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We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous
magnetic moment with all errors systematically controlled. Several ensembles using 2þ 1 flavors of
physical mass Möbius domain-wall fermions, generated by the RBC and UKQCD collaborations, are
employed to take the continuum and infinite volume limits of finite volume lattice QEDþ QCD. We find
aHLbLμ ¼ 7.87ð3.06Þstatð1.77Þsys × 10−10. Our value is consistent with previous model results and leaves

little room for this notoriously difficult hadronic contribution to explain the difference between the standard
model and the BNL experiment.
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Introduction.—The anomalous magnetic moment of the
muon is providing an important test of the standard model.
The current discrepancy between experiment and theory
stands between three and four standard deviations. An
ongoing experiment at Fermilab (E989) and one planned at
J-PARC (E34) aim to reduce the uncertainty of the BNL
E821 value [1] by a factor of four, and similar efforts are
underway on the theory side [2–31]. A key part of the latter
is to compute the hadronic light-by-light (HLbL) contri-
bution from first principles using lattice QCD [32–38].
Such a calculation, with all errors under control, is
crucial to interpret the anticipated improved experimental
results [39,40].
The magnetic moment is an intrinsic property of a spin-

1=2 particle, and is defined through its interaction with an
external magnetic field B, Hint ¼ −μ · B. Here

μ ¼ −g
e
2m

S; ð1Þ

where S is the particle’s spin, q and m are the electric
charge and mass, respectively, and g is the Landé g factor.
The Dirac equation predicts that g ¼ 2, exactly, so any

difference from 2 must arise from interactions. Lorentz and
gauge symmetries tightly constrain the form of the inter-
actions,

hμðp0ÞjJνð0ÞjμðpÞi

¼ −eūðp0Þ
�
F1ðq2Þγν þ i

F2ðq2Þ
4m

½γν; γρ�qρ
�
uðpÞ; ð2Þ

where Jν is the electromagnetic current, and F1 and F2 are
form factors, giving the charge and magnetic moment at
zero momentum transfer [q2 ¼ ðp0 − pÞ2 ¼ 0], or static
limit. uðpÞ and ūðpÞ are Dirac spinors. The anomalous part
of the magnetic moment is given by F2ð0Þ alone, and is
known as the anomaly,

aμ ≡ ðg − 2Þ=2 ¼ F2ð0Þ: ð3Þ

The desired matrix element in (2) is extracted in quantum
field theory from a correlation function of fields as depicted
in the Feynman diagrams shown in Fig. 1. Here we work in
coordinate (Euclidean) space and use lattice QCD for the
hadronic part which is intrinsically nonperturbative. QED is
treated using the same discrete, finite, lattice as used for the
hadronic part, while we remove the spatial zero modes of
the photon propagator. This method is called QEDL [41]. It
is perturbative with respect to QED, i.e, only diagrams
where the hadronic part is connected to the muon by three
photons enter the calculation.
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QEDL method.—Here the muon, photons, quarks, and
gluons are treated on a finite, discrete lattice. The method is
described in detail in Ref. [33], and the diagrams to be
computed are shown in Figs. 2 and 3. It is still not possible
to do all of the sums over coordinate space vertices exactly
with currently available compute resources. Therefore we
resort to a hybrid method where two of the vertices on the
hadronic loop(s) are summed stochastically: point source
propagators from coordinates x and y are computed, and
their sink points are contracted at the third internal vertex z
and the external vertex xop. Since the propagators are
calculated to all sink points, z and xop can be summed over
the entire volume. The sums over vertices x and y are then
done stochastically by computing many [O(1000)] random
pairs of point source propagators. To do the sampling
efficiently, the pairs are chosen with an empirical distri-
bution [42] designed to frequently probe the summand
where it is large, less frequently where it is small. Since
QCD has a mass gap, we know the hadronic loop is
exponentially suppressed according to the distance between
any pair of vertices, including jx − yj. As we will see, the
main contribution comes from distances less than about
1 fm. The muon line and photons are computed efficiently
using fast Fourier transforms; however, because they must
be calculated many times, the cost is not negligible.
Two additional, but related, parts of the method bear

mentioning. First, the form dictated by the right-hand side
of Eq. (2) suggests the limit q → 0 is unhelpful since the
desired F2 term is multiplied by 0. Second, in our
Monte Carlo lattice QCD calculation the error on the F2

