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We report on the construction of a deep convolutional neural network that can reproduce the sensitivity
of a matched-filtering search for binary black hole gravitational-wave signals. The standard method for the
detection of well-modeled transient gravitational-wave signals is matched filtering. We use only whitened
time series of measured gravitational-wave strain as an input, and we train and test on simulated binary
black hole signals in synthetic Gaussian noise representative of Advanced LIGO sensitivity. We show that
our network can classify signal from noise with a performance that emulates that of match filtering applied
to the same data sets when considering the sensitivity defined by receiver-operator characteristics.
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Introduction.—The field of gravitational-wave astronomy
has seen an explosion of compact binary coalescence
detections over the past several years. The first of these
were binary black hole detections [1–3] and more recently
the advanced detector network made the first detection of a
binary neutron star system [4]. This latter event was seen in
conjunction with a gamma-ray burst [5–7] and multiple
postmerger electromagnetic signatures [8]. These detections
were made possible by the Advanced Laser Interferometer
Gravitational Wave Observatory detectors, as well as the
recent joint detections of GW170814 and GW170817 with
Advanced Virgo [4,9]. Over the coming years many more
such observations, including binary black hole (BBH),
binary neutron stars, as well as other more exotic sources
are likely to be observed on a more frequent basis. As such,
the need for more efficient search methods will be more
pertinent as the detectors increase in sensitivity.
The algorithms used by the search pipelines to make

detections [10–12] are, in general, computationally expen-
sive. The methods used are complex, sophisticated proc-
esses computed over a large parameter space using
advanced signal processing techniques. The computational
cost to run the search analysis is due to the large parameter
space, as well as analysis of the high frequency components
of the waveform where high data sample rates are required.
Distinguishing noise from signal in these search pipelines is
achieved, in part, using a technique known as template-
based matched filtering.
Matched filtering uses a bank [12–16] of template

waveforms [17–20] each with different component mass

and/or spin values. A template bank spans a large astro-
physical parameter space since we do not know a priori the
true gravitational-waves parameter values. Waveform mod-
els that cover the inspiral, merger, and ringdown phases of a
compact binary coalescence are based on combining post-
Newtonian theory [20–23], the effective-one-body formal-
ism [24], and numerical relativity simulations [25].
Deep learning is a subset of machine learning, which has

gained in popularity in recent years [26–31] with the rapid
development of graphics-processing-unit technology. Some
successful implementations of deep learning include image
processing [26,32,33], medical diagnosis [34], and micro-
array gene expression classification [35]. There has also
been some recent success in the field of gravitational-wave
astronomy in the form of glitch classification [36–38] and
notably for signal identification [39,40] where it was first
shown that deep learning could be a detection tool [39].
Deep learning is able to perform analyses rapidly since the
method’s computationally intensive stage is precomputed
during the training prior to the analysis of actual data [41].
This could result in low-latency searches that have the
potential to be orders of magnitude faster than other
comparable classification methods.
Adeep learning algorithm is composedof stacked arrays of

processing units, called neurons, which can be from one to
several layers deep. A neuron acts as a filter, whereby it
performs a transformation on an array of inputs. This trans-
formation is a linear operation between the input array and the
weight and bias parameters associated with the neuron. The
resulting array is then typically passed to a nonlinear
activation function to constrain the neuron output to be
within a set range. Deep learning algorithms typically consist
of an input layer, followed by one to several hidden layers and
then one to multiple output neurons. The scalars produced
from the output neurons can be used to solve classification
problems, where each output neuron corresponds to the
probability that an input sample is of a certain class.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 120, 141103 (2018)
Editors' Suggestion

