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We present a first-principles lattice QCDþ QED calculation at physical pion mass of the leading-order
hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total
contribution of up, down, strange, and charm quarks including QED and strong isospin breaking effects
is aHVP LO

μ ¼ 715.4ð18.7Þ × 10−10. By supplementing lattice data for very short and long distances with

R-ratio data, we significantly improve the precision to aHVP LO
μ ¼ 692.5ð2.7Þ × 10−10. This is the currently

most precise determination of aHVP LO
μ .

DOI: 10.1103/PhysRevLett.121.022003

Introduction.—The anomalous magnetic moment of the
muon aμ is defined as the deviation of the Landé factor gμ
from Dirac’s relativistic quantum mechanics result,
aμ ¼ ½ðgμ − 2Þ=2�. It is one of themost precisely determined
quantities in particle physics and is currently known both
experimentally (BNL E821) [1] and from a standard model
theory calculation [2] to approximately1=2parts permillion.
Interestingly, the standard model result aSMμ deviates

from the experimental measurement aexptμ at the 3–4σ level,
depending on which determination of the leading-order
hadronic vacuum polarization aHVP LO

μ is used. One finds
[3–6]

aexptμ − aSMμ ¼ 25.0ð4.3Þð2.6Þð6.3Þ × 10−10 ½3; 4�;
31.8ð4.1Þð2.6Þð6.3Þ × 10−10 ½4; 5�;
26.8ð3.4Þð2.6Þð6.3Þ × 10−10 ½4; 6�; ð1Þ

where the quoted errors correspond to the uncertainty in
aHVP LO
μ , aSMμ − aHVP LO

μ , and aexptμ . This tension may hint at
new physics beyond the standard model of particle physics
such that a reduction of uncertainties in Eq. (1) is highly
desirable. New experiments at Fermilab (E989) [7] and
J-PARC (E34) [8] intend to decrease the experimental

uncertainty by a factor of 4. First results of the E989
experiment may be available before the end of 2018 [9]
such that a reduction in uncertainty of the aHVP LO

μ con-
tribution is of timely interest.
In the following, we perform a complete first-principles

calculation of aHVP LO
μ in lattice QCDþ QED at physical

pion mass with nondegenerate up and down quark masses
and present results for the up, down, strange, and charm
quark contributions. Our lattice calculation of the light-
quark QED correction to aHVP LO

μ is the first such calcu-
lation performed at physical pion mass. In addition, we
replace lattice data at very short and long distances by
experimental eþe− scattering data using the compilation of
Ref. [10], which allows us to produce the currently most
precise determination of aHVP LO

μ .
Computational method.—The general setup of our non-

perturbative lattice computation is described in Ref. [11].
We compute

aμ ¼ 4α2
Z

∞

0

dq2fðq2Þ½Πðq2Þ − Πðq2 ¼ 0Þ�; ð2Þ

where fðq2Þ is a known analytic function [11] and Πðq2Þ is
defined as

P
xe

iqxhJμðxÞJνð0Þi ¼ ðδμνq2 − qμqνÞΠðq2Þ
with sum over space-time coordinate x and JμðxÞ ¼
i
P

f QfΨ̄fðxÞγμΨfðxÞ. The sum is over up, down, strange,
and charm quark flavors with QED chargesQup;charm ¼ 2=3
and Qdown;strange ¼ −1=3. For convenience we do not
explicitly write the superscript HVP LO. We compute
Πðq2Þ using the kernel function of Refs. [12,13]
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Πðq2Þ − Πðq2 ¼ 0Þ ¼
X
t

�
cosðqtÞ − 1

q2
þ 1

2
t2
�
CðtÞ ð3Þ

with CðtÞ ¼ 1
3

P
x⃗

P
j¼0;1;2hJjðx⃗; tÞJjð0Þi. With appropri-

ate definition of wt, we can therefore write

aμ ¼
X
t

wtCðtÞ: ð4Þ

The correlator CðtÞ is computed in lattice QCDþ QED
with dynamical up, down, and strange quarks and non-
degenerate up and down quark masses. We compute the
missing contributions to aμ from bottom quarks and from
charm sea quarks in perturbative QCD [14] by integrating
the timelike region above 2 GeV and find them to be
smaller than 0.3 × 10−10.
We tune the bare up, down, and strange quark masses

