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Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the
effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence
suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic
attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches
this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-
equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a
conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-
Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and
strongly coupled N ¼ 4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.
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What is fluid dynamics and what is its regime of
applicability? Over the centuries, different answers have
been given to this question.
The textbook definition of the applicability of fluid

dynamics is that the local mean free path should be much
smaller than the system size. This criterion originates from
the notion that fluid dynamics is the macroscopic limit of
some underlying kinetic theory. In kinetic theory, the mean
free path has the intuitive interpretation of the typical length
a particle can travel before experiencing a collision. If that
mean free path length is larger than the system size,
particles will not experience collisions before leaving the
system, thus invalidating a fluid dynamic description.
In relativistic fluid dynamics’ modern formulation, the

phenomenological “mean-free-path” criterion is replaced
by the requirement that gradients around some reference
configuration (typically local equilibrium) are small when
compared to system temperature. This gives rise to the
notion of fluid dynamics as the effective theory of long-
wavelength excitations, which can be expressed as a
hydrodynamic gradient series. In this framework, the
Navier-Stokes equations arise as the unique theory that
is defined by the most general energy-momentum tensor
that can be built out of hydrodynamic fields and first-order
gradients thereof.

Thus, even in the modern framework, the requirement of
small gradients seems to limit the applicability of fluid
dynamics to the near-equilibrium regime.
However, there ismounting evidence that (first- or second-

order) fluid dynamics offers a correct quantitative description
of systems that are not close to local equilibrium. For
instance, a variety of numerical experiments indicate that
fluid dynamics can match exact results even if the gradient
corrections (normalized by temperature) are of order unity
[1–7]. Experimentally, ultrarelativistic collisions of protons
exhibits the same flow features as much larger systems
produced in heavy-ion collisions [8,9]. Despite gradients in
proton collisions being large, low-order hydrodynamics
offers a quantitatively accurate description of experimental
flow results [10–12]. This suggests that the mean-free path
criterion for the applicability of fluid dynamics is possibly
too strict and should be replaced by the ability to neglect the
effect from nonhydrodynamic modes [13].
One may now wonder if the (unreasonable?) success of

low-order fluid dynamics is perhaps caused by a particularly
rapid convergence of the hydrodynamic gradient expansion.
To test this idea, the gradient series coefficients were
calculated for specific microscopic theories to very high
order, cf. Refs. [14–20]. Curiously, it was found that the
gradient series not only is not rapidly convergent, but is
actually a divergent series. However, it seems that this
divergent series is Borel summable in a generalized sense.
In a ground-breaking article, Heller and Spaliński demon-
strated that the Borel-resummed gradient series leads to the
presence of a unique hydrodynamic “attractor” solution [15].
Arbitrary initial data in the underlying microscopic theory
quickly evolve towards this unique attractor solution. In the
limit of small gradients, the attractor reduces to the familiar
low-order hydrodynamic gradient series solution.
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Perhaps more interestingly, while the hydrodynamic
gradient series diverges, the (nonanalytic) hydrodynamic
attractor solution is very well approximated by the low
order hydrodynamic gradient series even for moderate
gradient sizes, at least for the system studied in
Ref. [15]. This is typical for solutions that possess an
asymptotic series expansion, cf. the case of perturbative
QCD at high temperature [21]. As argued in Ref. [13], this
observation naturally explains the success of low-order
hydrodynamics in accurately describing out-of-equilibrium
systems where gradients are of order unity.
In the present Letter, I will attempt to generalize the notion

