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Following our previous proposal, we construct a class of good “lattice cross sections” (LCSs), from
which we can study the partonic structure of hadrons from ab initio lattice QCD calculations. These good
LCSs, on the one hand, can be calculated directly in lattice QCD, and on the other hand, can be factorized
into parton distribution functions (PDFs) with calculable coefficients, in the same way as QCD
factorization for factorizable hadronic cross sections. PDFs could be extracted from QCD global analysis
of the lattice QCD generated data of LCSs. We also show that the proposed functions for lattice QCD
calculation of PDFs in the literature are special cases of these good LCSs.
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Introduction.—Parton distributions functions (PDFs),
interpreted as probability distributions to find an active
parton from a colliding hadron to carry the x fraction of the
parent hadron momentum, are very important noperturba-
tive quantities. They connect hadronic cross sections with a
large momentum transfer to perturbatively calculable par-
tonic dynamics, so that we can interpret high energy
scattering data and make predictions for future observables
[1–3]. PDFs have been extracted by performing global
analysis of high energy scattering data in the framework of
QCD factorization [4–8]. Since PDFs are well defined in
QCD, it is not only very natural, but also critically
important to ask and verify if PDFs could be derived from
the first-principles calculations in lattice QCD (LQCD).
However, a direct calculation of PDFs in LQCD is
challenging due to the fact that PDFs are defined in terms
of operators with a Minkowski time dependence, while
LQCD calculations are done with a Euclidean time.
Moments of PDFs, given by matrix elements of local

operators, can be, in principle, calculated in LQCD.
However, in practice, calculations are limited to the lowest
three moments [9] because of power-divergent mixing
between twist-2 operators. In Ref. [10], Ji introduced a
set of quasi-PDFs, which are defined with the same
operators defining PDFs except the active parton fields
are not located on the light cone, but on a spatial axis (along
the z or “3” direction) with no time separation, and could be

calculated in LQCD [11–15]. It was also suggested that
quasi-PDFs could approach to corresponding PDFs when
the hadron momentum P3 goes to infinity [10,16,17]. In
Ref. [1], it was demonstrated that if quasi-PDFs are
multiplicatively renormalizable, they could be related to
PDFs by an all-order QCD factorization at a finiteP3. Major
progress has been made in understanding the complexity of
ultraviolet (UV) divergences of quasi-PDFs [18–28].
Meanwhile, various different methods have been introduced
to study hadron structures using LQCD calculations, includ-
ing the pseudo-PDFs approach [29] and the “OPE without
OPE” approach [30], as well as the approach to extract
hadron structure functions from hadronic tensors that are
converted from lattice QCD calculated ones in Euclidean
space to Minkowski space by using the inverse Laplace
transform [31–33]. For light-cone distribution amplitudes,
which are much simpler than PDFs, a coordinate-space
method was also employed [34–36].
In Ref. [1], we proposed a factorization-based program

to extract PDFs and other parton correlation functions by
using QCD global analysis of “data” generated by LQCD
calculations of “lattice cross sections” (LCSs), which are
defined as factorizable and “time-independent” hadronic
matrix elements (defined by equal-time operators or with
the time properly integrated). More precisely, a good LCS
for extracting PDFs should have the following properties
[1]: (i) is calculable in LQCDwith a Euclidean time, (ii) has
a well-defined continuum limit as the lattice spacing a → 0,
and (iii) has the same and factorizable logarithmic collinear
(CO) divergences as PDFs. It is the last property that
enables us to relate good LCSs to PDFs, just like how
hadronic cross sections are related to PDFs in terms of
QCD factorization. We also argued that quasi-quark dis-
tribution is an example of good LCSs.
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In this Letter, we further strengthen our proposal by
constructing a class of good LCSs, with which we could
build up a comprehensive program to explore the partonic
structure of various hadrons with many LQCD calculable
observables. We demonstrate that these LCSs have the
three required properties listed above for being good LCSs.
We also comment that quasi-PDFs proposed in Ref. [10],
pseudo-PDFs used in Ref. [29], and the matrix element
used in Ref. [30] are special cases of these good LCSs. The
proposed method of using good LCSs could be the most
general way to extract PDFs from LQCD calculations.
Hadronic matrix elements in coordinate space.—We

