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We formulate Nielsen’s geometric approach to circuit complexity in the context of two-dimensional
conformal field theories, where series of conformal transformations are interpreted as “unitary circuits”
built from energy-momentum tensor gates. We show that the complexity functional in this setup can be
written as the Polyakov action of two-dimensional gravity or, equivalently, as the geometric action on the
coadjoint orbits of the Virasoro group. This way, we argue that gravity sets the rules for optimal quantum
computation in conformal field theories.
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Introduction and summary.—Information, be it classical
or quantum, is intimately related to geometry. This is
manifest in the field of computational complexity, which,
as shown by Nielsen et al. [1–3], is naturally framed in the
language of differential geometry. The main idea is that
computational costs can be estimated by distances in the
manifold of allowed unitary operations. Therefore, mini-
mizing costs amounts to finding minimal geodesics, and
optimal algorithms are given by a free fall through such
“complexity geometry.” Since Nielsen’s approach is fun-
damentally geometric, it is tempting to expect that it may
have relations with general relativity.
On the other hand, the Anti–de Sitter (AdS)/conformal

field theories (CFT) correspondence [4] assures us that
complexity in CFT, once properly defined, should be
encoded geometrically in Anti–de Sitter spacetimes and
may, in fact, be crucial to fully understand holography [5].
Up to date, we have two holographic proposals for what
“complexity” may be and they usually declare some gravi-
tational notion, such as spacetimevolumes or gravity actions,
to be related to the state complexity; see Refs. [5–14].
However, it is far from obvious how to define complexity
in CFTs. Recent proposals and advances in this direction
include Refs. [11,15–27].
The motivation of our work is to bring these develop-

ments closer to each other and build bridge(s) between
them by developing Nielsen’s geometric approach within
2D CFT. In particular, we focus on a subset of quantum
symmetry gates (generally discussed in Ref. [27]) that are

constructed from the energy-momentum tensor and, in 2D
CFTs, are fully governed by the Virasoro group.
The universality of our setup allows us to express the

complexity action only in terms of the CFT’s central charge
c. We also show that the ambiguity of choosing a metric
on Virasoro circuits is a 1=c effect, and at large c the
complexity action is given by Polyakov’s two-dimensional
gravity [28]. This implies that, in our setup within energy-
momentum gates, gravity governs the rules of optimal
computation.
Since the Polyakov and Liouville actions are directly

related, our results neatly connect to the recent proposal for
path integral complexity [15]. Moreover, it is well known
that Polyakov action is equivalent to the coadjoint orbit
action of the Virasoro group [29]. This connection between
quantum complexity and coadjoint orbit actions is one of
the main results of our work and allows for generalizations
of our story to coherence groups in arbitrary quantum field
theories.
We believe that our approach reintroduces, in a con-

ceptually simple way, important aspects of CFTs which can
set the holographic complexity discussion on a firmer
ground. Crucially, all our building blocks (the energy-
momentum tensors and costs) can be defined on both sides
of the duality, so holographic complexity proposals should
rest on algebraic or geometric relations between them. Last
but not least, our considerations certainly open a new
unexplored path in the field of quantum complexity in
continuous field theories.
Before we begin, we would like to convey a general

“take home” message from our study. The concept of
circuit complexity comes with a quantum computational
package such as universal sets of gates, cost functions etc.
that seem hopeless to define in interacting continuous
QFTs. On the other hand, motivated by AdS=CFT, we
hope that at least in holographic CFTs (strongly interacting
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and with large central charge) complexity can be defined
and may play an important role. What we noticed here is
that, if we restrict to the “most basic universal gates” in
CFTs (energy-momentum tensor is the fundamental object
of CFTs) and require large central charge, geometric
approach to complexity leads to very universal results.
Indeed, not only many of the ambiguities in defining circuit
complexity disappear but the universal answer for Nielsen’s
complexity functional is given by a gravity action (that
plays a crucial role in pure gravity sector of AdS3=CFT2

holography). With our results, we believe that energy
momentum and related symmetry gates should be the
starting point in understanding field theory complexity
also in higher dimensions.
Nielsen complexity and symmetry.—We start by review-

ing the geometric approach to complexity based on
Refs. [1–3] and [27]. The goal is to estimate computational
costs of quantum circuits UðτÞ, which in their most generic
form are defined as

