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Within the framework of chiral effective field theory, we discuss the leading contributions to the
neutrinoless double-beta decay transition operator induced by light Majorana neutrinos. Based on
renormalization arguments in both dimensional regularization with minimal subtraction and a coordinate-
space cutoff scheme, we show the need to introduce a leading-order short-range operator, missing in all
current calculations. We discuss strategies to determine the finite part of the short-range coupling
by matching to lattice QCD or by relating it via chiral symmetry to isospin-breaking observables in the
two-nucleon sector. Finally, we speculate on the impact of this new contribution on nuclear matrix elements
of relevance to experiment.
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Introduction.—Neutrinoless double-beta decay (0νββ) is
the most sensitive laboratory probe of lepton number
violation (LNV). In 0νββ, L is violated by two units when
two neutrons in a nucleus turn into two protons, with the
emission of two electrons and no neutrinos. The observa-
tion of 0νββ would demonstrate that neutrinos are
Majorana fermions [1], shed light on the mechanism of
neutrino mass generation [2–4], and give insight into
leptogenesis scenarios for the generation of the matter-
antimatter asymmetry in the Universe [5].
0νββ is actively being searched for in a number of even-

even nuclei for which single-β decay is energetically
forbidden. Current experimental limits [6–15] on the
half-lives are at the level of T1=2 > 5.3 × 1025 y for 76Ge
[12] and T1=2 > 1.07 × 1026 y for 136Xe [10], with next-
generation ton-scale experiments aiming at improvements
in sensitivity by two orders of magnitude.
0νββ can be generated by a variety of dynamical LNV

mechanisms, which, in an effective field theory (EFT)
approach to new physics, are parametrized by ΔL ¼ 2
operators of odd dimension greater than 4 [16–22]. If the
mass scale associated with LNV is much higher than the
electroweak scale, the only low-energy manifestation of
this new physics is a Majorana mass for light neutrinos,
encoded in a single gauge-invariant dimension-five

operator [16], which induces 0νββ through light
Majorana-neutrino exchange [23,24]. To interpret positive
or null 0νββ results in this minimal scenario, it is crucial to
have good control over the relevant hadronic and nuclear
matrix elements. Current knowledge of these is not sat-
isfactory [25], as various many-body approaches lead to
estimates that differ by a factor of 2–3 and most calcu-
lations are not based on a modern EFT analysis. In
Ref. [26], a first step was presented towards the analysis
of 0νββ induced by a light Majorana neutrino in the chiral
EFT framework [27–29], which provides a systematic
expansion of hadronic amplitudes in p=Λχ , where p ∼
mπ∼kF∼Oð100MeVÞ and Λχ ∼ 4πFπ ∼mN ∼Oð1 GeVÞ.
The 0νββ transition operators were derived up to next-
to-next-to-leading order (N2LO) in Weinberg’s power-
counting scheme [30,31].
In this Letter, we demonstrate that Weinberg’s scheme

for 0νββ assumed in Ref. [26] breaks down and any
consistent power counting requires a leading-order (LO)
short-range ΔL ¼ 2 operator, whose effect is missing in all
current calculations. Our argument is based on renormal-
ization. Using two different schemes (dimensional regu-
larization with minimal subtraction and a coordinate-space
cutoff), we show that, once the strong nucleon-nucleon
scattering amplitude is made finite and independent of
the ultraviolet regulator, an additional ΔL ¼ 2 contact
operator with coupling gNNν has to be introduced to make
the nn → ppee amplitude finite and regulator independent.
The finite part of gNNν , which encodes hard-neutrino
exchange, can be determined by (i) matching the chiral
EFT nn → ppee amplitude to future lattice QCD
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calculations and (ii) relating it via chiral symmetry to
electromagnetic low-energy constants (LECs) that control
isospin breaking in the two-nucleon sector. A combination
of couplings involving gNNν can be fit to nucleon-nucleon
charge-independence-breaking (CIB) observables, con-
firming the LO scaling of this coupling. Based on this,
we argue that the impact of gNNν on nuclear matrix elements
of relevance to experiments can be significant, which has
consequences for the interpretation of 0νββ experiments in
terms of the light Majorana-neutrino mass.
The need for a LO short-rangeΔL ¼ 2 interaction.—We

consider a scenario in which LNV at low energy is
dominated by the electron-neutrino Majorana mass

