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We study the postinflation dynamics of multifield models involving nonminimal couplings using lattice
simulations to capture significant nonlinear effects like backreaction and rescattering. We measure the
effective equation of state and typical timescales for the onset of thermalization, which could affect the
usual mapping between predictions for primordial perturbation spectra and measurements of anisotropies
in the cosmic microwave background radiation. For large values of the nonminimal coupling constants, we
find efficient particle production that gives rise to nearly instantaneous preheating. Moreover, the strong
single-field attractor behavior that was previously identified persists until the end of preheating, thereby
suppressing typical signatures of multifield models. We therefore find that predictions for primordial
observables in this class of models retain a close match to the latest observations.
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Introduction.—Postinflation reheating plays a critical
role in our understanding of the very early Universe (see
Ref. [1] for a recent review). By the end of the reheating
phase—and before big bang nucleosynthesis (BBN) can
commence [2]—the Universe must achieve a radiation-
dominated equation of state and become filled with (at
least) a thermal bath of standard model particles at an
appropriately high temperature. Although the earliest
stages of reheating can be studied within a linearized
approximation, some of the most critical processes arise
from nonlinear physics, including backreaction and rescat-
tering among the produced particles.
In addition to setting appropriate conditions for BBN, the

reheating phase plays a critical role in comparisons
between inflationary predictions and recent high-precision
measurements of the cosmic microwave background
(CMB). In particular, if there were a prolonged period
after inflation before the Universe attained a radiation-
dominated equation of state (EOS), that would impact the
mapping between perturbations on observationally relevant
length scales and when those scales first crossed outside the
Hubble radius during inflation [3–6]. Residual uncertainty
on the duration of reheating, Nreh, is now comparable to
statistical uncertainties in measurements of CMB spectral

observables. Hence understanding the timescale Nreh is
critical for evaluating observable predictions from infla-
tionary models.
In this Letter we study the nonlinear dynamics of the

early preheating phase of reheating in a well-motivated
class of models. These models include multiple scalar
fields, as typically found in realistic models of high-energy
physics [7,8], and each scalar field ϕ has a nonminimal
coupling to the spacetime Ricci curvature scalar R of the
form ξϕ2R. Such nonminimal couplings are quite generic:
they are induced by quantum corrections for any self-
interacting scalar field in curved spacetime, and they are
required for renormalization [9,10]. Moreover, the dimen-
sionless coupling constants ξ grow with energy scale under
renormalization-group flow, with no UV fixed point [11].
Hence they can attain large values at inflationary energy
scales. Upon transforming to the Einstein frame, such
models feature curved field-space manifolds [12].
Multifield models with nonminimal couplings naturally

yield a plateaulike phase of inflation at large field values,
of the sort most favored by recent observations [13].
During inflation the fields generically evolve within a
single-field attractor, thereby suppressing typical multi-
field effects that could spoil agreement with observations,
such as large primordial non-Gaussianities and isocurva-
ture perturbations [14–16].
Previous work, which studied the onset of preheating

in this class of models semianalytically, identified three
regimes that yielded qualitatively distinct behavior:
ξ≲Oð1Þ, ∼Oð10Þ, and ≳Oð102Þ [17–19]. In this Letter
we significantly expand this work, employing lattice
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simulations to study the complete preheating phase, deep
into the nonlinear regime. We restrict attention to coupled
scalar fields, and neglect the production of standard model
particles such as fermions or gauge fields [20–33].
Nonetheless, we are able to analyze the typical timescales
required for the Universe to achieve a radiation-dominated
EOS, for the produced particles to backreact on the inflaton
condensate, ultimately draining away its energy, and for
rescattering among the particles to yield a thermal spec-
trum. For large couplings, ξ≳ 102, of the sort encountered
in Higgs inflation [34], we find very efficient preheating,
typically completing within the first two e-folds after
the end of inflation, thereby protecting the close match
between predictions for primordial observables and the
latest CMB measurements.
Model.—In the Jordan frame, the nonminimal coupling

