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We explore the sensitivity of photon-beam experiments to axionlike particles (ALPs) with QCD-scale
masses whose dominant coupling to the standard model is either to photons or gluons. We introduce a novel
data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux
when considering coherent Primakoff production off a nuclear target, and show that data collected by the
PRIMEX experiment in 2004 could improve the sensitivity to ALPs with 0.03 ≲ma ≲ 0.3 GeV by an order
of magnitude. Furthermore, we explore the potential sensitivity of running the GLUEX experiment with a
nuclear target and its planned PRIMEX -like calorimeter. For the case where the dominant coupling is to
gluons, we study photoproduction for the first time, and predict the future sensitivity of the GLUEX
experiment using its nominal proton target. Finally, we set world-leading limits for both the ALP-gluon
coupling and the ALP-photon coupling based on public mass plots.
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Axionlike particles (ALPs) are hypothetical pseudosca-
lars found in many proposed extensions to the standard
model (SM), since they naturally address the StrongCP [1–
4] and Hierarchy problems [5]. Furthermore, ALPs may
explain the muon magnetic moment anomaly [6,7], and
could connect SM particles to dark matter by providing a
portal [8–11]. The couplings of ALPs to the SM are highly
suppressed at low energies by a large cutoff scale Λ;
however, since ALPs, a, are pseudo-Nambu-Goldstone
bosons, their mass ðmaÞ can be much smaller than the
scale that controls their dynamics, i.e., ma ≪ Λ. Recently,
ALPs with MeV-to-GeV scale masses, henceforth QCD
scale, have received considerable interest [7,12–23] (see, in
addition, Refs. [24–28] for recent ALP reviews).
In this Letter, we explore the discovery potential of

photon-beam experiments for ALPs with QCD-scale
masses. Specifically, we consider two cases: ALPs whose
dominant coupling to SM particles is to photons or to
gluons. For the former, the best sensitivity involves
coherent Primakoff production off a nuclear target (see
Fig. 1, top). While ALP production using the Primakoff
process has been studied before [7,29], our Letter is novel
in three aspects: (i) we introduce a fully data-driven ALP
normalization method, which eliminates the need for

knowledge of nuclear form factors or the photon-beam
flux; (ii) we show that data collected by the PRIMEX
experiment at Jefferson Lab in 2004 using a Pb target
could improve the sensitivity to ALPs with 0.03≲ma ≲
0.3 GeV by an order of magnitude onΛ; in fact, we are able
to set competitive limits from a diphotonmass plot published
in Ref. [30] from a single angular bin; and (iii) we explore
for the first time the potential sensitivity of running the
GLUEX experiment at Jefferson Lab with a nuclear target
and its planned PRIMEX -like calorimeter. For the casewhere
the dominant SM coupling of ALPs is to gluons, we extend
our work in Ref. [31] and study photoproduction for the
first time. The dominant photoproduction mechanism is

FIG. 1. (top) Primakoff production via t-channel photon ex-
change, and (bottom) photoproduction via photon–vector-meson
mixing and t-channel vector-meson exchange.
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photon–vector-meson mixing and t-channel vector-meson
exchange (see Fig. 1, bottom). We obtain the future sensi-
tivity of the GLUEX experiment using its nominal proton
target, and set world-leading limits based on a public
mass plot.
The effective Lagrangian describing the interactions of

ALPs with photons and gluons is

Leff ⊃
cγ
4Λ

aFμνF̃μν −
4παscg

Λ
aGμνG̃μν; ð1Þ

where FμνðGμνÞ is the photon (gluon) field strength tensor
with F̃μν ¼ 1

2
ϵμναβFαβ (G̃μν satisfies a similar expression).