UðτÞ ¼ P⃖ exp

�
−i

Z
τ

0

Hðτ0Þdτ0
�
; ð1Þ

driving us from a given reference state at τ ¼ 0 to a
particular target state at τ. The Hermitian operators HðτÞ
depend on the allowed operations that we have at our
disposal (quantum gates) and P⃖ denotes gate ordering
(earlier τ first).
Nielsen’s attractive approach to estimate the associate

costs is via metrics on the (group) manifold of unitaries. In
this context, complexity becomes the length of the shortest
geodesic between Uð0Þ ¼ 1 and UðτÞ.
More precisely, we can decompose any circuit into

infinitesimal gates UHðτÞ ≡ e−iHðτÞdτ, with HðτÞ living in
the tangent space at point τ. In differential geometry,
metrics are norms on the tangent space, so the most general
Nielsen’s cost is given by

CðτÞ ¼
Z

τ
F ½Hðτ0Þ�dτ0; ð2Þ

whereF is some norm on the tangent space. In general, it is
useful to think about such cost actions as describing a
particle on a group manifold (e.g., sigma model type action
given by length or energy), with associated equations of
motion given by the geodesic equation.
Before defining F , let us expand on the protagonist of

this whole story, which is HðτÞ. We will call HðτÞ “the
instantaneous gate,” since it takes us from UðτÞ to
Uðτ þ dτÞ

Uðτ þ dτÞ ¼ e−iHðτÞdτUðτÞ: ð3Þ

Such instantaneous gates are the “velocities” in the group
manifold. In general, their actual computation involves

infinite sums of nested commutators (see, e.g., Ref. [30]),
and it is impossible to write a closed form suitable for
computing complexity. To make progress, in Ref. [27] one
of us proposed to study submanifolds associated to sym-
metry groups G. In this scenario, gates are unitary repre-
sentations Ug of group elements g, and continuous
protocols UgðτÞ are defined by paths gðτÞ in the group.
The instantaneous gate equation (3) has a homologous
group equation

gðτ þ dτÞ ¼ eQðτÞdτ · gðτÞ; ð4Þ

where g · g0 denotes the group product. The instantaneous
gate is thus a Lie algebra element −iHðτÞ ¼ QðτÞ (in the
appropriate representation). For the mathematically ori-
ented readers, QðτÞ is the adjoint transformation of the
Maurer-Cartan form, known for many Lie groups, includ-
ing the Virasoro group.
Next, we need to define the cost function F which is

nonunique. Nielsen’s proposal [1], in the context of spin
systems, concerns two canonical choices, namely the one-
and two-normsF 1 andF 2, which can be defined as the first
and second moments of the infinitesimal gate in the
maximally mixed state. This definition seems problematic
in the case of continuous systems but, as discussed in
Ref. [27], for symmetry gates this can be circumvented by
replacing the “maximally mixed state” with the actual
density matrix

ρðτÞ≡UðτÞ ρ0U†ðτÞ; ð5Þ

for some reference state ρ0 that can be pure or mixed. Then,
we define the norms as expectation values of the instanta-
neous symmetry gate(s) QðτÞ as

F 1ðτÞ≡ jTr½ ρðτÞQðτÞ�j ¼ jTr½ ρ0Q̃ðτÞ�j;

F 2ðτÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Tr½ ρðτÞQðτÞ2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Tr½ ρ0Q̃ðτÞ2�

q
; ð6Þ

where both QðτÞ and Q̃ðτÞ≡U†ðτÞQðτÞUðτÞ are assumed
to be given in the appropriate representationUg. We remark
that such costs are well defined from spin systems to
interacting quantum field theories. Moreover, they are now
physical quantities, the actual moments of the instanta-
neous rate of change of the state.
Finally, the complexity action (the length) is computed

by Eq. (2) with either F 1 or F 2. As we will see below, this
construction naturally fits into the framework of CFTs.
Circuit complexity in 2D CFTs.—Now we consider the

geometric approach to complexity in arguably the simplest
setup relevant for holography, namely 2D CFTs (see
Ref. [31] for references). We consider computational tasks
in the (symmetry) unitary manifold that is at the core of
every CFT, namely that of the Virasoro group.
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The Virasoro group is the central extension of the group
of diffeomorphisms of the circle DiffþðS1Þ preserving
orientation. Group elements are maps fðσÞ that are 2π-
periodic fðσ þ 2πÞ ¼ fðσÞ þ 2π and invertible f0ðσÞ > 0,
as well as their group product is given by the composition

