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Under favorable conditions, microscopic phytoplankton cells dwelling in the oceans can divide rapidly
and reach high concentrations, forming blooms that span kilometers and last for weeks. When blooms
collapse, dead cells settle and aggregate into “marine snow” particles, resulting in a large and climatically
important vertical flux of carbon from the ocean surface to its depth, a process known as the “biological
pump.” To date, the formation of marine snow has been modeled as coagulation between spherical particles
driven by gravitational settling and turbulent mixing, characterized by coagulation dynamics that converge
onto time-independent concentrations of aggregates. However, many phytoplankton species are elongated
and how their rodlike shape affects the aggregation process has remained unknown. Here, we study marine
snow formation in a quiescent fluid assuming the constituent particles are elongated and form bundles upon
encounter. We derive the collision kernel between dissimilar rods settling under gravity and discover that
the most frequent collisions occur between the thinnest and thickest bundles, rather than between bundles
of similar size. As a consequence, in the full coagulation model that combines exponential growth with
settling, the thin-thick coupling can lead to statistically stationary states where the concentrations of
aggregates of different size oscillate in time, exhibiting periodic bursts. The bursts are predicted to occur on
the scale of a week and eventually lead to broadening of aggregate size spectra and may thus be highly
relevant for plankton dynamics and the carbon cycle in the ocean.
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Smoluchowski equations of coagulation theory describe
aggregate formation between colliding particles [1,2].
Developed a century ago to quantify coagulation of colloids,
they have since been applied to study the formation of rain
droplets [3,4], gelation of polymers [5], large-scale structures
in the Universe [6], and marine snow particle formation in
the ocean [7]. Collision kernels are the central element of
coagulation theory since they quantify the frequency of
encounters. While many physical mechanisms can lead to
encounters, including diffusion [1,2], gravitational settling
[7], active swimming [8], and turbulence [3,4,7], the corre-
sponding collision kernels have been typically computed
only for spherical particles, neglecting the effect of different
particle shapes.
Here, we study formation of marine snow by submilli-

metric elongated phytoplankton, which is key to under-
standing the ocean’s carbon cycle [9]. Under favorable
conditions, phytoplankton cells dwelling in the ocean can
divide rapidly, forming blooms that can span tens of
kilometers and last for weeks. When blooms collapse,

dead cells settle and aggregate into particles termed marine
snow, whose settling establishes a vertical flux of carbon
from the ocean surface to its depth—the ocean’s “biological
pump” [10]. Models to date have considered the constituent
particles of marine snow to be spherical and have identified
gravitational settling and turbulence as the main drivers
of the aggregation process [7]. However, many phytoplank-
ton species are elongated, often with large aspect ratios
[11]. For example, filaments of Skeletonema costatum or
Trichodesmium are typically several micrometers wide and
hundreds of micrometers long. Their settling speed reaches
up to a hundred micrometers per second, keeping the
Reynolds number small (< 0.1) and the Péclet number large
(> 104). Additionally, upon encounters in thewater column,
filaments of Trichodesmium can form bundles of filaments
arranged in parallel, called “tufts” [12], essentially realizing a
collisionmodel in which thin rods form thicker ones. During
blooms, the concentration of individual cells reaches thou-
sands of cells per milliliter [13], but the relatively small
volume fractions (< 10−5) justify coagulation models based
on binary collisions. Yet, the effect of the elongation of
individual filaments and their tendency to form bundles on
the magnitude and dynamics of marine snow formation has
remained unknown.
We have recently derived the collision kernel for identical,

randomly oriented rods settling under gravity [14]. Here, we
first extend these results to the case of dissimilar rods,
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which can differ between each other by density, length, or
aspect ratio. Motivated by marine snow formation between
elongated phytoplantkon filaments, we then apply the kernel
to study coagulation of elongated particles in a quiescent
fluid. Assuming filaments form bundles upon encounter, we
discover a strong coupling between the thinnest and thickest
bundles, rather than between bundles of similar size. By
contrast, models based on spherical particles predict strong
coupling between aggregates of similar size. In the full
Smoluchowski model for coagulation that combines expo-
nential growth of cells with settling, this thin-thick coupling
leads to statistically stationary states where the concentra-
tions of aggregates of different size oscillate in time [15,16],
characterized by periodic bursts occurring on the scale of a
week. The presence of bursts in the coagulation of rods is in
stark contrast to time-independent coagulation predicted by
models based on spherical particles.
In a quiescent fluid, the settling velocity of an elongated

ellipsoid (“rod” or “filament”) pointing along the unit
vector p is [17]

uðpÞ ¼ 1

8πμl
ðβ0I þ β1ppÞ · f ; ð1Þ

where I is the identity matrix, l is the rod length, μ is the
fluid’s dynamic viscosity, and the gravity force is
f ¼ ΔρVrodg, where Vrod is the volume of the rod, g is
the gravitational acceleration, and Δρ is the density differ-
ence between the rod and the fluid. The dimensionless
quantities β0 and β1 are functions of the rod’s aspect ratio A,
given by (A > 1) [17],