Our approach to studying ALP-hadron interactions follows
Refs. [32–34], and we take the ALP-pseudoscalar mixing,
along with the ALP lifetime and branching fractions,
directly from Ref. [31]. The two scenarios considered in
this Letter correspond to cg ¼ 0, cγ ¼ 1 and cg ¼ 1,
cγ ¼ 0; however, we stress that our results can be gener-
alized to any other set of ALP couplings to the SM particles
(see Ref. [31]).
First, we consider the case where the dominant ALP-SM

coupling is to photons. When a photon beam is incident on
a nuclear target, the production of pseudoscalars—either
the mesons P ¼ π0, η or ALPs—at forward angles is
dominantly via the coherent Primakoff process for
ma;P ≲ 1 GeV. The differential cross section for elastic
coherent Primakoff production from a nucleus, N, is
given by

dσelasticγN→aN

dt
¼ αZ2

NF
2
NðtÞΓa→γγHðmN;ma; s; tÞ; ð2Þ

where t and s are the Mandelstam variables, FN is the
nuclear form factor (see the Supplemental Material [35] and
Refs. [36–38]), Γa→γγ ¼ c2γm3

a=ð64πΛ2Þ is the partial decay
width of the decay a → γγ, and

HðmN;ma;s;tÞ≡128π
m4

N

m3
a

×
m2

atðm2
NþsÞ−m4

am2
N− t½ðs−m2

NÞ2þst�
t2ðs−m2

NÞ2ðt−4m2
NÞ2

:

ð3Þ

For pseudoscalar mesons, the corresponding differential
cross section is obtained by the replacement a → P.
For small values of t (forward angles), where elastic

coherent Primakoff production is dominant, the nuclear
form factor dependence can be canceled by forming the
ratio of the ALP and P differential cross sections as
follows:

dσelasticγN→aN

dt
¼ Γa→γγ

ΓP→γγ

HðmN;ma; s; tÞ
HðmN;mP; s; tÞ

dσelasticγN→PN

dt
: ð4Þ

Therefore, the ALP yield—up to a factor of the model
parameters ðcγ=ΛÞ2—can be determined from the observed
π0 and/or η Primakoff yields, making this a completely
data-driven search. The nuclear form factor does not need
to be known, and the photon flux also cancels using our
approach. A correction must be applied to account for any
mass dependence in the detector efficiency at fixed t and s,
though this should be easy to obtain from simulation given
that the a → γγ decay distribution is known (it must be
uniform in the a rest frame). Finally, we note that
quasielastic ALP Primakoff production can be estimated
using a similar approach; however, this production mecha-
nism is negligible in the ma range considered here (see the
Supplemental Material [35]).
The first run of the PRIMEX experiment was in Hall B at

Jefferson Lab in 2004 [30]. Data were collected on both C
and Pb targets using a 4.9–5.5 GeV photon beam and a
high-resolution multichannel calorimeter, which allowed
PRIMEX to make the most precise measurement to date of
the π0 → γγ decay width. The integrated luminosities were
1.9=pb for C and 0.14=pb for Pb. A follow-up run of
PRIMEX was performed in 2010, which collected 4.3=pb on
C and 6.5=pb on Si, though only preliminary results have
been produced thus far from this data set.
Reference [30] published the diphoton mass spectrum

near the π0 peak for one small forward angular bin from
the C data obtained in the first PRIMEX run (see Fig. 2 of
Ref. [30]). This data corresponds to lab-frame angles
0.02° < θγγ < 0.04° and masses 0.1 < mγγ < 0.17 GeV.
The diphoton efficiency is roughly constant within such
a small angular and mass window; therefore, using the
observed π0 yield in the published peak (≈5100) and the
background yield at each mγγ, we can use Eq. (4) to place
constraints on Λ for cγ ¼ 1 and cg ¼ 0. For example, at
ma ¼ 0.11 GeV the background in a �2σ window is ≈300
giving a rough estimate of the sensitivity to the ALP yield
of ≈2

ffiffiffiffiffiffiffiffi
300

p
. Using Eq. (4) we estimate this corresponds

to Λ ≈ 0.6 TeV, which is comparable to the world-leading
constraint from LEP at this mass [15,39]. In the
Supplemental Material [35], we perform a more rigorous
study of this spectrum, the results of which are shown in
Fig. 2 and confirm that this small fraction of the PRIMEX
data sample provides competitive sensitivity to LEP—and
even gives world-leading constraints at a few masses.
To estimate the sensitivity of each PRIMEX data sample,

