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Vortex Thermometry for Turbulent Two-Dimensional Fluids
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We introduce a new method of statistical analysis to characterize the dynamics of turbulent fluids in
two dimensions. We establish that, in equilibrium, the vortex distributions can be uniquely connected

to the temperature of the vortex gas, and we apply this vortex thermometry to characterize simulations of
decaying superfluid turbulence. We confirm the hypothesis of vortex evaporative heating leading to
Onsager vortices proposed in Phys. Rev. Lett. 113, 165302 (2014), and we find previously unidentified
vortex power-law distributions that emerge from the dynamics.
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Turbulence arises in chaotic dynamical systems across
all scales, from mammalian cardiovascular systems, to
climate, and even to the formation of stars and galaxies
[1]. The unpredictability inherent to turbulent systems is
further confounded by physical properties such as boun-
daries and spatial dimensionality, and because of its
complexity, there is currently no unified theoretical frame-
work to explain turbulence. As such, there is a need to
develop new methods to characterize the evolution of
turbulent states in order to provide further insights into
this important problem.

Onsager developed a model of statistical hydrodynamics
to describe turbulence in two-dimensional (2D) flows [2].
In this representation, the fluid is modeled by an N-particle
gas of interacting pointlike vortices which can be charac-
terized by an equilibrium temperature. As the bounded
system of vortices has a finite configuration space, the
entropy S of the system has a maximum, and hence there is
arange of energy E where the absolute Boltzmann temper-
ature T = (0S/OE)~! becomes negative [2—4]. These states
correspond to large-scale rotational flows known as
Onsager vortices [2].

In driven 2D incompressible fluids, negative temperature
Onsager states are known to emerge dynamically, effec-
tively giving rise to order from chaos. This peculiar
phenomenon is understood to be associated with an inverse
energy cascade, in which energy flows towards the largest
length scales in the system [5,6]. However, it is not clear
whether this process should carry over to the regime of
superfluid turbulence due to the compressibility of the
superflow [7]. Despite this, many recent theoretical works
involving superfluid Bose-Einstein condensates (BECs)
have suggested that large-scale, same-sign, Onsager vortex
clusters play an important role in 2D quantum turbulence
[8—17]. In superfluids, much of the focus to date has been
on decaying—rather than driven—turbulence [9,11-14,
17-24] since this scenario removes the complications of
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stirring. A variety of concepts have been applied to the
problem, including holographic duality [25,26] and non-
thermal fixed points [27-29].

Experimentally, BECs provide unprecedented opportu-
nities to investigate 2D superfluid turbulence due to the high
degree of controllability available in these systems. It is now
possible to create and image complex vortex configurations
such as dipoles [30-33], few-vortex clusters [34], and
quantum von Kdrmdn vortex streets [35]. Many experiments
have also been devoted to the study of quantum turbulence in
both two-dimensional [11,19,20,23] and three-dimensional
[22,36,37] geometries. However, the formation of Onsager
vortex structures in statistical equilibrium has not yet been
reported. Recent theoretical works have suggested that one
significant obstacle is the harmonic trapping commonly used
in experiments, as vortex clusters appear to be suppressed in
this geometry [14,20,38]. In addition, the detection of vortex
circulation signs is experimentally difficult, and only recently
have techniques been proposed [39] and implemented [23] to
achieve this. Analysis of turbulent dynamics is made even
more challenging by current condensate imaging methods,
which only allow a small number of frames to be captured for
a single experimental realization [40]. As such, it is desirable
to be able to characterize the state of a turbulent fluid using a
robust method of statistical analysis that links the instanta-
neous microscopic configuration of the system to its macro-
scopic behavior. Onsager’s thermodynamical description of
turbulence is one such method, and hence we propose to use
its central observable—the vortex temperature—for this
purpose. In contrast to velocimetry-based observables that
require the measurement of the velocities of the atoms, the
thermometry presented here only requires the measurement
of the positions and circulation signs of the quantized
vortices.

We first outline our method for measuring the
temperature of the vortex gas, before examining a specific
case of decaying superfluid turbulence using mean-field
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Gross-Pitaevskii simulations. In the dynamics, we observe
that the vortex gas undergoes rapid equilibration before
settling into a quasiequilibrium state, where it continues to
heat adiabatically via vortex evaporation [13]. We have
discovered that, in this evolution, the numbers of clusters,
dipoles, and free vortices follow robust power laws with
respect to the total vortex number. The existence of this
quasiequilibrium allows quantitative thermometry of the
turbulent fluid.