β0 ¼ A2=ðA2 − 1Þ þ ð2A3 − 3AÞξþ; ð2aÞ

β1 ¼ −3A2=ðA2 − 1Þ þ 2Aξþ þ ðA − 2A3Þξ−; ð2bÞ

where ξ� ¼ ln½A� ðA2 − 1Þ1=2�=ðA2 − 1Þ3=2. Equation (1)
predicts that a rod’s settling velocity varies with its
orientation. For an ensemble of identical, randomly dis-
tributed and randomly oriented rods each settling according
to Eq. (1), the collision kernel reads [14]

Γidentical
rods ¼ lβ1ΔρVrodg=ð16AμÞ: ð3Þ

Below, we generalize Eq. (3) to the case of two ensembles
of dissimilar rods, which we refer to as type I and II,
characterized by the two triplets of parameters ðΔρ1; l1; A1Þ
and ðΔρ2; l2; A2Þ, respectively. We expand the kernel as

Γrods ¼ Γ0
rods þ Γ1

rods þ � � � ; ð4Þ

where Γ0
rods is the “perfect-rod” limit of thin rods, Γ1

rods is
the finite-width contribution of the order OðA−1Þ, etc.
Neglecting terms of order OðA−2Þ, we next find a
closed-form formula for Γ0

rods and provide an integral
formula for Γ1

rods that can readily be computed numerically.
To find Γrods ≈ Γ0

rods þ Γ1
rods, we first compute the colli-

sion kernel Γp1p2 between two subensembles: subensemble
I of rods of type I oriented parallel to arbitrary direction p1
and subensemble II of rods of type II oriented parallel to
arbitrary direction p2 [Fig. 1(a)]. Averaging Γp1p2 over all
orientations p1 and p2 yields Γrods. We focus on the
subensemble I and a single “target rod” from the
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FIG. 1. We find the collision kernel Γrods between two ensembles of randomly distributed and randomly oriented dissimilar rods of
type I and II settling in a quiescent fluid. The two types can differ by density offset, length, or aspect ratio. (a) We first compute the
collision kernel Γp1p2 between two subensembles of rods of the two types oriented parallel to two arbitrary directions p1 and p2;
averaging Γp1p2 over p1 and p2 yields Γrods. Shown is the subensemble I (blue) oriented along p1 and a single target rod (red) from the
subensemble II oriented along p2. The relative velocity between the type-I subensemble and the target is Δu12 and their collision cross
section is determined by the projections of the rods onto the collision plane (purple plane) perpendicular to Δu12. The green plane is
spanned by Δu12 and p2. (b) For perfect rods (A → ∞), Γp1p2 ¼ l1l2jðp1 × p2Þ · Δu12j, which is the area swept by the parallelogram
(blue broken line) formed by the projections of the rods onto the collision plane. (c) For rods of finite width, approximated as cylinders,
the collision cross section has an octagonal shape (blue broken line). (d) We use Γrods to study coagulation dynamics of rods in a
quiescent fluid and contrast it with coagulation of equal-volume spheres under differential settling and turbulence. For rods, aggregate
i ¼ 1 is a filament of length l and aspect ratio A. Aggregate i > 1 has the same length li ¼ l but smaller aspect ratio, Ai ¼ Ai−1=2,
representing filaments that form bundles upon collision. For spheres, aggregate i ¼ 1 is a sphere with radius r, aggregate i > 1 is a
sphere with radius ri ¼ ri1=3.
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subensemble II [blue and red rods in Fig. 1(a), respec-
tively]. The relative velocity between the type-I subensem-
ble and the target rod is Δu12 and Γp1p2 is then the area
swept out by the corresponding collision cross section. For
perfect rods, the collision cross section is the parallelogram
formed by the projections of p1 and p2 onto the plane
perpendicular to Δu12 [Fig. 1(b)]. Thus, Γ0

p1p2 is given by
the triple product

Γ0
p1p2 ¼ l1l2jðp1 × p2Þ · Δu12j: ð5Þ

Averaging over p1 and p2 gives [18]