between the N scalar fields and the spacetime Ricci scalar
R̃ remains explicit in the action through the term fðϕIÞR̃.
Upon rescaling g̃μνðxÞ → gμνðxÞ ¼ Ω2ðxÞg̃μνðxÞ, with
Ω2 ¼ 2fðϕIÞ=M2

pl, we transform the action into the

Einstein frame. (Here Mpl ≡ 1=
ffiffiffiffiffiffiffiffiffi

8πG
p ¼ 2.43 × 1018 GeV

is the reduced Planck mass.) The Einstein-frame potential is
stretched by the conformal factor, VðϕIÞ ¼ ṼðϕIÞ=Ω4,
compared to the Jordan-frame potential ṼðϕIÞ. Taking
canonical scalar fields in the Jordan frame, the nonminimal
couplings induce a curved field-space manifold in the
Einstein frame, with field-space metric given by GIJðϕKÞ ¼
½M2

pl=ð2fÞ�fδIJ þ 3f;If;J=fg [12]. The equation of motion
for the fields in the Einstein frame is then

□ϕI þ gμνΓI
JK∂μϕ

J∂νϕ
K − GIJV;J ¼ 0; ð1Þ

where ΓI
JKðϕLÞ is the Christoffel symbol constructed from

GIJ. We consider an unperturbed, spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) spacetime metric, so
the Einstein field equations yield H2ðtÞ ¼ ρtotal=ð3M2

plÞ,
where ρtotal is the total energy density of the system,
HðtÞ≡ _a=a, and overdots denote derivatives with respect
to cosmic time.
We consider two-field models, ϕI ¼ fϕ; χg, with

fðϕIÞ ¼ 1

2
½M2

pl þ ξϕϕ
2 þ ξχχ

2�;

ṼðϕIÞ ¼ λϕ
4
ϕ4 þ g

2
ϕ2χ2 þ λχ

4
χ4: ð2Þ

The topography of the Einstein-frame potential generically
includes “ridges” and “valleys” along certain directions
χ=ϕ ¼ const. For non-fine-tuned parameters, the fields
quickly fall to a local minimum (valley) of the potential,
and the background dynamics obey a strong “single-field
attractor” [15–17]. For symmetric couplings, with ξϕ ¼ ξχ
and λϕ ¼ g ¼ λχ , any initial angular motion within field
space damps out within a few e-folds after the start of

inflation, and the system flows toward the minimum of the
potential along a single-field trajectory [35]. Within a
single-field attractor, the predictions for the spectral index
ns, the tensor-to-scalar ratio r, the running α ¼ dns=d ln k,
primoridal non-Gaussianities fNL, and isocurvature pertur-
bations βiso remain consistent with the latest observations
across large regions of phase space and parameter space
[15–17].
Field fluctuations in these models are sensitive to the

curvature of the field-space manifold, which is greatest near
the origin. During preheating, as the inflaton condensate
oscillates through zero, the effective mass for the fluctua-
tions δχ receives quasiperiodic “spikes” proportional to a
component of the field-space Riemann tensor. In the limit
ξI ≫ 1, these scale as Rχ

ϕϕχ ∝ ξϕ. These large spikes lead
to sharp violations of the adiabatic condition for those
modes, driving efficient particle production [17–19,36].
Within the single-field attractor, the amplitude of pri-

mordial perturbations scales as ½λϕ=ξ2ϕ�1=2 [15]. Present
constraints on the tensor-to-scalar ratio therefore require
λϕ=ξ2ϕ ≤ 1.4 × 10−8. We fix λϕ=ξ2ϕ ¼ 10−8 and consider
various values for ξχ=ξϕ, λχ=λϕ, and g=λϕ. We consider two
typical cases: (A) ξχ ¼ 0.8ξϕ, g ¼ λϕ, and λχ ¼ 1.25λϕ,
and (B) ξχ ¼ ξϕ and λϕ ¼ g ¼ λχ . For the “generic” case
(A) the single-field attractor lies along χ ¼ 0, while we are
free to choose the same attractor direction for the sym-
metric case (B). Once the ratios of couplings are fixed,
the dynamics of the system change as we vary ξϕ across
≲Oð1Þ;∼Oð10Þ, and ≳Oð102Þ.
Results.—We employ a modified version of Grid and