To calibrate the vortex thermometer, we use Monte Carlo
(MC) simulations to map out the equilibrium vortex
configurations as a function of the inverse temperature
p = 1/kgT, where kg is Boltzmann’s constant. We do this
for a system of N,, = 50 point vortices with equal numbers
of clockwise and anticlockwise circulations. Other values
of N, are considered in Ref. [4]1]. We use a point vortex
Hamiltonian corresponding to a uniform fluid within a
circular boundary of radius R [13,43], and set a hard vortex
core of radius 0.003R to prevent energy divergences. As we
vary the temperature across both positive and negative
regimes, we quantify the effect on the vortex configuration
using a vortex classification algorithm [10,44]. The algo-
rithm uniquely divides the vortex gas into three separate
components: clusters of > 2 like-sign vortices, closely
bound vortex-antivortex dipoles, and relatively isolated
free vortices (for further details, see Ref. [44]). We then
calculate the number of clusters N, dipoles N,, and free
vortices N as functions of temperature, and the resulting
fractional population curves are presented in Fig. 1.

At low positive absolute temperatures (left-hand side of
Fig. 1), the vortex gas is at its “coldest,” as both the energy
and entropy are minimized. In this regime, bound vortex-
antivortex dipole pairs dominate the configuration, as
shown in the schematic inset of Fig. 1. Above the
Berezinskii-Kosterlitz-Thouless (BKT) critical temperature
Peirr [45-49], the vortex dipoles dissociate, causing an
increase in both the energy and entropy. At =0, the
vortex configuration becomes a disordered arrangement of
vortices and antivortices, thereby maximizing the entropy.
In the negative temperature region, low-entropy clusters of
like-sign vortices tend to form (see schematic inset), and
because of their high energy, these negative temperature
states are “hotter” than those at positive temperature. Above
the critical temperature ffgpc, the vortices form an Einstein-
Bose condensate (EBC), a state where the Onsager vortex
clusters condense, as indicated by the saturation of the
cluster population in Fig. 1 [13,44,50]. For a neutral vortex
gas the two aforementioned critical temperatures are
defined as fgxr = 2/E, and frgc = —4/N ,E, (6], respec-
tively, where the energy E, = p,k’/4n is defined in terms
of the superfluid density p, and the quantum of circulation
k = h/m, with m being the mass of the condensed atoms.

Figure 1 demonstrates that the dipole and cluster
populations are monotonic functions of f—this is the
key observation enabling thermometry of the vortex gas.
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FIG. 1. Fractional population p; = N;/N, of each component
of the vortex gas (where j € {c: clusteredvortices; d:

dipole vortices; f: free vortices}) and Einstein-Bose condensate
fraction (described in text), as functions of inverse temperature £.
The fluctuating faint lines show the raw data, while the smooth
dark lines show cubic spline fits. The negative temperature axis
is scaled by the critical temperature |Bggc|, and the positive
temperature axis by |fpkr/|, causing an apparent discontinuity in
the slopes at # = 0. The dashed vertical line indicates f = 0,
and the dotted vertical lines highlight the two critical temper-
atures. The shaded background represents the energy of the
system (red and blue correspond to “hot” or high energy and
“cold” or low energy, respectively). Schematic vortex configu-
rations at each temperature extreme are depicted in the insets,
where vortices (antivortices) are shown as blue (green) filled
circles.

Given an arbitrary vortex configuration in thermal equi-
librium, we may determine its temperature by calculating
the populations of clusters and/or dipoles and by comparing
the obtained values to the curves in Fig. 1. Strictly speak-
ing, the p;(p) curves in the negative temperature region of
Fig. 1 are dependent on the vortex number. However, we
repeated our MC simulations for N, = 100 and 200
vortices and found that, for the vortex numbers relevant
to the dynamical simulations presented here, there is no
qualitative change to the thermometry curves, and the
quantitative change is not significant (see Ref. [41]). The
cluster and dipole fractions are not the only observables that
vary monotonically with vortex temperature in our MC
simulations. For example, both the energy and dipole
moment of the vortex gas also fulfill this requirement
[13] and could therefore, in principle, be used for ther-
mometry. However, of all variables considered, we have
found that the cluster and dipole fractions provide the most
robust thermometers.