LΔL¼2 ¼ −
mββ

2
νTeLCνeL; ð1Þ

where C ¼ iγ2γ0 denotes the charge conjugation matrix.
The nuclear effective Hamiltonian can be written as

Heff ¼ Hstrong þ 2G2
FV

2
udmββēLCēTLVν; ð2Þ

in terms of the Fermi constant GF and the Vud element of
the Cabibbo-Kobayashi-Maskawa matrix [32,33]. The
neutrino potential Vν can be obtained from two-nucleon
irreducible diagrams mediating nn → ppee to a given
order in p=Λχ . Within Weinberg’s power counting, the
only LO contribution [26] comes from the exchange of
potential neutrinos, with q0 ≪ jqj,

Vν;0ðqÞ ¼ τð1Þþτð2Þþ
1

q2

�
1 − g2Aσ

ð1Þ · σð2Þ

þ g2Aσ
ð1Þ · q σð2Þ · q

2m2
π þ q2

ðq2 þm2
πÞ2

�
; ð3Þ

where gA ≃ 1.27 is the nucleon axial coupling,mπ is the pion
mass,andq is themomentumtransfer.N2LOtermsarise from
corrections to the single nucleon weak currents, irreducible
one-loop diagrams, and contact interactions mediating
ππ → ee, n → pπþee, and nn → ppee. In particular, the
short-range potential includes a two-nucleon term [26]

Vν;CT ¼ −2gNNν τð1Þþτð2Þþ; ð4Þ
where the LEC gNNν isO(ð4πFπÞ−2) inWeinberg’s counting
andFπ ¼ 92.2 MeV is the pion decay constant. However, it
is known that Weinberg’s power counting leads to incon-
sistent results in nucleon-nucleon scattering [34–37] and
nuclearprocessesmediatedbyexternal currents [38], due toa
conflict between naive dimensional analysis and nonpertur-
bative renormalization. We therefore investigate the scaling
of gNNν by studying the amplitude Aðnn → ppeeÞ≡AΔL¼2

with strong interactions Hstrong included nonperturbatively.
We work at LO in chiral EFT and focus on the scattering

of two neutrons to two protons in the 1S0 wave, where
Hstrong has short-range and Yukawa components,

V0ðqÞ ¼ C̃þ VπðqÞ; VπðqÞ ¼ −
g2A
4F2

π

m2
π

q2 þm2
π
; ð5Þ

with C̃ ∼OðF−2
π ; m2

πF−4
π Þ [31,34,35]. We have checked

that transitions involving higher partial waves such as
3P0;1 → 3P0;1 are correctly renormalized and do not require
enhanced ΔL ¼ 2 counterterms.
The contributions to AΔL¼2 from the exchange of a light

neutrino (AðνÞ
ΔL¼2) are shown in Fig. 1. The blue ellipse

denotes the iteration of the Yukawa potential VπðqÞ. The
diagrams in the second and third rows include an infinite
number of bubbles, dressed with iterations of Vπ . Without
loss of generality for our arguments, we use the kinematics
nðpÞnð−pÞ→pðp0Þpð−p0Þeðpe1¼0Þeðpe2¼0Þ, with jpj ¼
1 MeV and, correspondingly, jp0j ¼ 38 MeV.

