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We study photonic band gap formation in two-dimensional high-refractive-index disordered materials
where the dielectric structure is derived from packing disks in real and reciprocal space. Numerical
calculations of the photonic density of states demonstrate the presence of a band gap for all polarizations in
both cases. We find that the band gap width is controlled by the increase in positional correlation inducing
short-range order and hyperuniformity concurrently. Our findings suggest that the optimization of short-
range order, in particular the tailoring of Bragg scattering at the isotropic Brillouin zone, are of key
importance for designing disordered PBG materials.
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Photonic band gap (PBG) materials exhibit frequency
bands where the propagation of light is strictly prohibited.
Such materials are usually designed by arranging high-
refractive-index dielectric material on a crystal lattice [1,2].
The description of wave transport in a periodically repeat-
ing environment provides a clear physical mechanism for
the emergence of PBGs, in analogy to common electronic
semiconductors. It is also known that certain aperiodic
dielectric structures, such as quasicrystals [3–5], can dis-
play a full PBG. Over the last decade disordered or
amorphous photonic materials have gained growing atten-
tion [6–18]. This trend is motivated by the many disordered
photonic materials found in nature that reveal fascinating
structural color effects in plants, insects, and mammals
[19]. At the same time, fabricating perfect crystalline
structures with photonic properties at optical wavelengths
has proven to be more difficult than initially anticipated
[20]. It has been argued that disordered PBG materials
should be less sensitive to fabrication errors or defects and
thus promise a more robust design platform [15]. Moreover
PBGs in disordered dielectrics are isotropic, which could
make it easier to achieve a full PBG while at the same time
offering better performance in wave guiding, design of
noniridescent stable pigments, and display applications
[21–24].

Yet, until recently, direct evidence for the existence
of full PBGs in disordered photonic materials had been
scarce and the fabrication principles and physical-optical
mechanism leading to PBG formation remained obscure.
Although the importance of appropriate short-range order
for the development of PBGs in disordered photonic
materials was discovered early on [6–9], a strategy to
maximize the PBG width was lacking.
In 2009 Florescu and co-workers [25] proposed a new

approach for the design of disordered PBG materials that has
attractedwidespread attention.They introduced the concept of
hyperuniformity for photonic structures, which enforces a
certain type of short-range order. In particular, so-called
stealthy hyperuniform (SHU) disordered patterns were re-
ported to be fully transparent to incident long-wavelength
radiation [26,27] and lead to strong isotropic PBGs at shorter
wavelengths [25]. Other types of correlated disorder, such as
those generated by the random-sequential absorption model,
were claimed to be inferior because they do not induce the
formation ofPBGs for both polarizations simultaneously [25].
To the contrary, independent numerical work showed that the
amorphous diamond structure [28] and three-dimensional
networks derived from systems of densely packed spheres
[29] exhibit a full PBG in the absence of stealthiness.
Here we aim to disentangle the role of short-range

order and hyperuniformity in producing PBGs. To establish
a comparison between different disordered systems,
we compare, using otherwise identical design protocols
matching those studied in Ref. [25], the photonic properties
of systems with varying degrees and types of correlations:
(i) collections of rods for transverse-magnetic (TM)
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polarization, (ii) trivalent networks (connected walls) for
transverse-electric (TE) polarization, and (iii) decorated
trivalent networks for both polarizations. Our results
suggest that stealthy hyperuniformity and disk packing
are equivalent strategies for the design of two-dimensional
disordered photonic materials.
Pattern generation.—Hyperuniformity corresponds to

the suppression of long-range density fluctuations and
can be expressed as a condition for the structure factor,
Sðk → 0Þ ¼ 0. Stealthiness is even more restrictive and
requires the structure factor to vanish over a finite range,
SðkÞ ¼ 0 for k < K [26]. Importantly, two-dimensional
SHU patterns can be regarded as a reciprocal-space
counterpart of packing hard disks (HDs) [30] of radius
R, which fulfill the condition gðr < RÞ ¼ 0 for the radial
distribution function. In both cases the excluded zone is
determined by a dimensionless parameter, the packing
fraction ϕ in real space and stealthiness χ in reciprocal
space [26]. We interpret these parameters as measures for
the amount of correlation in the system restricting random-
ness. Increasing ϕ or χ leads to pronounced peaks in gðrÞ
and SðkÞ, indicating the development of short-range posi-
tional order. Upon further increase of ϕ or χ, entropy-driven
crystallization sets in eventually. Moreover, hyperuniform-
ity is recovered asymptotically, SðkÞ → 0 for k → 0, when
disks are packed into a maximally jammed configuration
via compression while avoiding crystallization [31,32].
We generate disordered point patterns with different