Γ0
rods ¼ Γidentical

rods
A1

4

β0ðA1Þ
β1ðA1Þ

flj1 − fΔρfβf2wj; ð6Þ

where Γidentical
rods is computed using Eq. (3) with parameters

ðΔρ1; l1; A1Þ and the density and shape mismatch factors
are fΔρ ¼ Δρ2=Δρ1, fβ ¼ β0ðA2Þ=β0ðA1Þ, fl ¼ l2=l1, and
fw ¼ l2A1=ðl1A2Þ. For rods of finite width, the collision
cross section has an octagonal shape [Fig. 1(c)] and Γ1

rods
must be evaluated numerically [18].
Motivated by marine snow formation by elongated

phytoplankton, we insert the collision kernel Γrods in the
Smoluchowski coagulation equation to study aggregation
of filaments in a quiescent fluid. We take an individual
phytoplankton cell to be a filament of length l and aspect
ratio A [Fig. 1(d)]. Upon collisions, filaments form bundles
and we denote by ci the concentration of i bundles, i.e.,
bundles containing i filaments. We assume that all fila-
ments are parallel to each other in a bundle, the length of an
i bundle is li ¼ l, the same as the length of an individual
filament, and the aspect ratio is Ai ¼ Ai−1=2. This choice
represents a maximum-overlap collision model in which,
upon encounter, filaments maximize overlap with each
other—in particular, a collision between an i bundle and a j
bundle results in a thick (iþ j) bundle of length l and
aspect ratio Aðiþ jÞ−1=2. All bundles are taken to have the

same density offset Δρ and are assumed to be randomly
oriented. The bundle concentrations evolve according to
the Smoluchowski equation,

_c1 ¼ αc1 − c1
XN

i¼1

Γ1ici − c1w1=z;

_ci ¼ −ci
XN

j¼1

Γijcj þ
1

2

Xi−1

j¼1

Γji−jcjci−j − ciwi=z;

ð7Þ

where Γij is the kernel Γrods evaluated using Eq. (4) with the
parameter triplets ðΔρ; l; AiÞ, ðΔρ; l; AjÞ, and volume
Vi ¼ iV1, where V1 ¼ πl3=ð6A2Þ. Equation (7) represents
the mean-field evolution of bundle concentrations in a
water column of depth z. Terms proportional to Γij

represent the nonlinear coagulation process mediated
by collisions between bundles. Additionally, individual
filaments (c1) grow at rate α and bundles are removed
from the system at rate wi=z due to settling, where
wi ¼ ðΔρVigÞ=ð8πμlÞ½β0ðAiÞ þ β1ðAiÞ=3� is the z compo-
nent of Eq. (1) averaged over p.
We focus onmodel parameters representative of elongated

phytoplankton, which have typical aspect ratios around
A ¼ 5, with A ¼ 50 being not uncommon [11]. Some
cyanobacteria, such as the bloom-forming Trichodesmium,
live as individual filaments, up to 1 mm long and a few
micrometers wide [19], with aspect ratios reachingA ¼ 100.
Additionally, Trichodesmium forms bundles of filaments
called tufts, essentially realizing the maximum-overlap
collision rule introduced above. In the remainder, we
set the water column depth at z ¼ 100 m, single filament
length at l ¼ 200 μm, aspect ratio at A ¼ 50, and filament
density offset at Δρ ¼ 0.02ρwater ¼ 20 kgm−3, where
ρwater ¼ 1000 kgm−3.
The collision kernel for rods favors interactions between

individual filaments and the thickest bundles in the system.
This thin-thick coupling is strongest in the perfect-rod limit,
as can bee seen from the dependence of Γ0

rods [Eq. (6)] on
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FIG. 2. Comparing the collision kernels for dissimilar rods settling in a quiescent fluid (a)–(c) and spherical particles colliding under
differential settling and turbulence (d)–(f) reveals that rods interact most strongly when their width mismatch is largest, in contrast to
spheres. (a)–(c) The collision kernel for rods Γrods can be approximated by the sum of the contributions due to the perfect-rod limit (Γ0

rods)
and to the rods’ finite width (Γ1

rods); the sum (Γ0
rods þ Γ1

rods) is our estimate of Γrods. (d)–(f) Kernels for spherical particles encountering
each other under differential settling (Γds), turbulence (Γturb), and both of these mechanisms together (Γds þ Γturb). The aggregate size is
represented by the number of individual cells (filaments or spheres) it contains; the volumes of elongated and spherical aggregates of
size i are equal. The density offset Δρ is identical for all aggregates. Parameters are Δρ ¼ 20 kgm−3, μ ¼ 10−3 kgm−1 s−1, A ¼ 50,
l ¼ 200 μm, r ¼ 7.37 μm, and ϵ ¼ 10−6 Wkg−1.
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the two bundle sizes ði; jÞ [Fig. 2(a)]. In particular, Γ0
rods is