f · g ¼ f∘g: ð7Þ

In 2D CFT, we have two copies of the Virasoro group that
appear as the transformations of the cylinder light-cone
coordinates. These diffeomorphisms are represented in the
Hilbert space by unitary operators Uf, yielding, e.g., the
well-known transformation of the stress tensor with
Schwarzian derivative (see, e.g., Ref. [31]). Since our
arguments are purely group theoretic, we first focus on a
single copy.
To be precise, Virasoro elements are pairs ðf; αÞ where

f ∈ DiffþðS1Þ and α ∈ R. The product is the composition
of functions and addition of numbers with the Bott cocycle
(see Refs. [32,33] for pedagogical review). In the complex-
ity context, we will not care about these numerical phases
or, in other words, we associate cost zero to the iden-
tity gate.
Following the previous sections, we consider a unitary

CFT circuit build from the Virasoro symmetry gates Uf
(unitary representations of the Virasoro group). Our
Virasoro circuit UðτÞ defines a path fðτ; σÞ in the group
manifold, taking us from a reference state jψRi for
fð0; σÞ ¼ σ to a target state jψTi ¼ Ufðτ;σÞjψRi for
fðτ; σÞ (to be clear: label τ means that for each τ we have
one diffeomorphism fτðσÞ≡ fðτ; σÞ).
The circuit is defined as

UðτÞ ¼ P⃖ exp

�Z
τ

0

Qðτ0Þdτ0
�
; ð8Þ

where the instantaneous gate, that belongs to the Virasoro
Lie algebra, can be expressed in terms of the stress tensor
(see the Supplemental Material [34] for our conventions)

QðτÞ≡
Z

2π

0

dσ
2π

ϵðτ; σÞTðσÞ ¼
X
n∈Z

ϵnðτÞ
�
L−n −

c
24

δn;0

�
;

ð9Þ

where we Fourier expanded ϵðτ; σÞ as well as the stress
tensor on the cylinder in terms of the Virasoro algebra
generators

½Lm; Ln� ¼ ðm − nÞLmþn þ
c
12

mðm2 − 1Þδmþn;0: ð10Þ

The unitarity of our circuit is guaranteed by the condition
ϵ�nðτÞ¼−ϵ−nðτÞ. However, as described in the Supplemental
Material [34], this condition can be extended so that our

circuits give the most general protocols in the CFT vacuum
sector.
To compute the cost function, we need to relate ϵðτ; σÞ

(velocities) to the path fðτ; σÞ itself. This is where the
symmetry becomes crucial. Namely, since the group
product is given by composition, by definition of the
infinitesimal gate (4), we must have ϵ½τ; fðτ; σÞ� ¼
∂τfðτ; σÞ or equivalently

ϵðτ; σÞ ¼ ∂τf(τ; Fðτ; σÞ) ¼ −
∂τFðτ; σÞ
∂σFðτ; σÞ

; ð11Þ

where we introduced the inverse function F½τ; fðτ; σÞ� ¼ σ.
This explicit form of velocities allows us to express
complexity as a functional of the path fðτ; σÞ. From
now on we will denote ∂τf ¼ _f and ∂σf ¼ f0 (and
similarly for F).
As a reference state ρ0 we will take a pure eigenstate of

the CFT, created by a primary operator with (chiral)
dimension h: ρ0 ¼ jhihhj. Since a CFT basis can be
obtained by acting with strings of Ln ’s on jhi, we find
this a natural choice to start with. Employing the Virasoro
algebra (10) and using the transformation law of the stress
tensor, we compute the one norm

F 1ðτÞ ¼
c

24π

Z
2π

0

dσ
_f
f0
ð2a2 þ ff; σgÞ; ð12Þ

where 2a2 ¼ 1
2
½1 − ð24h=cÞ�. Similarly, we can evaluate

the two norm (see the Supplemental Material [34] for the
exact result)

F 2ðτÞ ¼ F 1ðτÞ½1þOð1=cÞ�: ð13Þ

We see that the two choices become equivalent in the
large-c limit, giving hope that some of the nonuniversal
ambiguities of circuit complexity are “washed out” in
holographic CFTs. Note also that the one-norm choice
can be interpreted as the norm of the Berry connection for
the Virasoro group.
This way, our large-c complexity functional for paths

fðτ; σÞ between the identity and a given final transforma-
tion fðτ; σÞ ¼ fðσÞ becomes