mup, mdown, and mstrange such that the π0, πþ, K0, and Kþ

meson masses computed in our calculation agree with the
respective experimental measurements [15]. The lattice
spacing is determined by setting the Ω− mass to its
experimental value. We perform the calculation as a
perturbation around an isospin-symmetric lattice QCD
computation [16,17] with two degenerate light quarks with
mass mlight and a heavy quark with mass mheavy tuned to
produce a pion mass of 135.0 MeV and a kaon mass of
495.7 MeV [18]. The correlator is expanded in the fine-
structure constant α as well as Δmup;down ¼ mup;down −
mlight, and Δmstrange ¼ mstrange −mheavy. We write

CðtÞ ¼ Cð0ÞðtÞ þ αCð1Þ
QEDðtÞ þ

X
f

ΔmfC
ð1Þ
Δmf

ðtÞ

þOðα2; αΔm;Δm2Þ; ð5Þ
where Cð0ÞðtÞ is obtained in the lattice QCD calculation at
the isospin symmetric point and the expansion terms define
the QED and strong isospin-breaking (SIB) corrections,
respectively. We keep only the leading corrections in α and
Δmf which is sufficient for the desired precision.
We insert the photon-quark vertices perturbatively with

photons coupled to local lattice vector currents multiplied
by the renormalization factor ZV [18]. We use ZA ≈ ZV for
the charm [19] and QED corrections. The SIB correction is
computed by inserting scalar operators in the respective
quark lines. The procedure used for effective masses in
such a perturbative expansion is explained in Ref. [20]. We
use the finite-volume QEDL prescription [21] and remove
the universal 1=L and 1=L2 corrections to the masses [22]
with spatial lattice size L. The effect of 1=L3 corrections is
small compared to our statistical uncertainties. We
find Δmup ¼ −0.00050ð1Þ, Δmdown ¼ 0.00050ð1Þ, and
Δmstrange ¼ −0.0002ð2Þ for the 48I lattice ensemble
described in Ref. [18]. The shift of the Ω− mass due to
the QED correction is significantly smaller than the lattice
spacing uncertainty and its effect on CðtÞ is therefore not
included separately.
Figure 1 shows the quark-connected and quark-discon-

nected contributions to Cð0Þ. Similarly, Fig. 2 shows the

relevant diagrams for the QED correction to the meson
spectrum and the hadronic vacuum polarization. The
external vertices are pseudoscalar operators for the former
and vector operators for the latter. We refer to diagrams S
and Vas the QED-connected and to diagram F as the QED-
disconnected contribution. We note that only the parts of
diagram F with additional gluons exchanged between the
two quark loops contribute to aHVP LO

μ as otherwise an
internal cut through a single photon line is possible, which
is part of aHVP NLO

μ [23]. For this reason, we subtract the
separate quantum-averages of quark loops in diagram F. In
the current calculation, we neglect diagrams T, D1, D2, and
D3. This approximation is estimated to yield an Oð10%Þ
correction for isospin splittings [24] for which the
neglected diagrams are both SU(3) and 1=Nc suppressed.
For the hadronic vacuum polarization the contribution of
neglected diagrams is still 1=Nc suppressed and we adopt a
corresponding 30% uncertainty.
In Fig. 3, we show the SIB diagrams. In the calculation

presented here, we only include diagram M. For the meson
masses this corresponds to neglecting the sea quark mass
correction, which we have previously [18] determined to be
an Oð2%Þ and Oð14%Þ effect for the pions and kaons,
respectively. This estimate is based on the analytic fits of
(H7) and (H9) of Ref. [18] with ratios Cmπ;K

2 =Cmπ;K
1 given in

Tab. XVII of the same reference. For the hadronic vacuum
polarization the contribution of diagram R is negligible
since Δmup ≈ −Δmdown and diagram O is SU(3) and 1=Nc

suppressed. We therefore assign a corresponding 10%
uncertainty to the SIB correction.