i.e., not just the one bin shown in Fig. 2 of Ref. [30], we
need to determine the mass dependence of the efficiency
and to estimate the background versus mγγ in each sample.
A detailed description of this part of the analysis is
provided in the Supplemental Material [35], and briefly
summarized here. We assume that the same selection
criteria applied in Ref. [30] are used for the ALP search
and take the PRIMEX calorimeter acceptance and resolution
from Refs. [45,46]. Furthermore, we assume that the ALP
bump hunt will only use candidates with θγγ < 0.5°, where
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π0 production is dominated by the Primakoff process for all
targets.
Using the known nuclear form factors and Primakoff

differential cross section [47–49], we generate Primakoff π0

Monte Carlo events for the PRIMEX photon-beam energy.
We require that both photons from the π0 → γγ decay are in
the PRIMEX calorimeter fiducial acceptance region [30] and
apply the required smearing to account for resolution. The
width of our Monte Carlo π0 peak is consistent with the
data in Ref. [30]. We then apply the full selection of
Ref. [30] and compare our predicted π0 Primakoff yields to
those of Ref. [30], which are in agreement assuming a
reconstruction efficiency of about 90% per photon. We
assume that this average per-photon efficiency is indepen-
dent of the ALP mass in the search region. In addition, we
discard the low-ma region where the photon clusters begin
to overlap and the acceptance has strong mass dependence.
Lower masses can likely be explored in an analysis of
the actual PRIMEX data with access to a full detector
simulation.
As in any bump hunt, obtaining a data-driven back-

ground estimate is straightforward using the mγγ sidebands
at each ma (see, e.g., Refs. [50,51]). However, estimating
the background without the data is considerably more
difficult, so we adopt a conservative approach. We
considered many possible backgrounds, e.g., γN →
Nωðπ0½γγ�γÞ where one photon is not reconstructed or
the π0 photons are merged into a single cluster, though we
found that no hadronic reactions are capable of contributing

background at a rate comparable to that observed in Fig. 2
of Ref. [30] in the mass range probed by PRIMEX. Thus, we
conclude that the PRIMEX background is dominantly due to
electromagnetic interactions of the photon beam with the
target that produce either additional photons or eþe− pairs.
Figure 2 of Ref. [30] shows the forward-most angular bin
with a nonneglibile production cross section. Given that the
beam backgrounds should decrease moving away from the
beam line, using this angular bin—and assuming a uni-
formly distributed background—provides a conservative
background estimate. We also conservatively assume that
the background density above (below) the mγγ region
shown in Fig. 2 of Ref. [30] takes on the value at the
upper-most (lower-most) bin of the published mγγ spec-
trum. Finally, we scale the beam-induced background,
which is shown for the first C run, by the product of the
target radiation length and the number of photons on target
for other PRIMEX runs.
Our projected sensitivity for each PRIMEX data sample is

shown in Fig. 2. The Pb data from the first PRIMEX run,
which provides the best sensitivity, would be an order of
magnitude better than LEP for 0.03≲ma ≲ 0.3 GeV and
provide world-leading sensitivity up to about 0.5 GeV. In
principle, all PRIMEX runs could be combined, though we
do not explore that possibility here. We stress again that the
PRIMEX Pb data are already on tape, and is well calibrated
and understood. All that is needed is to perform a bump
hunt on the forward-angle data in the region dominated by
Primakoff production. Following the approach we pro-
posed above, the normalization can be done in a purely
data-driven way using the observed π0 Primakoff yield
differentially versus t.
An updated version of the PRIMEX experiment is