0031-9007=18=120(14)=141103(6) 141103-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.141103&domain=pdf&date_stamp=2018-04-06
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1103/PhysRevLett.120.141103
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In this Letter we investigate the simplest case of
establishing whether a signal is present in the data or if
the data contain only detector noise. We propose a deep
learning procedure requiring only the raw data time series
as input with minimal signal preprocessing. We compare
the results of our network with the widely used matched-
filtering technique and show how a deep learning approach
can be pretrained using simulated data sets and applied in
low latency to achieve the same sensitivity as established
matched-filtering techniques.
Simulation details.—In order to make a clean compari-

son between the deep learning approach and matched
filtering, we distinguish between two cases, BBH merger
signals in additive Gaussian noise (signalþ noise) and
Gaussian noise alone (noise only). We choose to focus on
BBH signals rather than including binary neutron star
systems for the reason that BBH systems are higher mass
systems and have shorter duration signals once the inspir-
alling systems have entered the Advanced LIGO frequency
band. They typically then merge on the timescale ofOð1sÞ,
allowing us to use relatively small data sets for this study.
The input data sets consist of “whitened” simulated

gravitational-wave time series where the whitening process
uses the detector noise power spectral density (PSD) to
rescale the noise contribution at each frequency to have
equal power. Our noise is initially generated from a PSD
equivalent to the Advanced LIGO design sensitivity [42].
Signals are simulated using a library of gravitational-

wave data analysis routines called LALSuite. We use the
IMRPhenomD-type waveform [43,44], which models the
inspiral, merger, and ringdown components of BBH gravi-
tational-wave signals. We simulate systems with compo-
nent black hole masses in the range from 5 to 95M⊙,
m1 > m2, with zero spin. Training, validation, and testing
data sets contain signals drawn from an astrophysically
motivated distribution where we assume m1;2 ∼ logm1;2

[45]. Each signal is given a random right ascension and
declination assuming an isotropic prior on the sky, the
polarization angle and phase are drawn from a uniform
prior on the range ½0; 2π�, and the inclination angle is drawn
such that the cosine of inclination is uniform on the range
½−1; 1�. The waveforms are then randomly placed within
the time series such that the peak amplitude of each
waveform is randomly positioned within the fractional
range [0.75, 0.95] of the time series.
The waveform amplitude is scaled to achieve a prede-

fined optimal signal-to-noise ratio (SNR) defined as

ρ2opt ¼ 4

Z
∞

fmin

j ˜hðfÞj2
SnðfÞ

df; ð1Þ

where ˜hðfÞ is the frequency domain representation of the
gravitational-wave strain and SnðfÞ is the single-sided
detector noise PSD [46]. The simulated time series were
chosen to be 1 s in duration sampled at 8192 Hz. Therefore,

we consider fmin as the frequency of the gravitational-wave
signal at the start of the sample time series. An example
time series can be seen in Fig. 1.
Because of the requirements of the matched-filtering

comparison it was necessary to add padding to each time
series so as to avoid nonphysical boundary artefacts from
the whitening procedure. The Gaussianity of the noise and
smoothness of the simulated advanced LIGO PSD allows
the use of relatively short padding. Therefore, each 1 s time
series has an additional 0.5 s of data prior to and after the
signal. The signal itself has a Tukey window (α ¼ 1=8)
applied to truncate the signal content to the central 1 s. The
convolutional neural network (CNN) approach only has
access to this central 1 s of data. Similarly, the optimal SNR
is computed considering only the central 1 s.
Supervised deep learning requires data sets to be sub-

divided into training, validation, and testing sets. Training
sets are the data samples that the network learns from, the
validation set allows the developer to verify that the network
is learning correctly, and the test set is used to quantify the
performance of the trained network. In a practical scenario
the training and validation sets are used to train the network
prior to data taking. This constitutes the vast majority of
computational effort and is a procedure that needs to be
computed only once. The trained network can then be
applied to test data at a vastly reduced cost in comparison to
the training stage [41]. Of the data set generated we use 90%
of these samples for training, 5% for validation, and 5% for
testing. A data set was generated for each predefined
optimal SNR value ranging from 1–10 in integer steps.
Our training data sets contain 5 × 105 independent time

series with 50% containing signalþ noise and 50% noise

FIG. 1. Awhitened noise-free time series of a BBH signal with
component masses m1 ¼ 41.86M⊙ and m2 ¼ 6.65M⊙ with opti-
mal SNR ρopt ¼ 8 (cyan). The dark blue time series shows the
same gravitational-wave signal with additive whitened Gaussian
noise of unit variance. This latter time series is representative of the
data sets used to train, validate, and test the deep neural network.