Also shown in Fig. 1 is the Einstein-Bose condensate
fraction, which quantifies the density of vortices in the
largest cluster (for details, see Ref. [44]). For f > fggc, the
condensate fraction is zero, but when f < fggc, it rises
sharply. In this extreme temperature region, the other
thermometers saturate and the condensate fraction becomes
the relevant observable for vortex thermometry.
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As an application of our vortex thermometer, we use it to
characterize decaying turbulence in a disk-shaped BEC
as previously studied in Refs. [13,14]. We simulate the
two-dimensional, time-dependent Gross-Pitaevskii equa-
tion (GPE),

ih 0= e V2 2 1

oy = (P Vel o ()
where y = y/(r, t) is the classical field of the Bose gas and
gop 1s the two-dimensional interaction parameter resulting
from the s-wave atomic collisions. To obtain the uniform
circular geometry, we use a two-dimensional power-law

trapping potential of the form V. = pu(r/R)>°, where r =

\/Xx* + y? is the radial distance from the axis of the trap, u
is the chemical potential, and R = 171¢ is the radius of the

trap, measured in units of the healing length & = \/h?/2mu
[14]. The interaction parameter is set to g,p = 4.6X%
10*#%/m. We solve the GPE using a fourth-order, split-
step Fourier method on a 1024%> numerical grid with
spacing of approximately &/2. Turbulence is generated
by imprinting vortices into the phase of y and evolving
Eq. (1) for a short amount of imaginary time to establish
the vortex core structures. We detect vortices and their
circulation signs within » < 0.98R by locating singularities
in the phase of the field.

The initial vortex configurations used in our GPE
simulations are produced by randomly drawing N, =
800 vortex locations from a uniform distribution, with
equal numbers of each circulation sign. The resulting state
is well approximated to have S~ 0, although the short
imaginary time propagation step causes a small amount of
cooling towards positive temperatures. As the turbulence
decays, the vortices annihilate and the vortex gas evapo-
ratively heats, resulting in the emergence of two large
Onsager vortices at late times [13,14]. Three sample frames
from a single simulation are shown in Fig. 2, where panels
(a)—(c) show the density |y|* of the fluid, and panels (d)—(f)
show the corresponding vortex configuration after the
vortex detection and classification steps. A Helmholtz
decomposition [8] has been used to extract the diver-
gence-free component of the condensate velocity field,
and the resulting streamlines are also shown in the lower
panels. The Onsager vortex clusters are clearly visible in
panel (f).

The number of clusters, dipoles, and free vortices are
shown in Fig. 3 as functions of both time ¢ (inset) and the
total number of vortices N, (). The time-dependent pop-
ulations (inset) do not follow any simple function.
However, the populations as functions of the total number
of vortices (main frame) show clear power-law scaling
behavior. The corresponding power laws are N, «x N,
N, « Nb, Ny N?, and N,, « N¢, with measured values
a=0.79, y =121, 6§ = 1.18, and ¢ = —0.25. These are
suggestive of rational value power laws with exponents

FIG. 2. Freely decaying two-dimensional quantum turbulence.
Panels (a)—(c) show the classical field density [y|?, for respective
times ¢ = (25,7500, and 74 000)%/u, and reveal the vortices as
dark spots of zero density. The gray scale in each panel is
normalized to the respective peak value of |y|?. Panels (d)—(f)
correspond to panels (a)—(c), respectively, and show the vortices
in positive (negative) clusters as blue (green) squares, dipoles
as red triangles, and free vortices as yellow circles. Note that
each vortex dipole contains one vortex and one antivortex. The
streamlines in (d)—(f) are obtained by calculating the incom-
pressible component of the velocity field of the classical field
describing the Bose gas.

a=4/5y=6=06/5, and e = —1/4. The mean number
of vortices per cluster N,. = N./N;, where N, is the total
number of clusters of any size at a given time. To study the
effects of system size on these power laws, we have
also considered two smaller disk-shaped systems of radii
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FIG. 3. Decay of the vortex populations N,(r) (where
J € {c: clustered vortices; d: dipole vortices; f: free vortices})
in each component of the vortex gas, and the growth of the
number of vortices per cluster N,.(¢), as functions of the total
vortex number N, (7). The data have been averaged over 80
simulations, with power-law fits shown as straight lines. Note that
time flows from right to left in this figure. The inset shows the
total number of vortices and the number of vortices in each
component of the vortex gas as functions of time.
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R ~49¢ and R ~ 85¢, respectively, each with N, = 100
vortices initially imprinted. We find that the scaling
behavior is unchanged in these smaller systems, suggesting
that the evolution of the vortex gas is underpinned by a
universal microscopic process.