consider single-hadron matrix elements of renormalized
nonlocal operators OnðξÞ,

σnðω; ξ2; P2Þ ¼ hPjTfOnðξÞgjPi; ð1Þ

where the subscript n is a label for different operators, T
stands for time ordering, P is the hadron momentum, ξwith
ξ2 ≠ 0 is the largest separation of all fields in the operator
On, the Lorentz scalar ω≡ P · ξ, and renormalization scale
for OnðξÞ is suppressed.
One choice for OnðξÞ is the dimension-2 operators for

correlations of two currents with a separation ξ,

Oj1j2ðξÞ≡ ξdj1þdj2−2Zj1Zj2j1ðξÞj2ð0Þ; ð2Þ

where dj and Zj are the dimension and renormalization
constant of the current j, respectively, and the overall
dimensional factor is introduced so that the matrix elements
in Eq. (1) are dimensionless with our normalization,
hPjP0i ¼ ð2EPÞð2πÞ3δ3ðP − P0Þ. With the scalar and vec-
tor currents, for example, we could have

OSðξÞ ¼ ξ4Z2
S½ψ̄qψq�ðξÞ½ψ̄qψq�ð0Þ; ð3aÞ

OVðξÞ ¼ ξ2Z2
V ½ψ̄q=ξψq�ðξÞ½ψ̄q=ξψq�ð0Þ; ð3bÞ

O ~VðξÞ ¼ −
ξ4

2
Z2
V ½ψ̄qγνψq�ðξÞ½ψ̄qγ

νψq�ð0Þ; ð3cÞ

OV 0 ðξÞ ¼ ξ2Z2
V 0 ½ψ̄q=ξψq0 �ðξÞ½ψ̄q0=ξψq�ð0Þ;…; ð3dÞ

where ξ4 ≡ ðξ2Þ2; q ¼ u; d; s;… stands for a quark with a
definite flavor and q0 for a quark with a different flavor, the
subscripts, S, V, and V 0 refers to scalar, vector and flavor-
changing vector currents, respectively, and “…” indicates
for other possible combinations of two currents including
the gluonic current, e.g., jμν ∝ FμρFρ

ν. Matrix elements
constructed from operators in Eq. (3) satisfy the relation

σ�nðω; ξ2; P2Þ ¼ σnð−ω; ξ2; P2Þ: ð4Þ

Instead of the correlation of two currents, the nonlocal
operator in Eq. (1) could also be made of the correlation

of gauge dependent field operators with proper gauge
link(s), e.g.,

OqðξÞ ¼ Zqðξ2Þψ̄qðξÞ=ξΦðξ; 0Þψqð0Þ; ð5Þ

where Φðξ; 0Þ ¼ Pe−ig
R

1

0
ξ·AðλξÞdλ is the path ordered gauge

link, Zqðξ2Þ is the renormalization constant of this operator,
depending on ξ2 [27], and the matrix element constructed
from which satisfies the relation

σ�nðω; ξ2; P2Þ ¼ −σnð−ω; ξ2; P2Þ: ð6Þ

Besides scalar operators constructed above, we can also
construct vector or tensor operators, e.g.,

OμνðξÞ ¼ ξ4Z2
V ½ψ̄qγμψq�ðξÞ½ψ̄qγνψq�ð0Þ: ð7Þ

To simply the discussion, we will consider only scalar
operators in the following, although tensor operators can be
studied the same way.
Factorization.—We show that σn defined in Eq. (1)

could be factorized into PDFs with perturbatively calcu-
lable coefficients so long as ξ2 is sufficiently small,