C½f�ðτÞ ¼ c
24π

Z
τ

0

dτ0
Z

2π

0

dσ
_f
f0
ð2a2 þ ff; σgÞ: ð14Þ

A simple but meaningful optimal protocol appears for
SLð2; RÞ paths with vanishing Schwarzian derivative. Then
for the class of paths where _f=f0 ¼ c1 is constant, we arrive
to the linear complexity growth [35]

C½f�ðτÞ ¼ c1Ehτ; ð15Þ
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where Eh ¼ jh − ðc=24Þj is the expectation value of the
energy-momentum tensor. More complicated examples
will be explored in Ref. [36].
Finally, performing analogous steps for the second copy

of the Virasoro group, the full CFT complexity action reads

CCFT½f; f̄�ðτÞ ¼ C½f�ðτÞ þ C½f̄�ðτÞ: ð16Þ

where f̄ is the analogous (independent) conformal path
for the left Virasoro group. Above we have used Q ¼
QL þQR. Had we defined a cost mediated by a negative
sign Q ¼ QL −QR, we would have obtained C½f� − C½f̄�.
At the level of the classical solutions, there is no difference
between both choices.
We remark again that the cost is written in terms of Lie

algebra elements. In AdS=CFT, these are boundary oper-
ators, with known dual fields. Therefore, our costs are built
from well-defined quantities at both sides of the AdS=CFT
duality. In fact, we will now discuss a more direct
connection between our complexity and gravity.
2D gravity.—The connection of the 2D-CFT complexity

functional (14) to gravity appears via the Polyakov’s action
of (induced) gravity in two dimensions [28]

SP½g� ¼
c

24π

Z
d2x

ffiffiffi
g

p �
−
1

4
R
1

□
Rþ Λ

�
; ð17Þ

where R is the Ricci scalar curvature, Λ the cosmological
constant, and □ the Laplace-Beltrami operator (its inverse
1=□ acting on R is just a formal expression implying that
R≡□ð…Þ). Polyakov action is intimately related to
Virasoro symmetry, and it plays the role of the generating
functional of the stress tensor correlators

e−SP½μ� ≡ he− 1
2π

R
dτdσμTi; ð18Þ

where SP½μ� is the Polyakov action computed in metric
(Polyakov gauge) [28]

ds2 ¼ dτðdσ̃ þ μðτ; σ̃ÞdτÞ ¼ G0ðτ; σÞdτdσ; ð19Þ

where μ ¼ _g=g0 and g½τ; Gðτ; σÞ� ¼ σ.
This way, we have, e.g., the one-point function

δ

δμ
SP½μ� ¼

1

2π
hTi ¼ c

24π
fgðτ; σÞ; σg: ð20Þ

For our purposes, the large-c limit ensures that

he−ð1=2πÞ
R

dτdσμTi ≃ e−ð1=2πÞ
R

dτdσμhTi. Hence, our complex-
ity becomes the Polyakov action of induced 2D gravity.
This is the main result of our work and a completely new
light on this well-established core of 2D CFTs.
Let us elaborate more on this important connection and

bring a new light that allows for generalizations toward
complexity in quantum field theories.

The Polyakov action evaluated on metric (19) can be
compactly written as

SP½G� ¼
c

24π

Z
dτ

Z
dσ

_G
2G0

�
G000

G0 − 2
G002

G02

�
; ð21Þ

and, as proven in Refs. [37,38], it leads to the same e.o.m
and expectation value of T as the one with full Schwarzian
derivative SP½μ� ∼

R
μfg; σg. Were we on the plane, this

would be our large-c complexity functional. As shown in
Refs. [39,40], on the cylinder we just need to substitute
G ¼ expð ffiffiffi

2
p

aFÞ and using f½τ; Fðτ; σÞ� ¼ σ one arrives to
Ref. (14). This makes the precise connection with the
functions F and f (and parameter a) used in our complexity
functional.
Let us point that for two Virasoro copies we get two

Polyakov or complexity actions. It is well known [41,42]
how they can be combined into a single, nonchiral
Liouville theory. This sheds new light on the path integral
complexity proposal [15]. It is an important future problem
to compare the details of the two approaches [36] (see also
Refs. [43–45] for related constructions).
Finally, as shown in Ref. [29], Polyakov action (21) is in

fact the Kirillov geometric action [30] on the coadjoint
orbits of the Virasoro group (see the Supplemental Material
[34]). More precisely, the Kirillov geometric method was
applied to the Virasoro group in Refs. [29,32] and the
resulting geometric action is given by