of fluid dynamics to systems with conformal symmetry far
from local equilibrium, where normalized gradients are not
only of order unity, but large. This generalization requires the
presence of a nonanalytic hydrodynamic attractor solution
far from equilibrium. Because arbitrary initial data will
typically not fall onto this attractor solution, far-from-
equilibrium fluid dynamics will not describe most far-
from-equilibrium solutions the microscopic dynamics
generates. In this sense, far-from-equilibrium fluid dynamics
is no replacement for solving the exact microscopic
dynamics for a specific initial condition. However, the
reason why far-from-equilibrium evolution does not match
the hydrodynamic attractor is that for arbitrary initial data,
other, nonhydrodynamic modes are typically excited
[14,15,20,22–24]. These nonhydrodynamic modes are spe-
cific to the microscopic theory under consideration, but have
in common that they decay on time scales short compared to
the typical fluid dynamic time scale (e.g., themean free path)
as long as hydrodynamic modes exist [13,23,24]. Hence, all
solutions for arbitrary initial data will eventually merge with
the hydrodynamic attractor after the nonhydrodynamic
modes have decayed.
Near equilibrium fluid dynamics.—Let us consider

a conformal quantum system in four-dimensional
Minkowski space-time and assume that the expectationvalue
of the energy-momentum tensor hTμνi in equilibrium can be
calculated. In this case, hTμνi possesses a timelike eigen-
vector uμ, normalized to uμuμ ¼ −1, with an associated
eigenvalue ϵ (I will be using the mostly plus convention for
the metric tensor gμν). It is then straightforward to show that
hTμνi can be decomposed as the ideal fluid energy-momen-
tum tensor Tμν

ð0Þ ¼ ðϵþ PÞuμuν þ Pgμν, where P is the

equilibrium pressure for this four-dimensional conformal
theory. Since, for a conformal system in flat space Tμ

μ ¼ 0,
the equilibrium equation of state is PðϵÞ ¼ ϵ=3.
Near-equilibrium corrections to the ideal fluid energy-

momentum tensor can systematically be derived by con-
sidering all possible independent symmetric rank two
tensors with one, two, three, etc., gradients consistent with
conformal symmetry [25–27]. The first-order correction is
given by

Tμν
ð1Þ ¼ −ησμν; ð1Þ

where η is the shear viscosity coefficient and σμν ¼
2∇ðμ

⊥uνÞ − 2
3
Δμν∇λuλ, where ∇μ

⊥ ¼ Δμν∇ν and Δμν ¼
ðgμν þ uμuνÞ. As was the case in equilibrium, the energy
density ϵ and flow vector uμ can still be defined as the
timelike eigenvalue and eigenvector of the microscopic
energy-momentum tensor hTμνi as long as a local rest frame
exists [28]. The conservation of Tμν

ð0Þ þ Tμν
ð1Þ constitutes a

near-equilibrium fluid dynamic theory, since Tμν
ð1Þ should be

a small correction to Tμν
ð0Þ. For higher order corrections,

counting the number of independent structures built out of
contractions of ∇μ, one finds that there are at least ðn − 2Þ!
terms contributing to Tμν

ðnÞ. Assuming the coefficients

multiplying these terms do not decrease too fast, this
implies that Tμν

ðnÞ grows as n! for fixed gradient strength
∇μ. Hence, one can expect the hydrodynamic gradient
series to diverge for any nonvanishing gradient strength.
Borel resummation.—To elucidate theBorel resummation

of the divergent hydrodynamic series it is useful to consider
concrete examples. Specifically, let us consider conformal
systems undergoing Bjorken flow [29]. Thus, let us assume
the system to be homogeneous and isotropic in the coor-
dinates τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and ξ ¼ arctanhðz=tÞ, such that the

energy densitywill only depend onproper time τ. As awarm-
up, let us review the mock microscopic theory of Baier-
Romatschke-Son-Starinets-Stephanov [30] (a modern vari-
ant of Refs. [31,32]), where the evolution equation for
the energy density is given by τ∂τ ln ϵ ¼ − 4