σnðω; ξ2; P2Þ ¼
X

a

Z
1

−1

dx
x
faðx; μ2ÞKa

nðxω; ξ2; x2P2; μ2Þ

þOðξ2Λ2
QCDÞ; ð8Þ

where μ is the factorization scale, Ka
n are perturbatively

calculable hard coefficients, and fa is the PDF of flavor
a ¼ q, g with antiquark PDFs expressed by quark PDFs
using the relation fāðx; μ2Þ ¼ −fað−x; μ2Þ.
Let ξ2 be small but not vanishing, and applying operator

product expansion (OPE) to the nonlocal operatorOnðξÞ in
Eq. (1) [37], we have

σnðω; ξ2; P2Þ ¼
X

J¼0

X

a

WðJ;aÞ
n ðξ2; μ2Þξν1…ξνJ

× hPjOðJ;aÞ
ν1���νJðμ2ÞjPi; ð9Þ

where μ is the renormalization scale. The OðJ;aÞ
ν1���νJðμ2Þ is a

local, symmetric, and traceless operator of spin J with a
labeling different operators of the same spin, and

hPjOðJ;aÞ
ν1…νJðμ2ÞjPi¼ 2AðJ;aÞðμ2ÞðPν1…PνJ − tracesÞ; ð10Þ

where the scalar quantity AðJ;aÞðμ2Þ ¼ hPjOðJ;aÞðμ2ÞjPi
is the reduced matrix element. Substituting Eq. (10) into
Eq. (9), we have

σnðω; ξ2; P2Þ
¼

X

J¼0

X

a

WðJ;aÞ
n ðξ2; μ2Þ2AðJ;aÞðμ2ÞΣJðω; P2ξ2Þ; ð11Þ

where
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ΣJðω; P2ξ2Þ≡ ξν1…ξνJðPν1…PνJ − tracesÞ

¼
X½J=2�

i¼0

Ci
J−iðωÞJ−2ið−P2ξ2=4Þi; ð12Þ

where C is the binomial function and ½J=2� is the greatest
integer less than or equal to J=2. Up to now, no approxi-
mation has been made in deriving Eq. (11).
Since a higher dimensional matrix element is relatively

smaller by powers of Λ2
QCDξ

2 when two reduced matrix
elements are compared, for the following discussion, we
ignore this power suppressed correction to keep only terms
with the lowest dimensional operators, which corresponds
to keep the twist-2 operators in QCD [37]. Reduced matrix
elements of these twist-2 operators can be expressed as
moments of PDFs,

AðJ;aÞðμ2Þ ¼ 1

Sa

Z
1

−1
dxxJ−1faðx; μ2Þ; ð13Þ

where symmetry factor Sa ¼ 1, 2 for a ¼ q, g, respectively,
and J ≥ 1 because there is no scalar twist-2 operator.
By substituting Eq. (13) into Eq. (11), and comparing it
with Eq. (8) with the Ka

n expanded in a power series of ω,
we prove that σn in Eq. (11) has the factorized form in
Eq. (8) with

Ka
n ¼

X

J¼1

2

Sa
WðJ;aÞ

n ðξ2; μ2ÞΣJðxω; x2P2ξ2Þ: ð14Þ

Note, however, that our proof is valid only when jωj ≪ 1

and jP2ξ2j ≪ 1 because OPE works only in the region
where all components of ξ go to zero uniformly but with all
other variables fixed. That is, we need to further extend our
proof to other regions, especially when ω is finite.
The validity of OPE guarantees that σn is an analytic

function of ω in the neighborhood of ω ¼ 0, and its Taylor
series of ω around ω ¼ 0 is defined by Eqs. (9)–(14). If we
fix ξ to be at short distance while we increase ω by
adjusting external momentum P, we cannot introduce any
new perturbative divergence. That is, σn remains to be
analytic as ω becomes larger, and only possible singularity
is at ω ¼ ∞. Similarly, for fixed ξ, σn is an analytic
function of P2ξ2 except for the point of infinity. Therefore,
the factorization in Eq. (8), defined by a Taylor series of ω
and P2ξ2, holds for any finite value of ω and P2ξ2 with the
correction up to Oðξ2Λ2