currently running in Hall D at Jefferson Lab using the
GLUEX detector with an additional small-angle calorimeter
[52]. This new experiment has the potential to explore
higher masses than PRIMEX due to the higher photon-beam
energy of 11 GeV and the larger acceptance of the GLUEX
forward calorimeter; however, the use of a helium target in
the current run makes it less sensitive than PRIMEX for
ALPs. There are several proposals for future GLUEX
running with heavy nuclear targets [53], so it is interesting
to explore the potential sensitivity to ALPs of such runs.
Specifically, we consider a Pb target here. We take the
GLUEX acceptance, efficiency, and resolution from
Refs. [54,55], and the corresponding values for the
small-angle calorimeter from Ref. [52]. For ma < mη,
we rescale the expected beam background from the
PRIMEX Pb run. There are three additional backgrounds
that contribute to the GLUEX run at higher masses:
Primakoff production of η and η0 mesons, and coherent
nuclear production of γN → Nωðπ0½γγ�γÞ (as described
above). The cross sections for these processes are well
known, making it straightforward to estimate their yields
using Monte Carlo calculations.

FIG. 2. The PRIMEX (blue) and GLUEX (red) projections for the
ALP-photon coupling (cγ ¼ 1, cg ¼ 0) compared to the current
bounds [15,39–41] and projections of NA62, SeaQuest, Belle 2,
SHiP, and FASER [13,42–44]. In addition, a new limit is set (dark
blue shaded regions) using the published mγγ spectrum from one
angular bin of carbon-target PRIMEX data from Fig. 2 of Ref. [30].
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An additional complication arises when projecting the
sensitivity of GLUEX. The GLUEX experiment could
explore regions of ALP parameter space where the ALP
flight distance becomes non-negligible. Using Monte Carlo
calculations, we estimate that the impact on the ALP mass
resolution and acceptance is small provided that its lab-
frame flight distance is ≲30 cm (the length of the nominal
liquid hydrogen target cell). For simplicity, we apply a
fiducial cut on the flight distance at 30 cm, which is
conservative since ALPs that decay after this distance could
still be detected and a detailed study could determine the
appropriate signal shape for each value of Λ. Our estimate
of the projected reach for GLUEX including the PRIMEX -
like calorimeter is shown in Fig. 2. The larger data set
assumes that as much data is collected as is expected in the
full GLUEX proton-target run. The smaller data set corre-
sponds to collecting O (one month) of Pb-target data at the
nominal GLUEX data-taking rate (see the Supplemental
Material [35] and Ref. [56]).
Figure 2 shows that Primakoff production using photon

beams can provide unique sensitivity to ALPs. The Pb data
from PRIMEX, which has been on tape since 2004, could
provide an order of magnitude better sensitivity than LEP
for 0.03≲ma ≲ 0.3 GeV. Running the GLUEX experiment
for a few years with a Pb target and its PRIMEX -like small-
angle calorimeter could explore the remaining para-
meter space down to where future beam-dump experiments
will have sensitivity. Much of this parameter space is
not accessible at any other current or proposed future
experiment.
We now move on to considering the case where the

dominant ALP-SM coupling is to gluons. In this scenario,
nuclear targets do not provide a large advantage since both
the signal and background scale similarly with the number
of nucleons, so we consider the nominal liquid-hydrogen
target and default experimental GLUEX setup, which has
been running for the past few years. When a photon beam is
incident on a proton target, exclusive pseudoscalar pro-
duction is dominantly via photon–vector-meson mixing as
shown in Fig. 1, bottom. In the Supplemental Material [35],
we show that—once both π0 and η photoproduction are
well understood—it is possible to derive a fully data-driven
normalization strategy similar to the one we proposed
above for Primakoff production. As discussed in Ref. [57],
η production at GLUEX energies, while clearly dominantly t
channel, is not yet fully understood. Therefore, we will
adopt a simplified approach below, though we do provide a
complete description of how to implement the fully data-
driven strategy for future searches in the Supplemental
Material [35].
In principle, ALP searches at GLUEX could look for

hadronic final states like a → 3π and a → ηππ; however,
we studied these and found that the mass resolution at
GLUEX makes ALP peaks comparable in width to ω, η0,
ϕ → 3π and η0, f2 → ηππ making it likely that large mass