largest for i ≈ 1 and j ≈ N, which is a consequence of its
dependence on the square of the width mismatch between
the bundles [Eq. (6)]. The contribution due to the finite-
bundle width Γ1

rods [Fig. 2(b)] was computed numerically
[18]. Γ1

rods also favors thin-thick coupling, although to a
lesser degree than Γ0

rods [Fig. S.2(a) of Supplemental
Material [18] ]. The two contributions add up to the total
kernel Γrods [Fig. 2(c)]. The largest bundles we consider
contain N ¼ 2000 filaments and have effective aspect
ratio A2000 ¼ 1.12.
Before studying the full coagulation dynamics described

by Eq. (7), we compare Γrods with collision kernels for
spherical particles, used classically to model marine snow
formation by either differential settling or turbulence [7].
For differential settling, the collision kernel between
spheres of radii r1 and r2 reads

Γds ¼ πðr1 þ r2Þ2jusphereðr1Þ − usphereðr2Þj; ð8Þ

where we take the spheres to settle according to Stokes’s
law, usphereðrÞ ¼ 2Δρgr2=9μ. In turbulent flow of intensity
ϵ, the collision kernel reads [3,20]

Γturb ¼ 1.3ðr1 þ r2Þ3
ffiffiffiffiffiffiffi
ϵ=ν

p
; ð9Þ

where ν ¼ μ=ρwater is the kinematic viscosity of water. To
compare (Γrods) with (Γds þ Γturb), we take an individual
spherical phytoplankton cell to have the same volume and
density offset as an individual filament described above,
and consider a turbulence intensity ϵ ¼ 10−6 Wkg−1,
characteristic of the ocean’s surface layer [21]. A spherical
aggregate containing i cells has radius ri ¼ ri1=3; when
an i aggregate and a j aggregate collide, they form an
(iþ j) aggregate of radius riþj ¼ rðiþ jÞ1=3. For such
parameters and collision rules, the two kernels and their

sum are shown in Figs. 2(d)–2(f). Comparing Figs. 2(c)
and 2(f), we conclude that coagulation of elongated
phytoplankton in a quiescent fluid is comparable or
stronger than coagulation of spherical phytoplankton
driven by the sum of differential settling and turbulence
[Fig. S.2(c) of Ref. [18] ]. Furthermore, the total kernel for
spheres Γds þ Γturb [Fig. 2(f)] does not exhibit the strong
pairing between the smallest and largest aggregates, in
contrast to the thin-thick coupling of bundles featured by
Γrods [Fig. 2(c) herein and Fig. S.2(c) of Ref. [18] ].
Computing the Smoluchowski dynamics in Eq. (7) for

the two kernels, Γrods and Γds þ Γturb, reveals fundamental
differences in marine snow formation between elongated
and spherical phytoplankton. The most striking difference
is the emergence of statistically stationary periodic bursts in
coagulation by elongated cells [Fig. 3(a)], compared to the
time-independent concentration profiles for spherical cells
[Fig. 3(b)]. The statistically stationary stage is characterized
by the balance between the growth of individual cells
(α ¼ 1 day−1) and the coagulation and settling of all
aggregates. The periodic bursts in coagulation of elongated
cells are a direct consequence of the thin-thick pairing
characterizing Γrods: when sufficiently many thick bundles
develop in the system (ci rises for large i), they momen-
tarily decrease the concentration of individual filaments
(c1) since thick bundles are most efficient at collecting indi-
vidual filaments; because all aggregates settle, depletion of
c1 eventually leads to depletion of thick bundles, creating
oscillatory dynamics. This run-and-chase pattern is akin to
limit cycle solutions in predator-prey dynamics, with thick
aggregates playing the role of predator and thin aggregates
that of prey [22]. In contrast, the coagulation dynamics of
spherical aggregates tend to pair aggregates of similar size,
leading to a local coagulation cascade, whereby similarly
sized aggregates create larger ones without significant
contribution from the interactions between largest and
smallest aggregates. For the parameters we considered,
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FIG. 3. Periodic bursts characterize the statistically stationary concentration profiles of elongated aggregates (a), in stark contrast to
spherical aggregates (b). Results of the simulation of Eq. (7) with the collision kernels Γrods (a) and Γds þ Γturb (b), respectively, for the
same parameters as in Fig. 2. The individual cells i ¼ 1 grow exponentially at rate α ¼ 1 day−1; the initial conditions are
c1ð0Þ ¼ 1 cm−3 and ci>1ð0Þ ¼ 0. (c) Increasing the aspect ratio A with all other parameters fixed shows that the amplitude of bursts
in the stationary stage grows with A, whereas the oscillation period remains nearly constant (inset). (d) The particle size spectra are
broader for rods, a consequence of the thin-thick coupling between aggregates. The inset represents the sedimentation flux αhc1i as a
function of A normalized by the sedimentation flux for spherical particles.
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the bursts occur on the scale of a week and may thus be
relevant for plankton dynamics and the carbon cycle in
the ocean.
Making the rods thinner increases the amplitude of bursts