AðνÞ
ΔL¼2 can be expressed in terms of the Yukawa “in” and

“out”wave functions χ�p ðrÞ and the propagatorsG�
E ðr;r0Þ¼

hr0jðE−T−Vπ�i0þÞ−1jri [34,37]. Observing that the
bubble diagrams in Fig. 1 are related to Gþ

E ð0; 0Þ, while
the triangles dressed by Yukawa potentials are related to
χþp ð0Þ and χ−p0 ð0Þ� ¼ χþp0 ð0Þ [34], the LO amplitude reads

AðνÞ
ΔL¼2 ¼ AA þ KE0AB þABKE þ KE0ACKE;

KE ¼ χþp ð0ÞC̃
1 − C̃Gþ

E ð0; 0Þ
; ð6Þ

whereAA, AB, and AC denote the first diagram in the first,
second, and third rows of Fig. 1, respectively (without the
wave functions at 0, in the case of AB and AC). AB is
similar to AB and is not shown in Fig. 1.

FIG. 1. Diagrammatic representation of LO contributions to
nn → ppee. Double, dashed, and plain lines denote nucleons,
pions, and leptons, respectively. Gray circles denote the nucleon
axial and vector currents, and the black square denotes an
insertion of mββ. The blue ellipse represents iteration of Vπ . In
the counterterm amplitude (fourth line) the black square repre-
sents gNNν . The ellipses in the second to fourth lines denote
diagrams with arbitrary numbers of bubble insertions.
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To study the renormalization of the ΔL ¼ 2 amplitude,

we now discuss the divergence structure ofAðνÞ
ΔL¼2. χ

þ
p ð0Þ is

finite and the divergence inGþ
E ð0; 0Þ is absorbed by C̃−1, so

that KE is finite and scheme independent [34]. We note that
(i) all diagrams in AA are finite. The tree level is finite and
each Vπ iteration improves the convergence by bringing in a
factor of d3k=ðk2Þ2, where one k2 comes from the pion
propagator and the other from the two-nucleon propagator.
(ii) All the diagrams in AB and ĀB are finite. The first loop
goes as d3k=ðk2Þ2, while Vπ insertions further improve the
convergence. (iii) The first two-loop diagram in AC has a
logarithmic divergence,which stems froman insertion of the
most singular component of the neutrino potential, namely,

ṼνðqÞ ¼ τð1Þþτð2Þþ
1

q2

�
1 −

2

3
g2Aσ

ð1Þ · σð2Þ
�
: ð7Þ

The two-loop diagram with insertion of Vν;0 − Ṽν and
higher-loop diagrams are convergent.

We focus on AC and write AC ¼ AðdivÞ
C þ δAC. In

dimensional regularization,

AðdivÞ
C ¼ −

�
mN

4π

�
2

ð1þ 2g2AÞ½Δþ Lp;p0 ðμÞ�;

Lp;p0 ðμÞ ¼ 1

2

�
log

μ2

−ðjpj þ jp0jÞ2 þ i0þ
þ 1

�
; ð8Þ

where Δ≡ ½1=ð4 − dÞ − γ þ log 4π�=2. The divergence for
d → 4 can be removed by introducing gNNν at LO. The
counterterm amplitude, shown in the fourth line of Fig. 1,
reads

AðNNÞ
ΔL¼2 ¼ KE0

2gNNν
C̃2

KE; ð9Þ

and we can renormalize AΔL¼2 by replacing AC → AC þ
2gNNν =C̃2 in Eq. (6). In the MS scheme,

AC→δACþ
�
mN

4π

�
2
�
2g̃NNν ðμÞ−ð1þ2g2AÞLp;p0 ðμÞ

�
ð10Þ

after defining the dimensionless coupling

g̃NNν ¼
�

4π

mNC̃

�
2

gNNν : ð11Þ

This coupling obeys the renormalization-group equation
(RGE)