FIG. 1. Quark-connected (left) and quark-disconnected (right)
diagram for the calculation of aHVP LO

μ . We do not draw gluons
but consider each diagram to represent all orders in QCD.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

FIG. 2. QED-correction diagrams with external pseudoscalar or
vector operators. The figure parts (a)–(g) assign labels V, S, T,
D1, D2, F, and D3 to the respective diagrams.
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We also compute theOðαÞ correction to the vector current
renormalization factor ZV used in Cð0Þ [18,20] and find a
small correctionof approximately0.05%for the light quarks.
We perform the calculation of Cð0Þ on the 48I and 64I

ensembles described in Ref. [18] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [19]. The quark-disconnected
contribution as well as QED and SIB corrections are
computed only on ensemble 48I.
For the noisy light quark connected contribution, we

employ a multistep approximation scheme with low-mode
averaging [25] over the entire volume and two levels of
approximations in a truncated deflated solver with all mode
averaging (AMA) [26–29] of randomly positioned point
sources. The low-mode space is generated using a new
Lanczos method working on multiple grids [30]. Our
improved statistical estimator for the quark disconnected
diagrams is described in Ref. [31] and our strategy for the
strange quark is published in Ref. [32]. For diagram F, we
reuse point-source propagators generated in Ref. [33].
The correlator CðtÞ is related to the R-ratio data [12]

by CðtÞ ¼ ½1=ð12π2Þ� R∞
0 dð ffiffiffi

s
p ÞRðsÞse− ffiffi

s
p

t with RðsÞ ¼
½ð3sÞ=4πα2�σðs; eþe− → hadÞ. In Fig. 4 we compare a
lattice and R-ratio evaluation of wtCðtÞ and note that the
R-ratio data is most precise at very short and long distances,
while the lattice data is most precise at intermediate
distances. We are therefore led to also investigate a
position-space “window method” [12,34] and write

aμ ¼ aSDμ þ aWμ þ aLDμ ð6Þ

with aSDμ ¼ P
t CðtÞwt½1 − Θðt; t0;ΔÞ�, aWμ ¼P

t CðtÞwt½Θðt; t0;ΔÞ − Θðt; t1;ΔÞ�, and aLDμ ¼ P
t CðtÞ×

wtΘðt; t1;ΔÞ, where each contribution is accessible from

both lattice and R-ratio data. We define Θðt; t0;ΔÞ ¼
f1þ tanh ½ðt − t0Þ=Δ�g=2 which we find to be helpful to
control the effect of discretization errors by the smearing
parameterΔ.We then take aSDμ and aLDμ from theR-ratio data
and aWμ from the lattice. In this work we use Δ ¼ 0.15 fm,
which we find to provide a sufficiently sharp transition
without increasing discretization errors noticeably. This
method takes the most precise regions of both data sets
and therefore may be a promising alternative to the proposal
of Ref. [35].
Analysis and results.—Table I shows our results for the

window method and pure lattice determination. We quote
statistical uncertainties for the lattice data labeled as (S) and
the R-ratio data labeled as (RST) separately. Lattice and
R-ratio uncertainties are added in quadrature. For the
quark-connected up, down, and strange contributions, the
computation is performed on two ensembles with inverse
lattice spacing a−1 ¼ 1.730ð4Þ GeV (48I) as well as a−1 ¼
2.359ð7Þ GeV (64I) and a continuum limit is taken. The
discretization error (C) is estimated by taking the maximum
of the squared measured Oða2Þ correction as well as a
simple ðaΛÞ4 estimate, where we take Λ ¼ 400 MeV. We
find the results on the 48I ensemble to differ only a few
percent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution, additional ensembles described in Ref. [19]
are used and the maximum of the above, and a ðamcÞ4
estimate is taken as discretization error. The remaining
contributions are small and only computed on the 48I
ensemble for which we take ðaΛÞ2 as estimate of discre-
tization errors.
For the up and down quark-connected and disconnected

contributions, we correct finite-volume effects to leading
order in finite-volume position-space chiral perturbation
theory [36]. Note that in our previous publication of the
quark-disconnected contribution [31], we added this finite-
volume correction as an uncertainty but did not shift
the central value. We take the largest ratio of p6 to p4