PHYSICAL REVIEW LETTERS 120, 141103 (2018)

141103-2



only. For each simulated gravitational-wave signal (drawn
from the signal parameter space) we generate 25 indepen-
dent noise realizations from which 25 signalþ noise
samples are produced. This procedure is standard within
machine-learning classification and allows the network to
learn how to identify individual signals under different
noise scenarios. Each noise-only sample consists of an
independent noise realization and in total we therefore use
10000 unique waveforms in the m1, m2 mass space. Each
data sample time series is then represented in the form of a
1 × 8192 pixel image with the gray-scale intensity of each
pixel proportional to the gravitational-wave amplitude.
The deep network approach.—In our model, we use a

variant of a deep learning algorithm called a CNN [47]
composed of multiple layers. The input layer holds the raw
pixel values of the sample image, which, in our case, is a
one-dimensional time series vector. The weight and bias
parameters of the network are also in one-dimensional
vector form. Each neuron in the convolutional layer
computes the convolution between the neuron’s weight
vector and the outputs from the layer below it, and then the
result is summed with the bias vector. Neuron weight
vectors are updated through an optimization algorithm
called back propagation [48]. Activation functions apply
an elementwise nonlinear operation, rescaling their inputs
onto a specific range and leaving the size of the previous
layer’s output unchanged. Pooling layers perform a down-
sampling operation along the spatial dimensions of their
input. Finally we have a hidden layer connected to an
output layer that computes the inferred class probabilities.
These values are input to a loss function, chosen as the
binary cross entropy [49], defined as

fðθÞ ¼ −
X
i∈S

logðθSi Þ −
X
i∈N

logðθNi Þ; ð2Þ

where θS=Ni is the predicted probability of class signalþ
noise (S) or noise-only (N) for the ith training sample. The
loss function is minimized when input data samples are
assigned the correct class with the highest confidence.

In order to optimize a network, multiple hyperparameters
must be tuned. We define hyperparameters as parameters
we are free to choose. Such parameters include the number
and type of network layers, the number of neurons within
each layer, size of the neuron weight vectors, max-pooling
parameters, type of activation functions, preprocessing of
input data, learning rate, and the application (or otherwise)
of specific deep learning techniques. We begin the process
with the simplest network that provides a discernible level
of effective classification. In most cases this consists of an
input, convolutional, hidden, and logistic output layer. The
optimal network structure was determined through multiple
tests and tunings of hyperparameters by means of trial
and error.
During the training stage an optimization function (back

propagation) works by computing the gradient of the loss
function [Eq. (2)], then attempting to minimize that loss
function. The errors are then propagated back through the
network while also updating the weight and bias terms
accordingly. Back propagation is done over multiple
iterations called epochs. We use adaptive moment estima-
tion with incorporated Nesterov momentum [50] with a
learning rate of 0.002, β1 ¼ 0.9, β2 ¼ 0.999, ϵ ¼ 10−8 and
a momentum schedule of 0.004. We outline the structure of
the final neural network architecture in Table I.
The final ranking statistic that we extract from the CNN

analysis is taken from the output layer, composed of two
neurons, where each neuron produces a probability value
between 0 and 1 with their sum being unity. Each neuron
gives the inferred probability that the input data belong to
the noise or signalþ noise class, respectively. The com-
putational time spent on training the network for each SNR
is Oð1Þ hour on a single GPU. This one-time cost can be
compared to the Oð1sÞ spent applying the trained network
to all 25,000 1 s test data samples also using a single GPU.
Therefore, at the point of data taking this particular analysis
can be run 104 times faster than real time.
Applying matched filtering.—In order to establish the

power of the deep learning approach we must compare our
results to the standard matched-filtering process used in the

TABLE I. The optimized network consisting of six convolutional layers (C), followed by three hidden layers (H). Max pooling is
performed on the first, fifth, and eighth layer, whereas dropout is only performed on the two hidden layers. Each layer uses an
exponential linear unit (Elu) activation function (with range ½−1;∞�) while the last layer uses a Softmax (SMax) activation function in
order to normalize the output values to be between 0 and 1 so as to give a probability value for each class.