μ
dg̃NNν
dμ

¼ 1

2
ð1þ 2g2AÞ; ð12Þ

confirming that g̃NNν ∼Oð1Þ. Since C̃ðμ ¼ mπÞ ≈ −0.9=F2
π ,

we find that gNNν ∼OðF−2
π Þ instead of O(ð4πFπÞ−2). A

similar enhancement also occurs in four-nucleon couplings
induced by higher-dimensional LNVoperators. Treating Vπ

as a subleading correction [35,39] is equivalent to working
to LO in pionless EFT and does not affect our conclusions
about the importance of gNNν [26]. Details on how to obtain
δAC will be provided in future work [40].
AΔL¼2 in a cutoff scheme.—The need for a LO counter-

term can be demonstrated also in a coordinate-space
scheme that makes no direct reference to Feynman dia-
grams. In this approach, we regulate the short-range part of
V0 with a smeared δ function,

C̃δð3ÞðrÞ → C̃ðRSÞ
ð ffiffiffi

π
p

RSÞ3
exp

�
−
r2

R2
S

�
≡ C̃ðRSÞδð3ÞRS

ðrÞ; ð13Þ

and obtain ψ−
p0 ðrÞ and ψþ

p ðrÞ by solving the Schrödinger

equation. We determine C̃ðRSÞ by requiring that the 1S0
scattering length be reproduced (C̃ ≈ −0.4=F2

π at
RS ¼ 0.8 fm). We find that 1=C̃ðRSÞ has linear (1=RS)
and logarithmic divergences [35] and that the 1S0 phase
shifts at nonzero momentum are indeed RS independent.
We then compute

AðνÞ
ΔL¼2 ¼ −

Z
d3rψ−

p0 ðrÞ�Vν;0ðrÞψþ
p ðrÞ; ð14Þ

where Vν;0ðrÞ is obtained by Fourier transforming the 1S0
projection of Eq. (3). In Fig. 2, we plotAðνÞ

ΔL¼2 as a function
of RS. The plot displays a logarithmic dependence on
RS [analogous to the log μ dependence in Eq. (10)] as well
as milder powerlike behavior. Therefore, to obtain a
physical, regulator-independent amplitude one needs to
include a LO counterterm, given in r space by Vν;CTðrÞ ¼
−2gNNν ðRSÞδð3ÞRS

ðrÞ. The corresponding amplitude,
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FIG. 2. Matrix element AðνÞ
ΔL¼2 for jpj ¼ 1 MeV and

jp0j ¼ 38 MeV, as a function of RS. The dashed line shows a
fit to aþ b logRS, which captures the small RS behavior. The
solid line corresponds to a fit that includes OðRS; RS logRSÞ
power corrections. The dash-dotted line shows AðνÞ

ΔL¼2 in M̄S as a
function of 1=μ. The horizontal bands represent the total
amplitude AΔL¼2 with gNNν ¼ ðC1 þ C2Þ=2, as discussed in the
main text.
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AðNNÞ
ΔL¼2 ¼ −

Z
d3rψ−

p0 ðrÞ�Vν;CTðrÞψþ
p ðrÞ; ð15Þ

is also regulator dependent. As expected from Eq. (9), we
find its leading divergent behavior to be well reproduced by

1=C̃ðRSÞ2. We can then make AΔL¼2 ¼ AðνÞ
ΔL¼2 þAðNNÞ

ΔL¼2

finite for RS → 0 and RS independent by choosing
g̃NNν ðRSÞ¼−ða=2Þð1þ2g2AÞlogRSþbþcRSþ���, with the
coefficient of the logarithm quite close to the MS expect-
ation a ¼ 1.
Relating gNNν to electromagnetic isospin violation.—The

finite part of gNNν can be obtained by matching the chiral
EFT amplitude to a lattice QCD calculation performed at
the same kinematic point, as it is done in the strong-
interacting sector [41]. First lattice results related to double-
beta decay are starting to appear [42,43].
We now discuss a complementary estimate based on the

fact that the short-range operators and associated LECs
arising in 0νββ and electromagnetic processes are closely
related [26]. In the electromagnetic case, the short-range
hadronic operators arise from amplitudes in the underlying
theory involving two insertions of the electromagnetic
current with exchange of hard virtual photons [44,45]. In
the ΔL ¼ 2 case, up to a proportionality factor, the same
operators are generated by the insertion of two weak
currents with exchange of hard neutrinos. This comes
about because the neutrino propagator and weak vertices
combine to give a massless gauge-boson propagator in
Feynman gauge, multiplied by 8G2