3
þ ðΦ=ϵÞ,

τπ∂τΦ ¼ ð4η=3τÞ −Φ − 4
3
ðτπ=τÞΦ − ðλ1=2η2ÞΦ2, where

Φ is an auxiliary field [7,15,25,33]. Introducing
TðτÞ ∝ ϵ1=4ðτÞ, which customarily has the interpretation
of an out-of-equilibrium temperature, it is convenient to
consider the dimensionless combinations Cη ¼ ð3ηT=4ϵÞ,
Cπ ¼ τπT, andCλ¼3λ1T2=4ϵCηCπ for the three parameters
of resummed Baier-Romatschke-Son-Starinets-Stephanov
(rBRSSS) theory. These parameters are time independent
because of conformal symmetry. Defining the normalized
gradient strength from Eq. (1) as 3σμνσμν=8T∇λuλ ¼
ð1=τTÞ, the rBRSSS equations of motion can be expanded
for small gradients ðτTÞ−1 ≪ 1, finding

τ∂τ ln ϵ ¼ −
4

3
þ 16Cη

9τT
þ 32CηCπð1 − CλÞ

27τ2T2
þ � � � ; ð2Þ

corresponding to the zeroth-, first-, and second-order hydro-
dynamic gradient series approximation, respectively. In
Ref. [15], this gradient series has been extended to
τ∂τ ln ϵ ¼

P
200
n¼0 αnðτTÞ−n, indeed exhibiting factorial

growth for the coefficients αn. However, the Borel transform
B½τ∂τ ln ϵ�ðτTÞ≡P

200
n¼0ðαn=n!ÞðτTÞ−n exists within a finite

radius of convergence around ðτTÞ−1 ¼ 0.B½τ∂τ ln ϵ�maybe
analytically continued to the whole τT complex plane by
considering the symmetric Padé approximant to B, finding a
dense series of poleswith the pole closest to theorigin located
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at τT ¼ z−10 , where z0 ¼ 3=2Cπ [15]. It is nevertheless
possible to define a generalized Borel transform
T ½τ∂τ ln ϵ�ðτTÞ≡

R
C dze

−zB½τ∂τ ln ϵ�ðτTzÞ, where the con-
tourC starts at the origin and ends at z ¼ ∞. The ambiguity in
the choice of contour in the presence of the singularities ofB
implies an ambiguity in T , with the pole closest to the origin
giving a contribution ∝ e−z0τT to T . This contribution is
nonanalytic in 1=τT and thus responsible for the divergence
in the hydrodynamic gradient series, and can be attributed to
the presence of a nonhydrodynamic mode. Note that it

precisely matches the structure e−
R
ðdτ=τπÞ expected from

the known nonhydrodynamic mode in rBRSSS theory [25]
when using τ−1π ¼ ðT=CπÞ ∝ ðτ1=3=CπÞ. The ambiguity inT
can be resolved by promoting the gradient series to a trans
series, e.g., τ∂τ ln ϵ ¼

P∞
n;m¼0 c

mΩmðτTÞαnmðτTÞ−n, with
ΩðτTÞ ¼ ðτTÞγe−z0τT , and finding the constants c, γ such
that the ambiguity in the Borel transform of the trans series
part with m ¼ m0 is exactly canceled by Ωm0þ1ðτTÞ for the
part with m ¼ m0 þ 1. This program has successfully been
performed for rBRSSS theory in Refs. [15,34]. The final
result for the Borel transform of τ∂τ ln ϵ can bewritten in the
form τ∂τ ln ϵ ¼ ðτ∂τ ln ϵÞatt þ ðτ∂τ ln ϵÞnonhydro, consisting
of a nonanalytic attractor solution defined for arbitrary τT
to which the nonhydrodynamic part decays on a time
scale τT ≃ z−10 .
Note that obtaining nonanalytic solutions from divergent

perturbative series has recently generated considerable
interest under the name of “resurgence” [15,16,34].
Finding hydrodynamic attractors.—Identifying the

hydrodynamic attractor solution from theBorel resummation
program of the hydrodynamic gradient series is possible, but
somewhat tedious. Fortunately, it is possible to obtain the
same attractor solution more directly from the equations of
motion via the analogue of a slow-roll approximation, cf.
Refs. [15,35] (see SupplementalMaterial [36] for details). In
Fig. 1, results from solving the rBRSSS equations ofmotions
for a range of initial conditions (“numerical”) are as shown