[Fig. 3(c)], while the corresponding oscillation period
remains approximately constant (inset). This rise in the
oscillations’ amplitude is a direct consequence of the
increase of the relative importance of the perfect-rod kernel
Γ0
rods over the finite-width contribution Γ1

rods, which leads to
stronger thin-thick coupling. More broadly, oscillations in
Smoluchowski-type equations have only recently been
discovered [15,16]. Our results establish that elongated
particles that form bundles are a concrete realization of
such periodic states in the case when the new aggregates
are provided by exponential growth of individual filaments,
as opposed to a constant injection rate [15] or closed
systems in which aggregates undergo disintegration [16].
Additionally, these oscillations lead to the broadening of
particle size spectra [Fig. 3(d)], resulting in states with
relativelymany large bundles, whichmay be a relevant factor
contributing to the observed particle size spectra in the ocean
[23,24]. Finally, since in the steady state the mean total
sedimentation rate is equal to the phytoplankton growth rate
αhc1i, we observe that the sedimentation flux for rods is
larger than for spheres [inset in Fig. 3(d)], by about 30% for
A ¼ 50 and about fivefold for the thinnest rods.
We specifically investigated how the fundamental char-

acteristics of phytoplankton cells affect the oscillatory burst
dynamics [18]. This analysis revealed that increasing the
growth rate α and decreasing the density offset Δρ
increases both the oscillation’s amplitude and frequency
(Fig. S.3 [18]). For example, doubling α and halving Δρ
corresponding to ranges of variation easily expected to
occur in nature increases the oscillation amplitude and
frequency approximately by a factor of 2. Thus, rapidly
dividing and nearly neutrally buoyant elongated phyto-
plankton cells are expected to exhibit stronger, more rapid
burst dynamics.
Our coagulation model builds on several assumptions.

First, we assume all bundles in the volume considered are
randomly oriented. While well-separated rods at low
Reynolds number maintain their orientation as they settle,
thus preserving the initial random orientation, hydrody-
namic interactions might preferentially orient bundles
[25,26]. However, owing to the low volume fraction of
cells in typical blooms conditions (< 10−5), these ordering
effects are quenched by the mixing induced by weak
turbulence [18]. Second, we assume perfect collision
efficiency, reflecting the fact that phytoplankton tend to
become sticky upon dying, often as a result of the excretion
of polymeric substances [27]. Nevertheless, additional
effects, such as hydrodynamic interactions or elasticity
[28], might affect the collision efficiency [4]. If pij is the
collision efficiency between i, j bundles, then the collision
kernel in Eq. (7) must be replaced with pijΓij. In the

simplest case, pij ¼ p, the concentrations are rescaled by a
factor p−1, without otherwise altering the dynamics. Third,
since we focus on the dynamics of rods, the largest bundle
size is chosen such that the largest bundle is still elongated,
rather than oblate. Should the largest bundle size be even
larger, bundle configuration with filaments in parallel to
each other may no longer be optimal from the overlap-
maximization standpoint, and the largest aggregates could
assume a more isotropic arrangement, such as the “puff”
colonies formed by Trichodesmium [12]. Extension of the
model in this case would require calculating collision
kernels between rods and spheres.
To conclude, we have derived the collision kernel for

dissimilar rods settling in a quiescent fluid. We found that
collisions between thin and thick rods are favored, which
leads to markedly different coagulation dynamics than
coagulation of spherical particles. For parameters relevant
to marine snow formation by phytoplankton, we predict
that concentrations of elongated phytoplankton exhibit
periodic bursts on the scale of a week. Such oscillatory
dynamics of elongated phytoplankton is in stark contrast
to the dynamics of spherical cells, which converge on
time-independent concentrations. Our findings indicate
that elongation can drive marine snow formation at rates
comparable to or higher than those predicted for spherical
particles, and that it does so even under quiescent con-
ditions. Finally, the bursts in coagulation of rods are
predicted to occur on the scale of a week and eventually
lead to broadening of aggregate size spectra and may thus
be highly relevant for plankton dynamics and the carbon
cycle in the ocean.
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