IVirasoro ¼
c

24π

Z
dτdσ

_f
f0

�
12

c
bðfÞ þ 1

2

�
f00

f0

�0�
: ð22Þ

The bðfÞ is an element of the dual space of the Virasoro Lie
algebra and labels the specific coadjoint orbit (function f is
the same as above: f½τ; Fðτ; σÞ� ¼ σ). We can identify it
with the stress tensor expectation value bðfÞ ¼ Tr½ ρ0TðfÞ�
and in our case of the primary state bðfÞ ¼ h − ðc=24Þ ¼
−ðc=6Þa2 (in general the dependance on σ just means that
bðfÞ transforms as the expectation value of TðσÞ). The
second contribution is the first term of the Schwarzian
derivative and, as functional for f, this action is equivalent
to Ref. (14). Aspects of the above geometric action were
also used recently in connection to SYK [46–48] and
Virasoro Berry phases [49].
As we will discuss in the last section, the fact that we can

write our complexity as a geometric action gives a hint and
a definite route for constructing complexity (based on
“generalized symmetry gates”) in arbitrary quantum field
theories.
Generalizations and discussion.—The most promising

generalization relies on the observed connection between
complexity and geometric actions. Such geometric actions
appear ubiquitously through the notion of generalized
coherent states; see Refs. [50–53]. Basically, for any
quantum theory there exists a “coherence group” G.
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This group provides a classical phase space for the theory,
by generating a continuous and normalizable Hilbert space
basis, the coherent states jgvi ¼ UðgÞjvi. In the semi-
classical limit, the dynamic is determined by an action

S ¼ Sgeometric þ SH ¼ −
Z
γ
α −

Z
dτH½γðτÞ�; ð23Þ

where γðτÞ is a path on the coherence group and H½γðτÞ� is
the Hamiltonian (a functional on phase space). In this
context, natural gates are infinitesimal elements of the
coherence group, states are elements of the dual space, and
protocols are paths γðτÞ ∈ G defining paths in phase space
by means of the coadjoint transformation. Using the same
notion of cost (6), in the semiclassical limit the complexity
is again given by the geometric action

C ¼
Z
γ
α: ð24Þ

By comparing the semiclassical solution (23) and the
complexity or geometric action (24), the analysis suggests
that for theories controlled by a Hamiltonian constraint
H½γðτÞ� ¼ 0 the complexity action is exactly the classical
action. This might connect nicely to gravitational theories.
In AdS=CFT, this coherent state approach can be defined

on both sides of the duality, since instantaneous gates are
smeared versions of local boundary operators, with known
gravity duals, and associated Kirillov-Kostant symplectic
forms are functionals of them (see, e.g., Refs. [27,54]). An

important subset of the coherence group is ei
R

fðxÞgðxÞ, with

g the metric, dual to ei
R

fðxÞTðxÞ, with T the stress tensor. In
2D, this generates the conformal group and has been
considered above.
Related generalizations within 2D CFTs arise when

allowing instantaneous gates to include other primaries
or symmetry currents (like Kac-Moody or higher spin W),
or when including supersymmetry. Indeed, geometric
actions for the Kac-Moody symmetry are well known
and the approach of Alexeev and Shatashvili was also
generalized to W3 (see, e.g., Refs. [55,56]).
We conclude that the present approach provides

a novel starting point to derive gravity from complexity.
In our setup, the CFT complexity corresponds to the
Virasoro geometric action for each left and right sector.
References [29,57] showed how each chiral sector is
equivalent to a SLð2;RÞ Wess-Zumino-Witten (WZW)
theory. In turn, these WZW theories are the reduction at the
boundary of AdS3 of the two Chern-Simons actions of 3D
gravity [58]. Moreover, solutions of 3D gravity are fixed by
solutions of the 2D Liouville equation, parametrized by our
DiffðS1Þ diffeomorphisms. Indeed, from a nonchiral
Liouville field, we can construct left and right stress tensors
completely specifying a three-dimensional metric [59].

Also, the alluded Liouville action computes the area of a
two-dimensional surface, naturally associated with a slice
of a dual bulk geometry (see Ref. [15] for Euclidean slices).
Even though it is by no means clear which slice this may
be, we conjecture that it is always possible to find such a
slice in the bulk.
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