together with zeroth-, first-, and second-order hydrodynamic
gradient series results fromEq. (2). It can be observed that the
numerical solutions converge to the hydrodynamic results for
moderate gradient strength. One also observes from Fig. 1
that the numerical results trend to the unique attractor
solution even before matching the gradient series results.
This attractor solution is nothing else but the result of the
Borel transformation of the divergent trans series as reported
in Ref. [15].
Hydrodynamic attractor in kinetic theory.—It is tempt-

ing to look for hydrodynamic attractors in other micro-
scopic theories, such as kinetic theory in the relaxation time
approximation. This theory is defined by a single particle
distribution function fðt;x;pÞ obeying

pμ∂μf − Γλ
μνpμpν ∂

∂pλ f ¼ −
f − feq

τπ
; ð3Þ

where Γλ
μν are the Christoffel symbols associated

with the Bjorken flow geometry and the equilibrium
distribution function may be taken to be feq ¼ ep

μuμ=T .
Here uμ is again the timelike eigenvector of hTμνi ¼R ½d3p=ð2πÞ3�ðpμpν=pÞfðx; pÞ and T is the nonequilibrium
temperature defined from the timelike eigenvalue of hTμνi,
which for a single massless Boltzmann particle is
T ¼ ðπ2ϵ=6Þ1=4. Note that for a conformal system one
can again write τπ ¼ CπT−1 with Cπ a constant. Solving
Eq. (3) numerically, representative results for τ∂τ ln ϵ are
shown in Fig. 1 [note that τ∂τ ln ϵ ≤ −1 because the
effective longitudinal pressure PL ¼ ϵð1þ τ∂τ ln ϵÞ in
kinetic theory can never be negative for f > 0].
One observes the same basic structure as in rBRSSS

theory, indicating the presence of a hydrodynamic attractor at
early times that arbitrary initial conditions approach via
nonhydrodynamic mode decay. (Note that for kinetic theory,
the nonhydrodynamic mode is a branch cut giving rise to a

decay of the form e−
R
ðdτ=τπÞ [23]). The attractor solutionmay

be found by finding the initial condition corresponding to a
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FIG. 1. Numerical results for energy density evolution as a function of inverse gradient strength τT for conformal Bjorken flow in three
different microscopic theories. Note that for Boltzmann and AdS=CFT, the numerical solutions shown are low-dimensional projections
from an infinite dimensional space of initial conditions. See text for details.
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slow-roll approximation at early times and using the numeri-
cal scheme to follow the attractor (see SupplementalMaterial
[36], including Refs. [37,38], for details). I find that the
kinetic attractor can be approximated by

∂ ln ϵ
∂ ln τ

�
�
�
�
att

kinetic
≃ −

C2
π þ 0.744CπðτTÞ þ 0.21ðτTÞ2

C2
π þ 0.6CπðτTÞ þ 0.1575ðτTÞ2 ; ð4Þ

and it coincides with the hydrodynamic solution (2) for late
times when using the known results Cπ ¼ 5Cη, Cλ ¼ 5

7
for

kinetic theory [39,40].
Hydrodynamic attractor in N ¼ 4 SYM theory.—

Bjorken flow may also easily be set up in strongly coupled
N ¼ 4 super Yang-Mills (SYM) theory in the large number
of color limit through the AdS=CFT correspondence.
Einstein equations in asymptotic five-dimensional AdS
space-time Rab − 1