regions need to be vetoed in such searches. Furthermore,
the sensitivity at higher masses would not be competitive
with b-hadron decays [31]. Therefore, we choose to focus
on the a → γγ decay in the region between the π0 and η
mesons, where its branching fraction is close to unity
and diphoton backgrounds are small. Since a → ππ and
a → π0γ are forbidden by C and CP, respectively, the
a → γγ decay is dominant in all ALP models in most of this
mass region.
For mπ0 < ma < mη, the ALP-gluon coupling can be

replaced by ALP–pseudoscalar-meson mixing by perform-
ing a chiral transformation of the light-quark fields [32–34].
Following Ref. [31], we denote the mixing of the ALP with
the π0 and η as haπ0i and haηi, respectively, and we take
these ma-dependent mixings directly from Ref. [31].
For jtj ≲ 1 GeV2 in this ma region, at fixed s and t the
following approximation is valid toOð1Þ, which is roughly
the same fidelity with which the ALP-pseudoscalar mixing
terms are known:

dσγp→ap

dt
≈
�
fπ
fa

�
2

×

�
jhaπ0ij2dσγp→π0p

dt
þjhaηij2dσγp→ηp

dt

�
; ð5Þ

where fπ and fa ¼ Λ=ð32π2cgÞ are the pion and ALP
decay constants. This approximation works well in this
mass range due to the dominance of the contributions from
π0 or η mixing to the ALP Uð3Þ representation. We adopt
the relevant numerical values from Refs. [58–60], see
Supplemental Material [35] for details.
Reference [57] published the mγγ spectrum, along with

the yields and efficiencies versus t of both the π0 and η
mesons. In the Supplemental Material, we perform a bump
hunt of the mγγ spectrum to obtain upper limits on the ALP
yield at each ma. The expected ALP yield in a small bin of
½s; t� is related to Λ (or fa) using Eq. (5) according to

naðs;tÞ≈
�
fπ
fa

�
2
�
jhaπ0ij2 nπ0ðs; tÞϵðma;s;tÞ

Bðπ0 → γγÞϵðmπ;s; tÞ

þ jhaηij2 nηðs; tÞϵðma;s;tÞ
Bðη→ γγÞϵðmη;s; tÞ

�
Bða→ γγÞ; ð6Þ

where ϵ denotes the product of the detector acceptance and
efficiency. We linearly interpolate the efficiencies given in
Ref. [57] atmπ0 andmη forma, and confirm this approach is
valid to Oð10%Þ using toy Monte Carlo calculations as
described in the Supplemental Material [35] (additionally,
the same ALP lifetime correction is applied here, though
this is a small correction). The total expected ALP yield is
simply the sum of naðs; tÞ over all bins. By comparing the
expected ALP yields to the upper limits obtained from the
bump hunt of the mγγ spectrum, we place constraints on
cg=Λ (see Fig. 3). These limits are the best over most of the
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0.15 < ma < 0.46 GeV region. Finally, we also provide
the expected sensitivity from a 1=fb GLUEX data set, which
is substantially better than any existing limits over most of
this mass region.
In summary, we explored the sensitivity of photon-beam

experiments to ALPs with QCD-scale masses whose
dominant coupling is to either photons or gluons. For
the photon-dominant coupling scenario, we introduced a
novel data-driven method that eliminates the need for
knowledge of nuclear form factors or the photon-beam
flux when considering coherent Primakoff production off
of a nuclear target, and showed that data collected by
PRIMEX in 2004 could improve the sensitivity to ALPs with
0.03≲ma ≲ 0.3 GeV by an order of magnitude. We also
explored the potential sensitivity of running the GLUEX
experiment with a nuclear target. For the case where the
dominant coupling is to gluons, we studied photoproduc-
tion for the first time, and predicted the future sensitivity of
the GLUEX experiment using its nominal proton target. For
both scenarios, we set world-leading limits based on public
mass plots.
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