contribution blows up in this limit. The former is avoided by
evaluating the first moment with respect to xop at the external
vertex and noticing that an induced extra term vanishes
exponentially in the infinite volume limit [33]. This moment
method allows the direct calculation of the correlation
function at q ¼ 0, and hence F2ð0Þ. To deal with the second
issue, we first recall that it is the Ward identity that
guarantees the unwanted term to vanish in the moment
method. We thus enforce the Ward identity exactly on a
configuration-by-configuration basis [33], i.e., before aver-
aging over gauge fields by inserting the external photon at all
possible locations on the quark loop in Fig. 2. This makes the
factor of q in Eq. (2) exact for each measurement and not just
in the average and reduces the error on F2ð0Þ significantly.
Implementing the above techniques produces an order O
(1000)-fold improvement in the statistical error over the
original nonperturbative QED method used to compute the
hadronic light-by-light scattering contribution [32].
The quark-disconnected diagrams that occur at Oðα3Þ

are shown Fig. 3. All but the upper-leftmost diagram vanish
in the SU(3) flavor limit and are suppressed by powers of
mu;d −ms, depending on the number of quark loops with a
single photon attached. For now we ignore them and
concentrate on the leading disconnected diagram which
is computed with a method [34] similar to the one described
in the first part of this section. To ensure the loops are
connected by gluons, explicit vacuum subtraction is
required. However, in the leading diagram the moment
at xop implies the left-hand loop in Fig. 3 vanishes due to
parity symmetry, and the vacuum subtraction is done to
reduce noise.
As for the connected case, two point sources (at y and z

in Fig. 3) are chosen randomly, and the sink points (at x and
xop in Fig. 3) are summed over. We compute M (usually

FIG. 1. Leading contributions from hadronic light-by-light
scattering to the muon anomaly. The shaded circles represent
quark loops containing QCD interactions to all orders. Horizontal
lines represent muons. Quark-connected (left) and disconnected
(right) diagrams are shown. Ellipsis denote diagrams obtained by
permuting the photon contractions with the muons and diagrams
with three and four quark loops with photon couplings
(See Fig. 3).

FIG. 2. Connected diagrams. Sums over x and y are computed
stochastically. The third internal vertex z and the external vertex
xop are summed over exactly. The sums on the muon line are done
exactly using fast Fourier transforms. Strong interactions to all
orders are not shown.

FIG. 3. Disconnected diagrams contributing to the muon
anomaly. The top leftmost is the leading one, and does not
vanish in the SU(3) flavor limit. Strong interactions to all orders,
including gluons connecting the quark loops, are not shown.
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M ¼ 1024) point source propagators for each configura-
tion. All M2 combinations are used to perform the
stochastic sum over y − z. This “M2 trick” [33,34] is
crucial to bring the statistical fluctuations of the discon-
nected diagram under control (see Section B of the
Supplemental Material [43] for more details).
Lattice setup.—The simulation parameters are given in

Table I. All particles have their physical masses (isospin
breaking for the up and down quark masses is not included).
The discrete Dirac operator is known as the (Möbius)
domain wall fermion [(M)DWF)] operator. Similarly the
discrete gluon action is given by the plaquette plus rectangle
Iwasaki gauge action. Additionally, three ensembles with
larger lattice spacing employ the dislocation-suppressing-
determinant-ratio (DSDR) to soften explicit chiral symmetry
breaking effects for MDWFs [44]. We use all mode
averaging [45] and multigrid Lanczos [46] techniques to
speed up the fermion propagator generation.
The muons and photons take discrete free-field forms.

The muons are DWFs with infinite size in the extra fifth
dimension, and the photons are noncompact in the
Feynman gauge. In the latter all modes with q ¼ 0 are
dropped, a finite volume formulation of QED known as
QEDL [41].
Results.—Before moving to the hadronic case, the

method was tested in pure QED [33]. Results for several
lattice spacings and box sizes are shown in Fig. 4. The
systematic uncertainties are large, but under control. Note
that the finite volume errors are polynomial in 1=L and not
exponential, due to the photons which interact over a long
range. The data are well fit to the form

aμðL; aÞ ¼ aμ

�
1 −

b2
ðmμLÞ2

þ b3
ðmμLÞ3

�

× ð1 − c1ðmμaÞ2 þ c2ðmμaÞ4Þ: ð4Þ
The continuum and infinite volume limit is F2ð0Þ ¼
46.9ð2Þstat × 10−10 for the case where the lepton mass in
the loop is the same as the muon mass, which is quite

consistent with the well-known perturbative value [48],
46.5 × 10−10.
Our physical point calculation [34] started on the