corrections of Tab. 1 of Ref. [37] as systematic error
estimate of neglected finite-volume errors (V). For the SIB
correction we also include the sizable difference of the
corresponding finite and infinite-volume chiral perturbation
theory calculation as finite-volume uncertainty. For the
QED correction, we repeat the computation using an
infinite-volume photon (QED∞ [38]) and include the
difference to the QEDL result as a finite-volume error.
Further details of the QED∞ procedure are provided as
Supplemental Material [39].
We furthermore propagate uncertainties of the lattice

spacing (A) and the renormalization factors ZV (Z). For the
quark-disconnected contribution we adopt the additional
long-distance error discussed in Ref. [31] (L) and for the
charm contribution we propagate uncertainties from
the global fit procedure [19] (M). Systematic errors of the
R-ratio computation are taken from Ref. [10] and quoted as

(a) M (b) R (c) O

FIG. 3. Strong isospin-breaking correction diagrams. The
crosses denote the insertion of a scalar operator. The figure parts
(a)–(c) assign labels M, R, and O to the respective diagrams.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

× 
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0
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 0

 100

 200
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FIG. 4. Comparison of wtCðtÞ obtained using R-ratio data [10]
and lattice data on our 64I ensemble.
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(RSY). The neglected bottom quark (b) and charm sea
quark (c) contributions as well as effects of neglected QED
(Q̄) and SIB (S̄) diagrams are estimated as described in the
previous section.
For the QED and SIB corrections, we assume dominance

of the low-lying ππ and πγ states and fit Cð1Þ
QEDðtÞ as well as

Cð1Þ
Δmf

ðtÞ to ðc1 þ c0tÞe−Et, where we vary c0 and c1 for

fixed energy E. The resulting p values are larger than 0.2
for all cases and we use this functional form to compute the
respective contribution to aμ. For the QED correction, we
vary the energy E between the lowest ππ and πγ energies
and quote the difference as additional uncertainty (E). For
the SIB correction, we take E to be the ππ ground-state
energy.

For the light quark contribution of our pure lattice
result we use a bounding method [42] similar to
Ref. [43] and find that upper and lower bounds meet
within errors at t ¼ 3.0 fm. We vary the ground-state
energy that enters this method [44] between the free-field
and interacting value [45]. For the 48I ensemble we find
Efree
0 ¼ 527.3 MeV, E0 ¼ 517.4 MeVþOð1=L6Þ and for

the 64I ensemble we have Efree
0 ¼ 536.1 MeV,

E0 ¼ 525.1 MeVþOð1=L6Þ. We quote the respective
uncertainties as (E48) and (E64). The variation of ππ
ground-state energy on the 48I ensemble also enters the
SIB correction as described above.
Figure 5 shows our results for the window method with

t0 ¼ 0.4 fm. While the partial lattice and R-ratio contribu-
tions change by several 100 × 10−10, the sum changes only
at the level of quoted uncertainties. This provides a non-
trivial consistency check between the lattice and the
R-ratio data for length scales between 0.4 fm and
2.6 fm. We expand on this check in the Supplemental
Material [39]. The uncertainty of the current analysis is
minimal for t1 ¼ 1 fm, which we take as our main result for
the window method. For t0 ¼ t1 we reproduce the value of
Ref. [10]. In Fig. 6, we show the t1 dependence of
individual lattice contributions and compare our results
with previously published results in Fig. 7. Our combined

TABLE I. Individual and summed contributions to aμ multiplied by 1010. The left column lists results for the window method with
t0 ¼ 0.4 fm and t1 ¼ 1 fm. The right column shows results for the pure first-principles lattice calculation. The respective uncertainties
are defined in the main text.