Layer

Parameter (Option) 1 2 3 4 5 6 7 8 9

Type C C C C C C H H H
No. Neurons 8 8 16 16 32 32 64 64 2
Filter size 64 32 32 16 16 16 Not applicable Not applicable Not applicable
Max pool size Not applicable 8 Not applicable 6 Not applicable 4 Not applicable Not applicable Not applicable
Drop out 0 0 0 0 0 0 0.5 0.5 0
Activation function Elu Elu Elu Elu Elu Elu Elu Elu SMax
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detection of compact binary coalescence signals [46,51].
The ranking statistic used in this case is the matched-filter
SNR numerically maximized over arrival time, phase, and
distance. By first defining the noise weighted inner product
as a function of a time shift Δt between the arrival time of
the signal and the template,

ðajbÞ½Δt� ¼ 4

Z
∞

fmin

ãðfÞb̃�ðfÞ
SnðfÞ

e2πifΔtdf; ð3Þ

we can construct the matched-filter SNR as

ρ2½Δt� ¼ ðsjhÞ2½Δt� þ iðsjhÞ2½Δt�
ðhjhÞ ; ð4Þ

where s is the data containing noise and a potential signal,
and h is the noise-free gravitational-wave template [52].
For a given template this quantity is efficiently computed
using the FFT and the SNR time series maximized over Δt.
The subsequent step is to further numerically maximize
this quantity over a collection of component mass combi-
nations. In this analysis a comprehensive template bank is
generated in them1,m2 mass space covering our predefined
range of masses. We use a maximummismatch of 3% and a
lower frequency cutoff of 20 Hz using the PyCBC geo-
metric nonspinning template bank generation tool [10,53].
This template bank contained 8056 individual templates.
When generating a SNR time series for an input data set

we select fmin according to the conservative case (lowest
fmin) in which the signal merger occurs at the 0.95 fraction
of 1 s time series. We therefore select only maximized SNR
time series values recovered from within the [0.75, 0.95]
fractional range since this is the parameter space on which
the CNN has been trained. For the practical computation of
the matched-filtering analysis we take each of the data
samples from the testing data set to compute the matched-
filter ranking statistic.
Results.—After tuning the multiple hyperparameters

(Table I) and training the neural network, we present the
results of our CNN classifier on a noise versus signalþ
noise sample set. With values of statistics now assigned to
each test data sample from both the CNN and matched-
filtering approaches, and having knowledge of the true
class associated with each sample, we may now construct
receiver operator characteristic (ROC) curves.
In Fig. 2 we compare our CNN results to that of matched

filtering. Given the ranking statistic from a particular
analysis and defining a parametric threshold value on that
statistic we are able to plot the fraction of noise samples
incorrectly identified as signals (false alarm probability)
versus the fraction of signal samples correctly identified
(true alarm probability). These curves are defined as ROC
curves and a ranking statistic is deemed superior to another
if at a given false alarm probability it achieves a higher
detection probability. Our results show that the CNN

approach closely matches the sensitivity of matched filter-
ing for all test data sets across the range of false alarm
probabilities explored in this analysis [54].
We can make an additional direct comparison between

approaches by fixing a false alarm probability and plotting
the corresponding true alarm probability versus the optimal
SNR of the signals in each test data set. We show these
efficiency curves in Fig. 3 at false alarm probabilities

FIG. 2. The ROC curves for test data sets containing signals
with optimal SNR, ρopt ¼ 2, 4, 6. We plot the true alarm
probability versus the false alarm probability estimated from
the output of the CNN (purple) and matched-filtering (cyan)
approaches. Uncertainties in the true alarm probability corre-
spond to 1-σ bounds assuming a binomial distribution.