483, a−1 ¼ 1.730 GeV, Iwasaki ensemble listed in the
first column of Table I, for which we found aconμ ¼
11.60ð0.96Þstat × 10−10, adisconμ ¼ −6.25ð0.80Þstat × 10−10,
and atotμ ¼ 5.35ð1.35Þstat × 10−10 for the connected, leading
disconnected, and total HLbL contributions to the
muon anomaly, respectively. The errors quoted are purely
statistical. We have since improved the statistics on the
leading disconnected diagram with measurements on 59
additional configurations, and the contribution becomes
−6.15ð55Þ × 10−10. Since then we have computed on
several additional ensembles in order to take the continuum
and infinite volume limits (see Tab. I).
The results are displayed in Fig. 5 along with curves

obtained with the following equation:

aμðL; aI; aDÞ ¼ aμ

�
1 −

b2
ðmμLÞ2

− cI1ðaI GeVÞ2

− cD1 ðaDGeVÞ2 þ cD2 ðaDGeVÞ4
�

ð5Þ

where aI, aD represent the lattice spacings for the Iwasaki
and I-DSDR ensembles, respectively. For the Iwasaki
ensembles, we define the variable aD to be zero and vice
versa. Therefore the lattice spacing is always equal to
a ¼ aI þ aD. We allow different a2 coefficients for the
Iwasaki and I-DSDR ensembles as the gauge actions are
different. The lattice spacings for the I-DSDR ensembles
are not small enough to allow us to ignore the a4 effects,
and therefore we include them in the fit. As we only have
two lattice spacings for the I-DSDR ensembles, with both
a2 and a4 effects unknown, we cannot extrapolate to the
continuum just with the I-DSDR ensembles. Therefore,
based on this fit form, the continuum limit is obtained from
the two Iwasaki ensembles, and the I-DSDR ensembles are
used to obtain the volume dependence only. In particular,

TABLE I. 2þ 1 flavors of MDWF gauge field ensembles
generated by the RBC and UKQCD collaborations [47]. The
lattice spacing a, spatial extent L, extra fifth dimension size Ls,
muon pion mass mπ , and number of QCD configuration used for
the connected and the disconnected diagrams.

48I 64I 24D 32D 48D 32D fine

a−1 (GeV) 1.730 2.359 1.015 1.015 1.015 1.378
a (fm) 0.114 0.084 0.194 0.194 0.194 0.143
L (fm) 5.47 5.38 4.67 6.22 9.33 4.58
Ls 48 64 24 24 24 32
mπ (MeV) 139 135 142 142 142 144
mμ (MeV) 106 106 106 106 106 106
# meas con 65 43 157 70 8 75
# meas discon 124 105 156 69 0 69

FIG. 4. QED light-by-light scattering contribution from the
muon loop to the muon anomaly. The lattice spacing decreases
from bottom to top. Solid lines are from a fit using Eq. (4).
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the 32Dfine ensemble does not affect the fitted aμ at all. It
only helps to determine the parameter cD2 , which provides
evidence for the size of the potential Oða4Þ systematic
errors. We find for the connected, disconnected, and
total contributions, aconμ ¼23.76ð3.96Þstatð4.88Þsys×10−10,
adisconμ ¼ −16.45ð2.13Þstatð3.99Þsys × 10−10, atotμ ¼
7.47ð4.24Þstatð1.64Þsys × 10−10, respectively. For the total
contribution, we fit the total contribution for each ensem-
ble, which is slightly different from the sum of the fitted
results from the connected and the disconnected parts.
Notice there is a large cancellation between the connected
and disconnected diagrams that persists for a → 0 and
L → ∞, so even though the individual contributions are
relatively well resolved, the total is not. The cancellation is
expected since hadronic light-by-light scattering at long

distance is dominated by the π0 which contributes to both
diagrams, but with opposite sign [36,49,50]. Notice also
that the a2 and 1=L2 corrections are individually large but
also tend to cancel in the sum.
The systematic errors mostly result from the higher order