Bubble Evolver (GABE) [37] to evolve the fields and the
background, according to Eq. (1) and the Friedmann
equation. Whereas the original software was used to
simulate nonminimally coupled degrees of freedom
(d.o.f.) [38], we have modified the code significantly to
allow for a curved field-space metric in both the dynamics
of the fields as well as the initial conditions. We start the
simulations when inflation ends, defined by ϵðtinitÞ ¼ 1

where ϵ≡ − _H=H2; the Hubble scale at this time is Hend.
We use a grid with N ¼ 2563 points and a comoving box
size L ¼ π=Hend so that the longest wavelength in our
spectra corresponds to k ¼ Hend=2. We match the two-
point correlation functions of ϕðtinit;xÞ and χðtinit;xÞ to
corresponding distributions for quantized field fluctuations.
Fourier modes of the quantized fluctuations evolving
during inflation within the single-field attractor may be

parametrized as δϕI
k ¼

ffiffiffiffiffiffi

GII
p

vIkðτÞ=aðτÞ (no sum on I),
where dτ≡ dt=aðtÞ is conformal time [17]. Near the end
of inflation, we use the Wentzel-Kramers-Brillouin (WKB)
approximation to estimate amplitudes jvIkðτinitÞj ¼
½2ΩðIÞðk; τinitÞ�−1=2, where Ω2

ðIÞðτÞ ¼ k2 þ a2ðτÞm2
eff;IðτÞ.

The effective masses m2
eff;I include distinct contributions

from the curvature of the potential and from the curvature
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of the field-space manifold, and are analyzed in detail in
Refs. [17–19]. (Here we neglect contributions from coupled
metric perturbations). The initial spectra of the fields
are subject to a window function that suppresses high-
momentum modes above some UV suppression scale,
kUV ¼ 50Hend.
Figures 1 and 2 show results for case A with ξϕ ¼ 10,

100. In Fig. 1, we plot the evolution of the inflaton
condensate after the end of inflation as calculated in a
linearized treatment (akin to Ref. [19]), and as calculated
from the spatial average hϕi on the lattice. Backreaction of
produced particles—which is absent in linearized analyses—
becomes significant beginning around 2.7 e-folds after the
end of inflation for ξϕ ¼ 10. For ξϕ ¼ 100 backreaction is
strong enough to completely drain the inflaton condensate
within the first 2 e-folds. Figure 2 shows the evolution
of the peak values of the spatial averages hϕi and hχi as
well as the growth of fluctuations, characterized by ϕrms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hϕ2i − hϕi2
p

and χrms ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hχ2i − hχi2
p

. (Growth of field
fluctuations corresponds to particle production [1].)We have
confirmed that the early growth of δϕ and δχ fluctuations in
our lattice simulations closely matches the behavior calcu-
lated via Floquet analysis in Ref. [18]. Beginning around 2.6
e-folds, nonlinear rescattering among the δχ fluctuations
drives rapid growth of the δϕ fluctuations for ξϕ ¼ 10. For
ξϕ ¼ 100 the same effect occurs within the first e-fold.
Backreaction and rescattering generally become significant
at distinct times as one varies couplings [39].
The dynamics of the δϕ and δχ fluctuations vary with

coupling ξϕ, as shown in Fig. 3. For ξϕ ¼ 1, 10 parametric
resonance due to the contribution from the potential to
m2