FIG. 3. Efficiency curves comparing the performance of the
CNN and matched-filtering approaches for false alarm proba-
bilities 10−1 (solid), 10−2 (dashed), 10−3 (dot-dashed). The true
alarm probability is plotted as a function of the optimal SNR for
the CNN (purple) and the matched-filtering (cyan) analyses.
Solid dots indicate at which SNR values analyses were performed
and line thicknesses are indicative of the statistical uncertainties
in the curves.
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10−1; 10−2; 10−3 for both the CNN and matched-filtering
approaches. We again see very good agreement between the
approaches at all false alarm probabilities with the CNN
sensitivity exceeding that of the matched-filter approach at
low SNR and high false alarm probability. Conversely we
see the matched-filter sensitivity marginally exceeds the
CNN at high SNR and low false alarm probability. This
latter discrepancy could be mitigated by increasing the
number of training samples.
Conclusions.—We have demonstrated that deep learn-

ing, when applied to gravitational-wave time series data, is
able to closely reproduce the results of a matched-filtering
analysis in Gaussian noise. We employ a deep convolu-
tional neural network with rigorously tuned hyperpara-
meters and produce an output that returns a ranking statistic
equivalent to the inferred probability that data contain a
signal. Matched-filtering analyses are often described as the
optimal approach for signal detection in Gaussian noise. By
building a neural network that is capable of reproducing
this optimality we answer a fundamental question regarding
the applicability of neural networks for gravitational-wave
data analysis.
In practice, searches for transient signals in gravitational-

wave data are strongly affected by non-Gaussian noise
artefacts. To account for this, standard matched-filtering
approaches are modified to include carefully chosen
changes to the ranking statistic [55,56] together with the
excision of poor quality data [57,58]. Our analysis repre-
sents a starting point from which a deep network can be
trained on realistic non-Gaussian data. Since the claim of
matched-filtering optimality is applicable only in the
Gaussian noise case, there exists the potential for deep
networks to exceed the sensitivity of existing matched-
filtering approaches in real data.
In this work we have presented results for BBH mergers;

however, this method could be applied to other merger
types, such as binary neutron star and neutron star-black
hole signals. This supervised learning approach can also be
extended to other well-modeled gravitational-wave targets
such as the continuous emission from rapidly rotating
nonaxisymmetric neutron stars [59]. Finally we mention
the possibilities for parameter estimation [60] where in the
simplest cases an output regression layer can return point
estimates of parameter values. As was exemplified in the
case of GW170817, rapid detection confidence coupled
with robust and equally rapid parameter estimates is critical
for gravitational-wave multimessenger astronomy.
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H. P. Pfeiffer, M. A. Scheel, B. Szilágyi, N. W. Taylor, and
A. Zenginoglu, Phys. Rev. D 89, 061502 (2014).

[19] S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon,
N. Fotopoulos, M. A. Frei, C. Hanna, A. J. Weinstein,
and J. T. Whelan, Phys. Rev. D 89, 024003 (2014).

[20] L. Blanchet, Living Rev. Relativity 17, 2 (2014).
[21] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys.

Rev. D 84, 049901(E) (2011).
[22] A. Buonanno, B. R. Iyer, E. Ochsner, Y. Pan, and B. S.

Sathyaprakash, Phys. Rev. D 80, 084043 (2009).
[23] C. K. Mishra, A. Kela, K. G. Arun, and G. Faye, Phys. Rev.

D 93, 084054 (2016).
[24] A. Buonanno and T. Damour, Phys. Rev. D 59, 084006

(1999).
[25] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances

in Neural Information Processing Systems 25, edited by
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Curran Associates, Inc., 2012), pp. 1097–1105.

[27] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
arXiv:1406.2661.

[28] K. Simonyan and A. Zisserman, arXiv:1409.1556.
[29] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille, arXiv:1412.7062.
[30] M. D. Zeiler and R. Fergus, arXiv:1311.2901.
[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
arXiv:1409.4842.

[32] R. Zhang, P. Isola, and A. A. Efros, arXiv:1603.08511.
[33] A. Karpathy and L. Fei-Fei, arXiv:1412.2306.
[34] I. Kononenko, Artif. Intell. Med. 23, 89 (2001).
[35] M. Pirooznia, J. Y. Yang, M. Q. Yang, and Y. Deng, BMC

Genomics 9, S13 (2008).
[36] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and

N. S. Philip, Phys. Rev. D 95, 104059 (2017).
[37] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani,

S. Allen, M. Cabero, K. Crowston, A. K. Katsaggelos, S. L.
Larson, T. K. Lee, C. Lintott, T. B. Littenberg, A. Lundgren,
C. sterlund, J. R. Smith, L. Trouille, and V. Kalogera,
Classical Quantum Gravity 34, 064003 (2017).