2
gabR − 6gab ¼ 0 may be solved

numerically by the method pioneered by Chesler and
Yaffe [41], and the N ¼ 4 SYM energy-momentum tensor
expectation value hTμνi at the conformal boundary can be
extracted. Using the numerical scheme described in Ref. [3]
(see Supplemental Material [36] for details), results for
τ∂τ ln ϵ are shown in Fig. 1 compared to the hydrodynamic
solutions (2) with Cη ¼ ð1=4πÞ, Cπ ¼ ð2 − ln 2=2πÞ, Cλ ¼
ð1=2 − ln 2Þ for N ¼ 4 SYM theory [25]. Again, the
numerical solutions suggest the presence of a hydrody-
namic attractor at early times, which is slightly more
difficult to see than in the cases of rBRSSS and kinetic
theory because the nonhydrodynamic modes for N ¼ 4
SYM theory are known to have oscillatory behavior
(nonvanishing real parts of the black hole quasinormal
modes [42]). Nevertheless, one can discern a preferred
attractor candidate without any apparent oscillatory behav-
ior starting at limτ→0ð∂ ln ϵ=∂ ln τÞ → −1 to which all other
initial conditions decay to [43]. I do not have any analytic
understanding of the nature of this AdS=CFT attractor
solution, but it is curious to note that it is numerically close
to (but clearly different from) the kinetic theory attractor (4)
with Cπ ¼ ð5=4πÞ.
Effective viscosity.—It is possible to interpret the attrac-

tor solutions in terms of an effective viscosity coefficient ηB
by writing down a generalized hydrodynamic energy-
momentum tensor

Tμν
hydro ¼ ðϵþ PBÞuμuν þ PBgμν − ηBσ

μν; ð5Þ
where for a conformal system PB ¼ ϵ=3 and ðηB=sÞ ¼
ðηB=sÞð∇μÞ depends on the local gradient strength. In the
above expressions the subscript “B” was chosen to indicate
Borel-resummed out-of-equilibrium quantities. Energy-
momentum conservation uν∇μTμν ¼ 0 leads to ∂τ ln ϵ ¼
− 4

3
þ ð16Cη=9τTÞðηB=ηÞ, which can be matched to the

hydrodynamic attractor solution, e.g., Eq. (4) to define ηB
as a function of gradient strength. For the hydrodynamic
attractor solutions discussed above, one finds results shown
in Fig. 2. For small gradients, one recovers ðηB=sÞ ¼ ðη=sÞ,

as expected. However, ηB eventually tends to zero for far-
from-equilibrium systems. This finding implies that the
effective viscosity ηB encountered by an out-of-equilibrium
system can be significantly smaller than the equilibrium
viscosity η calculated from, e.g., Kubo relations. Note that
this definition of ηB is qualitatively similar to Refs. [45,46],
but differs by containing nonlinear, but no nonhydrody-
namic mode contributions.
Discussion and conclusions.—In this Letter, a generali-

zation of fluid dynamics to systems far from local equi-
librium was discussed. This generalization rests on the
existence of special attractors which become the well-
known hydrodynamic solutions once the system comes
close to equilibrium. These attractors were explicitly
constructed for conformal Bjorken flow for three micro-
scopic theories: rBRSSS theory (following earlier work in
Ref. [15]), and, for the first time, for kinetic theory and
strongly coupledN ¼ 4 SYM theory. For all three systems,
it was shown that for arbitrary initial data, attractor
solutions are approached via nonhydrodynamic mode
decay, demonstrating that the attractor concept is not
limited to rBRSSS theory studied in Ref. [15] but applies
to a broader class of phenomenologically relevant theories.
For conformal systems, attractors can be characterized by
an equilibrium equation of state and nonequilibrium
viscosity ηB. Far-from-equilibrium fluid dynamics, defined
through Eq. (5), constitutes a self-contained set of equa-
tions which may prove useful in the description of a broad
class of out-of-equilibrium systems. Also, the existence of
the attractor solutions for kinetic theory and AdS=CFT
suggests the possibility of far-from-equilibrium attractors
for the particle distribution function and space-time geom-
etry, respectively.
Many questions remain. Do all microscopic theories

possess far-from-equilibrium attractor solutions? Are
attractor functions ηB universal for all dynamics of a given
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microscopic theory? Do nonconformal systems also pos-
sess attractors which are characterized by an equilibrium
equation of state? Answering these questions will be the
subject of future work.
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