discretization and finite volume effects which are not
included in the fitting formula Eq. (5). We therefore
estimate the errors through the change of the results after
adding a corresponding term in the fitting formula. For
Oð1=L3Þ, we add another 1=ðmμLÞ3 term with the same
coefficient as the 1=ðmμLÞ2 term. ForOða4Þ effects, we add
an a4 term also for the Iwasaki ensembles with coefficient
similar to the I-DSDR ensembles. For O½a2 logða2Þ�
effects, we multiply the discretization effect terms in
Eq. (5) by ½1 − ðαS=πÞ logða2GeVÞ�. For Oða2=LÞ, we
multiply the discretization effect terms in Eq. (5) by
½1 − 1=ðmμLÞ�. In addition, for the only two contributions
which we have not included in the present HLbL calcu-
lation: (i) strange quark contribution to the connected
diagrams; (ii) subleading disconnected diagrams’ contri-
bution. We have performed lattice calculations with
the QED∞ approach [51] on the 24D ensemble to estimate
the systematic errors. These systematic errors are
added in quadrature and summarized in Table II. In the
Supplemental Material [43], these systematic errors are
discussed in more detail.
While the large relative error on the total is a bit

unsatisfactory, we emphasize that our result represents
an important estimate on the hadronic light-by-light scat-
tering contribution to the muon anomaly, with all system-
atic errors controlled. It appears that this contribution
cannot bring the standard model and the E821 experiment
in agreement.
In fact we can do even a bit better with the data on hand.

As seen in Fig. 6, which shows the cumulative sum of all
contributions up to a given separation of the two sampled
currents in the hadronic loop, the total connected contri-
bution saturates at a distance of about 1 fm for all
ensembles. This suggests the region r≳ 1 fm adds mostly
noise and little signal, and the situation gets worse in the

FIG. 5. Infinite volume extrapolation. Connected (top), dis-
connected (middle), and total (bottom). We have use the hybrid
method to calculate the continuum limit for the connected
contribution.

TABLE II. Central value and various systematic errors. Num-
bers in parentheses are statistical error for the corresponding
values.

con discon tot

aμ 23.76(3.96) −16.45ð2.13Þ 7.47(4.24)
sys Oð1=L3Þ 2.34(0.41) 1.72(0.32) 0.83(0.56)
sys Oða4Þ 0.83(0.53) 0.71(0.28) 0.96(0.94)
sys O½a2 logða2Þ� 0.21(0.18) 0.25(0.09) 0.03(0.17)
sys Oða2=LÞ 4.18(2.37) 3.49(1.37) 0.86(2.20)
sys strange con 0.30 0 0.30
sys subdiscon 0 0.50 0.50
sys all 4.88(2.17) 3.99(1.29) 1.64(1.15)
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limits. A more accurate estimate can be obtained by taking
the continuum limit for the sum up to r ¼ 1 fm, and above
that by taking the contribution from the relatively precise
483 ensemble. We include a systematic error on this long
distance part since it is not extrapolated to a ¼ 0. The
infinite volume limit is taken as before. This hybrid
procedure yields aconμ ¼ 24.16ð2.30Þstatð5.11Þsys × 10−10,
with a statistical error that is roughly 2× smaller and the
additional Oða2Þ systematic error from the hybrid pro-
cedure is only 0.20 × 10−10. Unfortunately a similar pro-
cedure for the disconnected diagram is not reliable, as can
be seen in the lower panel of Fig. 6. The cumulative plots
do not reach plateaus around 1 fm, but instead tend to fall
significantly up to 2 fm, or more. Once the cut moves
beyond 1 fm it is no longer effective. The different behavior
between the two stems from the different sampling strat-
egies used for each [33]. Using the improved connected
result, we find our final result for QEDL,

atotμ ¼ 7.87ð3.06Þstatð1.77Þsys × 10−10; ð6Þ
where the error is mostly statistical. We also include all
systematic errors added in quadrature, including the hybrid

Oða2Þ error of the connected diagram. The systematic
errors are summarized in Table III.
Summary and outlook.—We have presented results for

the hadronic light-by-light scattering contribution to the
muon g − 2 from Lattice QCDþ QED calculations with all
errors under control. Large discretization and finite volume
corrections are apparent but under control, and the value in
the continuum and infinite volume limits is compatible with
previous model and dispersive treatments, albeit with a
large statistical error. Despite the large error, which results
after a large cancellation between quark-connected and
disconnected diagrams, our calculation suggests that light-
by-light scattering can not be behind the approximately 3.7
standard deviation discrepancy between the standard model
and the BNL experiment E821. Future calculations will
reduce the error significantly. The calculations presented
here strengthen the much anticipated test of the standard
model from the new experiments at Fermilab and J-PARC,
with the former planning to announce first results soon.
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