QCDÞ.
Note that the analytic behavior of σn discussed above

could be significantly different when it is Fourier trans-
formed into momentum space, i.e.,

~σnð ~ω; q2; P2Þ≡
Z

d4ξ
ξ4

eiq·ξσnðP · ξ; ξ2; P2Þ; ð15Þ

where the corresponding On can be any two-currents
operator defined in Eq. (2), and ~ω≡2P ·q=ð−q2Þ¼1=xB,
with xB the Bjorken variable for the lepton-hadron deep

inelastic scattering (DIS). Assuming jP2=q2j ≪ 1, ~σn has
cuts going out to infinity from the thresholds ~ω ¼ �1.
The reason for having the cuts is that the system has a
positive energy when ~ω2 > 1, corresponding to ðqþPÞ2>0

or ðq−PÞ2>0, and, thus, it can produce physically propa-
gating particles. To understand the difference better, let us
consider a simple integral which could contribute to Eq. (15),

Z
d4ξ
ξ4

ξνeiðqþxPÞ·ξ; ð16Þ

where −1 < x < 1 could be thought as the momentum
fraction of a parton inside of the hadron. If qþ xP is not
lightlike for any value of x, which is equivalent to ~ω2 < 1,
this integral is always finite. But if qþ xP is lightlike, this
integral is divergent in the region where ξ is large and almost
anticollinear to qþ xP. This simple exercise tells us that the
nonanalytic cut of ~σn comes from the integration region
of large ξ. That is, even if we demand jq2j ≫ Λ2

QCD, ~σn in
momentum space can always receive contribution from large
ξ region so long as ~ω2 > 1. On the other hand, in coordinate
space, if we fix ξ to be a short distance, we do not have
contribution from the large ξ region and, thus, σn has good
analytic behavior.
Since ~σn is simply a Fourier transformation of σn,

the factorization of σn in Eq. (8) implies the following
factorization:

~σn ¼
X

a

fa ⊗ ~Ka
n þOðΛ2

QCD=q
2Þ; ð17Þ

where ⊗ represents the x convolution in Eq. (8) and

~Ka
n ¼

Z
d4ξ
ξ4

eiq·ξKa
nðxP · ξ; ξ2; x2P2; μÞ: ð18Þ

From the discussion above, the factorization in momentum
space is unambiguous if ~ω2 < 1.
Matching coefficients.—From Eq. (14), we can obtain Ka

n

if we know the Wilson coefficients WðJ;aÞ
n . Our strategy to

calculate them is as follows: (i) calculate Ka
nðxω; ξ2; 0; μÞ,

which corresponds to the coefficient function in collinear
factorization with P2 → 0, (ii) expand Ka

nðxω; ξ2; 0; μÞ as a
power series of xω, and (iii) compare it withKa

nðxω; ξ2; 0; μÞ
in Eq. (14), along with the fact ΣJðxω; 0Þ ¼ ðxωÞJ, to obtain
WðJ;aÞ

n as the expansion coefficients.
In the following, we calculate nonvanishing Ka

n for
various LCSs introduced above to the lowest order (LO)

in αs expansion, which we denote as Kað0Þ
n . There is only

one Feynman diagram shown in Fig. 1(a) that contributes

to Kqð0Þ
q . According to our strategy above, we set kμ ¼ xPμ

with P2 ¼ 0, and get

Kqð0Þ
q ðxω; ξ2; 0; μÞ ¼ 1

2
Tr½=k=ξ�eiξ·k ¼ 2xωeixω; ð19Þ
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which is consistent with the relation Eq. (6). Two Feynman
diagrams, as shown in Figs. 1(b) and 1(c), contribute to