In this system, the primary cause of vortex number
decay is the annihilation of vortex-antivortex dipoles.
Despite this, the populations of dipoles and free vortices
follow approximately the same power law, demonstrating
an interconversion between the vortex populations.
However, a distinct power law emerges for the vortex
clusters. This behavior points toward a two-fluid model,
where the dipoles and free vortices behave as a weakly
interacting thermal cloud, while the clusters act as a
quasicondensate whose relative weight grows over time
as a result of vortex evaporative heating. Extrapolating the
data toward N, — 0O leads to the inevitable decay of all
dipoles and free vortices, with only Onsager vortex clusters
remaining. At this point, the rate of pair annihilation
becomes insignificant in the dynamics due to the very
low probability of vortex-antivortex collisions.

In Fig. 3, the N, and N curves are well described by the
NS/ scaling throughout the dynamical evolution. The N
curve, on the other hand, only begins to follow the N‘,f/ >
power law once the total vortex number has decayed to
N, <200, suggesting that the statistical behavior of the
vortex gas changes at this point in the dynamics. In
accordance with the existence of power-law scaling, we
interpret this change to be the realization of a state of
quasiequilibrium for the decaying turbulence. Under this
quasiequilibrium condition, the vortex evaporative heating
process becomes adiabatic in the sense that the vortex gas
is able to rearrange into a higher entropy configuration
between the vortex annihilation events. For N, = 200, the
vortex number decays too rapidly for this to be possible.
This quasiequilibrium condition is not a true equilibrium of
the system since vortex-antivortex annihilations and vortex-
sound interactions are continuously driving energy from the
vortices into the sound field. Presumably, the true equilib-
rium of the condensate will only be realized when all
vortices have decayed and the total entropy of the system is
maximized. In Ref. [41], we present vortex number decay
data for a range of other initial vortex configurations,
observing in all cases evidence for the same power-law and
quasiequilibration behavior.

We now have an algorithm to assign a vortex temperature
to the dynamical GPE simulations. We determine the
fractional populations of vortex dipoles and clusters as a
function of time and use each of these to read off a
temperature from the curves in Fig. 1. The two resulting
measurements of (z) are presented in the main frame of
Fig. 4. Both measurements show that the temperature of the
vortex gas is spontaneously increasing as Onsager vortex
clusters form, thereby confirming the evaporative heating
scenario posited in Ref. [13]. At late times, a small
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FIG. 4. Inverse temperature of the vortex gas as a function of

time, averaged over a set of dynamical GPE simulations. The
temperature is measured independently using the populations of
both clusters and dipoles. In the inset, the temperature readings
from each thermometer are shown as a function of the total vortex
number N, (7). As in Fig. 1, the positive and negative temperature
regions have been scaled by their respective critical temperatures,
and a dashed horizontal line denotes # = 0. The vertical axis of
the inset is the same as for the main frame.

discrepancy between the two temperature readings
emerges, which we attribute to the compressibility of the
fluid not accounted for in the MC model. The same
temperature measurements are plotted as a function of
the total vortex number in the inset. Based on our
quasiequilibrium interpretation discussed above, we note
that the temperature reading is strictly only valid for N, <
200 (t Z 20007 /p) since outside of this range the vortices
are out of equilibrium and their temperature is not well
defined. To obtain these curves, we have applied the
thermometer calibrated with N, = 50 vortices, despite
the fact that N, varies between approximately 30 and
200 throughout the equilibrium dynamical evolution. In
Ref. [41], we show that using a thermometer calibrated with
a different number of vortices does not affect the qualitative
shape of the f(¢) curve.

We have developed a methodology that allows the
temperature of point vortices in two-dimensional fluids to
be determined using only the information about the vortex
positions and their signs of circulation. We have applied
the vortex gas thermometers to freely decaying two-
dimensional quantum turbulent systems and quantitatively
shown the transition to negative temperatures and the
emergence of Onsager vortices due to the evaporative heating
of the vortex gas [13,14]. Our vortex thermometers may also
be useful for characterization of turbulent classical fluids, as
the continuous vorticity distributions can be approximated
accurately by a discretized set of point vortices before
performing the vortex classification and thermometry. This
methodology may therefore open new pathways to quanti-
tative studies of two-dimensional turbulence.
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