eff;χ leads to a slow growth of δχ fluctuations; these
eventually rescatter, leading to the growth of δϕ fluctua-
tions and lowering the χrms=ϕrms ratio. For ξϕ ≥ 40 the
“Ricci spike” [17,36] leads to a fast growth of δχ fluctua-
tions. This is seen in Fig. 3 as an early rise of the χrms=ϕrms

ratio. When χrms grows enough it rescatters with δϕ
fluctuations, eventually leading to χrms=ϕrms ∼ 1. The case
of ξϕ ¼ 25 is the most interesting, since it displays several
distinct phases. The initial growth occurs due to adiaba-
ticity violation caused by the Ricci spike. After 1.5 e-folds
the height of the Ricci spike has redshifted, making it
comparable to the potential contribution to the effective
mass, thereby shutting off particle production [17]. When
the Ricci spike redshifts even more, around 2.5 e-folds,
a second stage of parametric resonance commences, due
to the potential term alone. Subsequently, rescattering
enhances the δϕ fluctuations, lowering the χrms=ϕrms ratio.
The situation is qualitatively similar for the symmetric
case (B) [39].
The rapid growth of fluctuations yields an efficient

transfer of energy from the inflaton condensate into
radiative d.o.f. Within the single-field attractor, we may

FIG. 1. Evolution of the inflaton condensate (in units of Mpl)
versus e-foldsN after the end of inflation for case Awith ξϕ ¼ 10,
100, as calculated in linearized analysis (blue, green) and as
computed from the spatial average hϕi on the lattice (red, black).

FIG. 2. Lattice evolution of various fields (in units of Mpl)
versus e-folds N after the end of inflation for case Awith ξϕ ¼ 10

(solid) and ξϕ ¼ 100 (dotted): peak values of the spatial averages
hϕi (blue) and hχi (black); and values of the fluctuations ϕrms
(green) and χrms (red).

FIG. 3. The ratio χrms=ϕrms versus e-folds N after the end of
inflation, for case Awith ξϕ ¼ 1, 10, 25, 40, 55, 70, 85, 100 (red
to blue, respectively).
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approximate the energy density in the inflaton condensate
as [17]

ρbg ≃
1

2
Gϕϕh _ϕi2 þ

λϕM4
plhϕi4

4ðM2
pl þ ξϕhϕi2Þ2

; ð3Þ

where we evaluate Gϕϕ with ϕ → hϕi and χ ∼ 0. Figure 4
shows that across cases A and B the fraction of energy
density in the inflaton condensate falls sharply within the
first few e-folds after the end of inflation; for ξϕ ≥ 100,
virtually all of the energy density has been transferred out
of the inflaton condensate within the first N ¼ 1.5 e-folds.
The rapid transfer of energy to radiative d.o.f. is similarly

reflected in Fig. 5, which shows the evolution of the EOS,
w ¼ ptotal=ρtotal, where ρtotal and ptotal are the total energy
density and pressure for the system, respectively. In this
case, the system approaches w ¼ 1=3 rapidly for small
couplings ξϕ ∼Oð1Þ, because in that regime the Einstein-
frame potential for the inflaton approximates a quartic
form, so that even the condensate’s oscillations correspond

to w ≃ 1=3 [17]. As ξϕ increases, the Einstein-frame
potential for ϕ approaches a quadratic form, for which
the condensate’s oscillations behave like w ≃ 0 [17], but in
that case, the stronger coupling yields more efficient
particle production, so that the system eventually becomes
dominated by radiative d.o.f. For ξϕ ¼ 100, we find a
transient phase with a stiff EOS, w > 1=3, which likely
arises because typical momenta for the fluctuations are
comparable tomeff;I , and the contributions to ρtotal and ptotal