Kqð0Þ
S with

Mb ¼
iξ4

2

Z
d4l
ð2πÞ4

Tr½=k=l�eiξ·ðk−lÞ
l2 þ iε

¼ i
π2

xωeixω; ð20Þ

and Mc ¼ M�
b. We have the sum of these two diagrams,

Kqð0Þ
S ðxω; ξ2; 0; μÞ ¼ i

π2
xωðeixω − e−ixωÞ; ð21Þ

which is consistent with the relation Eq. (4). Results of

Kqð0Þ
V and Kqð0Þ

~V
are the same as Kqð0Þ

S at this order. With

q ≠ q0, only Fig. 1(b) contributes to Kqð0Þ
V 0 , while only

Fig. 1(c) contributes to Kq0ð0Þ
V 0 . Neglecting the mass of both

q and q0, we obtain

Kqð0Þ
V 0 ðxω; ξ2; 0; μÞ ¼ i

π2
xωeixω; ð22aÞ

Kq0ð0Þ
V 0 ðxω; ξ2; 0; μÞ ¼ −i

π2
xωe−ixω: ð22bÞ

Using our strategy and the results of Kað0Þ
n evaluated at

P2 ¼ 0 above, we can easily deriveWðJ;aÞ
n . For example, by

expanding Kqð0Þ
q ¼ P

J¼12½iJ−1=ðJ − 1Þ!�ðxωÞJ, and com-

paring it with Kqð0Þ
q ¼ P

J2W
ðJ;qÞ
q ðxωÞJ from Eq. (14) at

P2 ¼ 0, we obtain WðJ;qÞ
q ¼ iJ−1=ðJ − 1Þ! with J ≥ 1.

Substituting this into Eq. (14), we obtain

Kqð0Þ
q ðxω; ξ2; x2P2; μÞ. For simplifying our discussion

below, we assume ξ2 small enough so that P2ξ2 (and thus
P2) terms can be ignored in the rest of this Letter.
From Eq. (18), we can easily obtain ~Ka

n using the above
calculated Ka

n. For example, we have

~Kqð0Þ
S=V= ~V

ðx ~ω; q2; 0; μÞ ¼ −2i
x2 ~ω2

1 − x2 ~ω2
; ð23Þ

which has cuts going out to infinity from the thresholds
~ω ¼ �1 as discussed earlier.
Good lattice cross sections.—After showing that the UV

renormalized coordinate-space hadronic matrix elements

σn in Eq. (1) can be factorized to the PDFs with perturba-
tively calculable coefficient functions, we need to demon-
strate that these matrix elements are calculable in LQCD
with Euclidean time, in order for them to be good lattice
cross sections. This can be easily satisfied if ξ has no time
component. In conclusion, σn defined in Eq. (1) are good
LCSs for extracting PDFs under the condition ξ0 ¼ 0.
For example, σS=V= ~V can be naturally used to extract
fqðx; μÞ þ fq̄ðx; μÞ, and σV 0 can be used to extract
fqðx; μÞ þ fq̄0 ðx; μÞ. With various linear combinations of
σn, we could extract fqðx; μÞ, fq̄ðx; μÞ, and fgðx; μÞ
individually.
If there are methods to calculate σn or its linear combi-

nation in LQCD without setting ξ0 ¼ 0, then we can define
more good LCSs accordingly. One possibility is that one can
use the Feynman-Hellmann technique to calculate ~σn with
q0 ¼ 0 [29]. Therefore, according to our above discussion,
~σn defined in Eq. (15) are also good LCSs for extracting
PDFs under the condition q0 ¼ 0 and ~ω2 < 1.
Having many good LCSs makes it possible for extracting

