. Rothstein, Nucl.
Phys. B877, 177 (2013); V. Vaidya, Phys. Rev. D 91,
024017 (2015); N. E. J. Bjerrum-Bohr, J. F. Donoghue, and
P. Vanhove, J. High Energy Phys. 02 (2014) 111; N. E. J.
Bjerrum-Bohr, P. H. Damgaard, G. Festuccia, L. Planté, and
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