from kinetic and spatial-gradient terms are weighted by
components of GIJ, which are significant for ξϕ ≫ 1. At
later times, as meff;I → 0, the system relaxes to a gas of
massless particles with w ¼ 1=3. Across a wide range of
couplings for this family of models, we therefore find that
the Universe rapidly achieves a radiation-dominated EOS
within Nrad ∼ 2–2.5 e-folds after the end of inflation.
Preheating in α-attractor models with α ¼ Oð1Þ, in con-
trast, can lead to a prolonged period with w ≃ 0 [40],
shifting the pivot scale accordingly and thereby offering a
means to empirically distinguish between such models and
the family we consider here.
The strong rescattering among fluctuations yields an

efficient start to the process of thermalization, by transferring
power between particles of different momenta. In Fig. 6 we
show the spectra in field fluctuations δϕ and δχ for case A
with ξϕ ¼ 10. Although the spectra are dominated at early
times by increased power in distinct resonancebands, by later
times rescattering has flattened out the distributions for both
δϕ and δχ. ByNtherm ¼ 2.8 e-folds after the end of inflation,
both fields have attained a spectrum consistentwith a thermal
distribution, jδϕI

kj2 ∝ ½kðexp½k=T� − 1Þ�−1, at a temperature
Treh ∼OðHendÞ. We find comparable behavior across cases
A and B for ξϕ ≥ 1 [39].
The rapid thermalization means that the system reaches

the adiabatic limit soon after the end of inflation. We denote
Nad ¼ min½Nbg; Ntherm�, where Nbg is the time by which

FIG. 5. Averaged effective equation of state hwi for
ξϕ ¼ 1, 10, 100 and the two representative cases, generic (A)
and symmetric (B).

FIG. 6. Spectra for the fluctuations δϕ (dashed) and δχ (solid)
versus k=Hend, where k is comoving wave number, for case A
with ξϕ ¼ 10 at N ≃ 2, 2.4, 2.65, 2.8, 2.9 e-folds after the end
of inflation (purple, orange, blue, red, green, respectively). The
black-dotted curve shows a thermal spectrum.

FIG. 4. Fraction of energy density that has left the inflaton
condensateversuse-foldsN after the endof inflation for thegeneric
case (A) and the symmetric case (B) with ξϕ ¼ 1, 10, 100.
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super-Hubble coherence of the inflaton condensate is lost,
indicated by ϕrms > hϕi. Any significant turning of the
system within the field space between the end of inflation
and Nad could amplify non-Gaussianities and isocurvature
perturbations, thereby threatening the close agreement
between predictions in these models and measurements
of the CMB [41–44]. In Fig. 7, we plot ω=H across cases
of interest, where ω ¼ jωIj is the covariant turn rate [45].
Even as the Hubble rate falls over time, we nonetheless
find ω=H < 0.1 through Nad, indicating minimal turning of
the system within field space.
Our late-time results were unchanged as we varied the

initial UV suppression scale kUV ¼ bHend between b ¼ 25,
50, and 100, and the number of grid points between 1283,
2563 and 5123. We discuss this and related numerical
convergence tests in Ref. [39].
Conclusions.—Multifield models of inflation with non-

minimal couplings generically yield predictions for pri-
mordial observables in close agreement with the latest
observations, deriving from the strong single-field attractor
behavior of these models [15–17]. Throughout the cases we
have examined and across parameter space, we find that
this single-field attractor behavior remains robust until the
system reaches the adiabatic limit after inflation, with no
significant turning in field space even in the midst of
strongly nonlinear dynamics.
Preheating in this class of models is efficient, draining

the energy density from the inflaton condensate within
Nbg ≲ 1.5 e-folds in the limit of strong couplings, ξI ∼ 100.
The system typically reaches a radiation-dominated equa-
tion of state within Nrad ≲ 2.5, while rescattering yields a
rapid onset of thermalization within Ntherm ≲ 3, thereby
fulfilling several of the most critical requirements of the
reheating phase. We defer to future work such questions as
possible impact of coupled metric perturbations on the fully

nonlinear preheating dynamics, and the coupling of the
scalar fields ϕ and χ to standard model particles.
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