PDFs by using the QCD global analysis of “data” generated
by LQCD calculations of these LCSs. This will provide a
promising way to determine PDFs from ab initio LQCD
calculation. In fact, our method is so general that proposed
LQCD calculable functions used in the literature to
determine PDFs are special cases of these good LCSs,
which we show in the following.
Relation to other methods.—Let us first discuss the

relation to quasi-PDFs and pseudo-PDFs. With Kqð0Þ
q calcu-

lated in Eq. (19), we can construct a linearly combined good
LCS,

Z
dω
ω

e−ixω

4π
σqðω; ξ2; P2Þ ≈ fqðx; μÞ; ð24Þ

moduloOðαsÞ corrections and higher twist corrections. With
ξ0 ¼ 0, the integral over ω ¼ −ξ⃗ · P⃗ ¼ −jξ⃗jjP⃗j cos θ in
Eq. (24) could have different interpretations. Choosing both
P⃗ and ξ⃗ along the 3 direction, which results in θ ¼ 0, the left-
hand side of Eq. (24) is the quasiquark distribution intro-
duced in Ref. [10] if the integration is performed by fixing
P3, while it is the pseudoquark distribution used in Ref. [29]
if the integration is performed by fixing ξ3. These two
methods are equivalent if matching coefficients are calcu-
lated to lowest order in αs, but different if higher order
contributions need to be considered. The Eq. (24) also tells
us that, to effectively extract PDFs using good LCSs, one
should generate lattice data with as many different values of
ω as possible.
From Eq. (23) we have

~σS=V= ~V ≈ −2i ~ω
Z

1

−1
dx

x ~ω
1 − x2 ~ω2

fqðx; μ2Þ; ð25Þ

which is equivalent to T33 used in Ref. [30] if we factorize
the structure function therein to PDFs. More precisely, T33

(a) (b) (c)

FIG. 1. LO Feynman diagrams for ~σn.
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can be obtained if we construct momentum-space good
LCSs ~σμν using operatorOμν defined in Eq. (7), and then set
μ ¼ ν ¼ 3 and P3 ¼ q3 ¼ q0 ¼ 0. However, because ~σμν
has effectively only 2 degrees of freedom, all of its
nontrivial information should have been encoded in ~σV
and ~σ ~V . We thus expect that extracting PDFs using ~σV and
~σ ~V can be at least as good as that using T33.
Summary.—We constructed a class of good lattice cross

sections in terms of single-hadron matrix elements of
renormalized equal-time nonlocal operators in coordinate
space, as defined in Eq. (1). We show that these matrix
elements are calculable in LQCD and factorizable to
PDFs with perturbative coefficients, so long as the largest
separation between fields of the operator satisfies jξ⃗j ≪
1=ΛQCD. We also show that corresponding momentum-
space matrix elements, ~σn defined in Eq. (15) with j2P ·
q=ð−q2Þj < 1 and jq2j ≫ Λ2

QCD, are also good LCSs.
We provided some explicit examples of good LCSs made

of quark fields in Eqs. (3) and (5), calculated corresponding
matching coefficients to LO in αs, and connect the matrix
elements to unpolarized PDFs. As briefly mentioned earlier,
it is straightforward to construct the gluonic operators to
have good LCSs directly sensitive to gluon distributions.
Our approach could be easily applied for polarizedPDFs and
other parton correlation functions of various hadrons. We
also find that some LQCD calculable functions used in
literature for extracting PDFs, including quasi-PDFs pro-
posed in Ref. [10], pseudo-PDFs used in Ref. [29], and T33

used in Ref. [30], are special cases of good LCSs. With the
large number of identified good LCSs, we could extract
PDFs and hadron structure in general by QCD global
analyses of the data generated by ab initio LQCD calcu-
lations of these LCSs.
Since it is very easy to generate lattice data with small ω,

LQCD calculations could provide the much needed informa-
tion on PDFs at relatively large x, complementary to what
could be extracted from experimental measurements. In
addition, LQCD calculations could provide the information
on partonic structure of hadrons, such as neutron, pion or
keon, that could be difficult to do scattering experimentswith.
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