aud;conn;isospinμ 202.9ð1.4ÞSð0.2ÞCð0.1ÞVð0.2ÞAð0.2ÞZ 649.7ð14.2ÞSð2.8ÞCð3.7ÞVð1.5ÞAð0.4ÞZð0.1ÞE48ð0.1ÞE64
as;conn;isospinμ 27.0ð0.2ÞSð0.0ÞCð0.1ÞAð0.0ÞZ 53.2ð0.4ÞSð0.0ÞCð0.3ÞAð0.0ÞZ
ac;conn;isospinμ 3.0ð0.0ÞSð0.1ÞCð0.0ÞZð0.0ÞM 14.3ð0.0ÞSð0.7ÞCð0.1ÞZð0.0ÞM
auds;disc;isospinμ −1.0ð0.1ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZ −11.2ð3.3ÞSð0.4ÞVð2.3ÞL
aQED;connμ 0.2ð0.2ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZð0.0ÞE 5.9ð5.7ÞSð0.3ÞCð1.2ÞVð0.0ÞAð0.0ÞZð1.1ÞE
aQED;discμ −0.2ð0.1ÞSð0.0ÞCð0.0ÞVð0.0ÞAð0.0ÞZð0.0ÞE −6.9ð2.1ÞSð0.4ÞCð1.4ÞVð0.0ÞAð0.0ÞZð1.3ÞE
aSIBμ 0.1ð0.2ÞSð0.0ÞCð0.2ÞVð0.0ÞAð0.0ÞZð0.0ÞE48 10.6ð4.3ÞSð0.6ÞCð6.6ÞVð0.1ÞAð0.0ÞZð1.3ÞE48
audsc;isospinμ 231.9ð1.4ÞSð0.2ÞCð0.1ÞVð0.3ÞAð0.2ÞZð0.0ÞM 705.9ð14.6ÞSð2.9ÞCð3.7ÞVð1.8ÞAð0.4ÞZð2.3ÞLð0.1ÞE48ð0.1ÞE64ð0.0ÞM
aQED;SIBμ 0.1ð0.3ÞSð0.0ÞCð0.2ÞVð0.0ÞAð0.0ÞZð0.0ÞEð0.0ÞE48 9.5ð7.4ÞSð0.7ÞCð6.9ÞVð0.1ÞAð0.0ÞZð1.7ÞEð1.3ÞE48
aR−ratioμ 460.4ð0.7ÞRSTð2.1ÞRSY
aμ 692.5ð1.4ÞSð0.2ÞCð0.2ÞVð0.3ÞAð0.2ÞZð0.0ÞEð0.0ÞE48 715.4ð16.3ÞSð3.0ÞCð7.8ÞVð1.9ÞAð0.4ÞZð1.7ÞEð2.3ÞL

ð0.0Þbð0.1Þcð0.0ÞS̄ð0.0ÞQ̄ð0.0ÞMð0.7ÞRSTð2.1ÞRSY ð1.5ÞE48ð0.1ÞE64ð0.3Þbð0.2Þcð1.1ÞS̄ð0.3ÞQ̄ð0.0ÞM
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FIG. 5. We show results for the window method with t0 ¼
0.4 fm as a function of t1. The top panel shows the combined aμ,
the middle panel shows the partial contributions of the lattice and
R-ratio data, and the bottom shows the respective uncertainties.
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FIG. 6. The individual lattice components of the window
method with t0 ¼ 0.4 fm as function of t1.
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lattice and R-ratio result is more precise than the R-ratio
computation by itself and reduces the tension to the other
R-ratio results. Results for different window parameters t0
and t1 and a comparison of individual components with
previously published results are provided as Supplemental
Material [39].
Conclusion.—We have presented both a complete first-

principles calculation of the leading-order hadronic vacuum
polarization contribution to the muon anomalous magnetic
moment from lattice QCDþ QED at physical pion mass as
well as a combination with R-ratio data. For the former we
find aHVP LO

μ ¼ 715.4ð16.3Þð9.2Þ × 10−10, where the first
error is statistical and the second is systematic. For the latter
we find aHVP LO

μ ¼ 692.5ð1.4Þð0.5Þð0.7Þð2.1Þ × 10−10 with
lattice statistical, lattice systematic, R-ratio statistical, and
R-ratio systematic errors given separately. This is the
currently most precise determination of aHVP LO

μ corre-
sponding to a 3.7σ tension

aexptμ − aSMμ ¼ 27.4ð2.7Þð2.6Þð6.3Þ × 10−10 ½4�: ð7Þ

The presented combination of lattice and R-ratio data also
serves to provide additional nontrivial cross-checks
between lattice and R-ratio data. The precision of this
computation will be improved in future work by adding the
missing subleading QED and SIB diagrams and simula-
tions at smaller lattice spacings and larger volumes.
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