[38] D. George, H. Shen, and E. A. Huerta, arXiv:1706.07446.
[39] D. George and E. Huerta, Phys. Lett. B 778, 64 (2018).
[40] T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry, and B.

Schölkopf, in Workshop at the 31st Conference on Neural
Information Processing Systems (NIPS), Long Beach, CA
(2017).

[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[42] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy,
F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
R. X. Adhikari et al., Living Rev. Relativity 19, 1 (2016).

[43] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J.
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Forteza, and A. Bohé, Phys. Rev. D 93, 044007 (2016).

[45] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. X 6, 041015 (2016).

[46] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, Phys. Rev. D 85, 122006 (2012).

[47] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Proc. IEEE
86, 2278 (1998).

[48] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, in Neural
Networks: Tricks of the Trade, edited by G. B. Orr and K.-R.
Müller (Springer Berlin Heidelberg, Berlin, Heidelberg,
1998), pp. 9–50.

[49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C.
Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin et al.,
arXiv:1603.04467.

[50] T. Dozat, ICLR Workshop, San Juan, Puerto Rico (2016).
[51] S. Babak et al., Phys. Rev. D 87, 024033 (2013).
[52] S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer,

and B. S. Sathyaprakash, Classical Quantum Gravity 23,
5477 (2006).

[53] A. Nitz et al., Pycbc software (2017).
[54] We are limited to a minimal false alarm probability of ∼10−4

due to the limited number of testing samples used.
[55] B. Allen, Phys. Rev. D 71, 062001 (2005).
[56] A. H. Nitz, T. Dent, T. D. Canton, S. Fairhurst, and D. A.

Brown, Astrophys. J. 849, 118 (2017).
[57] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Classical Quantum Gravity 35, 065010
(2018).

[58] B. P. Abbott et al., Classical Quantum Gravity 33, 134001
(2016).

[59] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), arXiv:1707.02669.

[60] D. George and E. A. Huerta, Phys. Rev. D 97, 044039
(2018).

PHYSICAL REVIEW LETTERS 120, 141103 (2018)

141103-6

https://doi.org/10.1103/PhysRevD.89.084041
https://doi.org/10.1103/PhysRevD.89.084041
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.024003
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevD.84.049901
https://doi.org/10.1103/PhysRevD.84.049901
https://doi.org/10.1103/PhysRevD.80.084043
https://doi.org/10.1103/PhysRevD.93.084054
https://doi.org/10.1103/PhysRevD.93.084054
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevD.59.084006
https://doi.org/10.1103/PhysRevLett.95.121101
http://arXiv.org/abs/1406.2661
http://arXiv.org/abs/1409.1556
http://arXiv.org/abs/1412.7062
http://arXiv.org/abs/1311.2901
http://arXiv.org/abs/1409.4842
http://arXiv.org/abs/1603.08511
http://arXiv.org/abs/1412.2306
https://doi.org/10.1016/S0933-3657(01)00077-X
https://doi.org/10.1186/1471-2164-9-S1-S13
https://doi.org/10.1186/1471-2164-9-S1-S13
https://doi.org/10.1103/PhysRevD.95.104059
https://doi.org/10.1088/1361-6382/aa5cea
http://arXiv.org/abs/1706.07446
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1007/lrr-2016-1
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://arXiv.org/abs/1603.04467
https://doi.org/10.1103/PhysRevD.87.024033
https://doi.org/10.1088/0264-9381/23/18/002
https://doi.org/10.1088/0264-9381/23/18/002
https://doi.org/10.1103/PhysRevD.71.062001
https://doi.org/10.3847/1538-4357/aa8f50
https://doi.org/10.1088/1361-6382/aaaafa
https://doi.org/10.1088/1361-6382/aaaafa
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1088/0264-9381/33/13/134001
http://arXiv.org/abs/1707.02669
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039