FV
2
udmββēLecL [26]. The

LECs needed for 0νββ are therefore related to the LECs
associated with the isospin I ¼ 2 component of the product
of two electromagnetic currents, which belongs to the 5L ×
1R irreducible representation of chiral SUð2ÞL × SUð2ÞR.
Only two independent four-nucleon operators that trans-

form as I ¼ 2 objects exist

O1 ¼ N̄QLNN̄QLN −
Tr½Q2

L�
6

N̄τN · N̄τN þ fL ↔ Rg;

O2 ¼ 2

�
N̄QLNN̄QRN −

Tr½QLQR�
6

N̄τN · N̄τN

�
; ð16Þ

where QL¼u†QLu, QR¼uQRu†, u ¼ exp (iτ · π=ð2FπÞ),
and QL;R are “spurions” transforming under the chiral
group as QL → LQLL†, QR → RQRR†. In the electromag-
netic case, QL ¼ QR ¼ τ3=2, while in 0νββ QL ¼ τþ,
QR ¼ 0. In our conventions, O1 enters the ΔL ¼ 2

Lagrangian with coefficient 2G2
FV

2
udmββgNNν . Defining

the electromagnetic LECs multiplying O1;2 as e2C1;2=4,
chiral symmetry dictates gNNν ¼ C1.
In the electromagnetic case, O1 and O2 only differ at the

multipion level, and an isospin-breaking two-nucleon
observable, such as the I ¼ 2 combination of scattering
lengths aCIB ¼ ðann þ appÞ=2 − anp, only constrains the
sum C1 þ C2. Extracting this combination from data

provides a rough estimate of gNNν under the assumption
C1 ∼ C2. As in the ΔL ¼ 2 case, we introduce the
dimensionless couplings C̃i ≡ ½4π=ðmNC̃Þ�2Ci and com-
pute the scattering lengths app;nn;np including the leading
sources of isospin breaking—the Coulomb potential and
pion mass splitting—and C̃1 þ C̃2. Similar to the ΔL ¼ 2

case, we find that C̃1 þ C̃2 needs to be promoted to LO and
obeys the RGE

μ
d
dμ

C̃1 þ C̃2

2
¼ 1

2

�
1þ g2A

m2
πþ −m2

π0

e2F2
π

�
; ð17Þ

while, of course, C̃1 has the same RGE as g̃NNν . By fitting to
aCIB using anp ¼ −23.7 fm, ann ¼ −18.9 fm, and
app ¼ −7.8 fm, we find ðC̃1 þ C̃2Þ=2 ≈ 2.5 at μ ¼ mπ in
the MS scheme. Using instead the RS scheme, we find
ðC̃1 þ C̃2Þ=2 ≈ 2.0 at RS ¼ 0.5 fm. This estimate, based
on data and chiral symmetry, again confirms that
gNNν ∼OðF−2

π Þ. Our result is consistent with analyses based
on chiral [46–49] and phenomenological potentials such as
AV18 [50], which also find that, except at very low
energies, long- and short-range components of the CIB
interaction induce effects of similar size.
Numerical impact.—To roughly estimate the impact of

the contact term, we assume for concreteness C1 ¼ C2 and
hence gNNν ¼ ðC1 þ C2Þ=2 at some R̄S or μ̄−1 in the range

0.002–0.8 fm. The total two-nucleon amplitude AΔL¼2 ¼
AðνÞ

ΔL¼2 þAðNNÞ
ΔL¼2 then becomes independent of the regula-

tor, as illustrated in Fig. 2, where the widths of the
horizontal bands reflect the ambiguity in the choice of
the point R̄S or μ̄ where C1 ¼ C2 is assumed. (They do not
account for the uncontrolled error of the assumption itself.)
The relative size of the two components depends on RS,

with AðNNÞ
ΔL¼2=A

ðνÞ
ΔL¼2 ∼ 30% at RS ∼ 0.1 fm, decreasing to

∼10% at RS ∼ 0.6 fm. More insight can be obtained from
the matrix-element densities ρν and ρNN, implicitly defined
from Eqs. (14) and (15) by

AðνÞ
ΔL¼2 ¼

Z
drρνðrÞ; AðNNÞ

ΔL¼2 ¼
Z

drρNNðrÞ: ð18Þ

Figure 3 (top panel) shows that ρNNðrÞ is concentrated at
smaller distances than ρνðrÞ, and its contribution to the
amplitude is thus partially diluted.
We have performed a similar analysis for A ¼ 6, 12

nuclei, using variational Monte Carlo nuclear wave func-
tions [51] based on the AV18 two-nucleon [50] and IL7
three-nucleon [52] interactions. The mismatch between the
short-range behaviors of existing strong-interaction poten-
tials and our 0νββ interaction introduces additional model
dependence, which we mitigate by (i) considering an
alternative extraction of ðC1 þ C2Þ=2 from the phase-shift
analysis of Refs. [47,48], which employs the same
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regulator (13) with RS ≃ 0.6–0.8 fm, approximately the
range of AV18’s short-range part, and (ii) simply replacing
our Vν;CTðrÞ with AV18’s short-range CIB potential. Note
that C1 þ C2 is related to the CIB coefficient CIT

0 of
Refs. [47,48] by ðC1 þ C2Þ=2 ¼ −6CIT

0 =e2.
For ΔI ¼ 0 transitions such as the 6He → 6Be shown in

Fig. 3 (middle panel), we find AðNNÞ
ΔL¼2=A

ðνÞ
ΔL¼2 ∼ 10%,

similar to the nn → ppee case. In realistic 0νββ tran-
sitions, however, the total nuclear isospin changes by
two units, ΔI ¼ 2. This implies the presence of a node
in ρνðrÞ due to the orthogonality of the initial and final
spatial wave functions. The resulting partial cancellation
between the regions with r≲ 2 fm and r≳ 2 fm [51] leads
to a relative enhancement of the short-range contribution,
as illustrated in Fig. 3 (bottom panel) for 12Be → 12C.

Numerically, we find AðNNÞ
ΔL¼2=A

ðνÞ
ΔL¼2 ∼ 25% (our fit),

∼55% (fit from Refs. [47,48]), and ∼60% (AV18 repre-
sentation of the short-range CIB potential). Because (i) the
node in the density is a robust feature of ΔI ¼ 2 transition
[53,54], and (ii) the relative size of the matrix elements of
short- and long-range operators is roughly the same in
nuclei from A ¼ 10 through A ¼ 136 [51], we expect the
effects in 12Be → 12C and experimentally relevant transi-
tions to be of comparable size.
Conclusion.—The above arguments suggest that the new

leading-order short-range ΔL ¼ 2 potential identified in
this Letter can affect the 0νββ amplitude and, consequently,
the quantitative implications of experiments on mββ at the
Oð1Þ level. (At subleading orders, a similar analysis of the
renormalization of the 0νββ amplitude must be performed,
which takes into account the required modifications to
Weinberg’s power counting in the strong-interaction sector,
such as the perturbative correction induced by the 1S0
effective range at next-to-leading order [37].) In particular,
sensitivity to the inverted hierarchy [24] in next-generation
experiments might be increased or much decreased,
depending on the size and sign of the interference between
the new short-range contribution and the long-range term.
We hope this will stimulate work towards a more controlled
determination of gNNν from lattice QCD and an assessment
of the impact of the short-range potential in nuclei of
experimental interest.
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