levels of positional correlation as measured by ϕ and χ
using computer simulation [33]. Disordered HD patterns
are equilibrated fluids. SHU patterns are obtained using a
pair potential derived from the potential energy,
E ¼ P

jkj≤KSðkÞ, where the discreteness of the sum is a
consequence of the periodic simulation box used. We
employ a simulated annealing relaxation scheme to find
disordered SHU patterns with SðkÞ < 10−6 for k < KðχÞ.
Selecting an area A in real space for a given number of
points N sets the number density ρ ¼ N=A and defines a
characteristic length scale a ¼ ρ−1=2, comparable to a
typical distance between the points.
The patterns calculated with our algorithms quantita-

tively reproduce previously reported [30] statistics and
correlation functions. Patterns below the critical parameters
ϕ, χ ≥ 0.70, in which quasi-long-range order gradually
appears [30,34,35], already have significant short-range
order. Figures 1(a)–1(f) shows representative HD and SHU
point patterns at ϕ ¼ 0.60 and χ ¼ 0.50, respectively.
These parameter values were chosen as high as possible
while retaining the amorphous structure and matching the
SðkÞ peaks as closely as possible. A close similarity of the
local short-range positional order in both patterns is
visually apparent. We now investigate the effect of this
similarity on photonic properties.
Photonic density of states.—We study numerically the

photonic properties of a dielectric system composed of
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FIG. 1. Structural order in (a),(b),(e),(f) HD patterns at ϕ ¼
0.60 and (c)–(f) SHU patterns at χ ¼ 0.50. We compare (a),
(c) typical point patterns in real space, (b),(d) structure factors
SðkÞ, (e) radial distribution functions gðrÞ, and (f) angle-
averaged structure factors SðkÞ. The two-dimensional plots in
(b),(d) confirm that the distributions are isotropic. The inset in
(e) shows that a correlation gap is present in HD and SHU
packings for r < a. The inset in (f) demonstrates that long-
wave length fluctuations 2π=k > 2π=K are strongly sup-
pressed (up to numerical noise) in the SHU pattern. All data
is obtained by taking an average over 1000 independent
patterns with N ¼ 200 points each. Vertical lines indicate the
position of the band edges in reciprocal space for TM
polarization. (g) Photonic properties of a dielectric structure
composed of a network of silicon rods placed at the position
of the points as shown in (a),(c). NDOS as a function of the
normalized frequency νa=c in TM polarization for the HD
system at ϕ ¼ 0.60 and the SHU system at χ ¼ 0.50. Here, c
is the speed of light in vacuum.
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silicon (dielectric constant or permittivity ϵ ¼ 11.6) rods
and walls derived from HD and SHU seed patterns. For the
first protocol we place cylindrical rods (in three dimen-
sions, disks in the plane) at the points of the seed pattern.
We use a fixed rod radius r=a ¼ 0.189, which leads to an
area filling fraction Nπr2=A ¼ πðr=aÞ2 ¼ 0.112 of the
two-dimensional plane with silicon, independent of ϕ
and χ provided no two rods overlap. The no-overlap
condition is almost exactly met in the relevant regime ϕ,
χ ≥ 0.2. We use the supercell method [1] implemented in
the open source code MIT Photonic-Bands [36] to obtain the
normalized photonic density of states (NDOS). A finite
sample (the supercell) is repeated periodically and the band
structure calculated by following the path Γ → M → X →
Γ in reciprocal space. We accumulate a histogram of
eigenfrequencies and compare it to the corresponding
one for a homogeneous medium with a refractive index
that best matches the first band (low energy) of both the
structured and the homogeneous medium. In the next step,
the effective refractive index of the structure and the width
and position of the PBGs are obtained by direct analysis of
the band structure [37].
The NDOS for the HD system with ϕ ¼ 0.60 and for

the SHU system with χ ¼ 0.50 [Fig. 1(g)] are almost
identical in TM polarization and resemble a typical NDOS
of a photonic crystal. Apparently the structural similarity of
the seed patterns translates into a corresponding similarity
of the photonic band structure. In fact, the position and
width of the PBG covers exactly the peak region of SðkÞ,
Fig. 1(f), corresponding to Bragg scattering at the isotropic
Brillouin zone.
It is known [38] that the placement of rods is a good ansatz

to obtain a PBG in TM polarization, but does not lead to the
opening of a PBG in TE polarization, even for perfect
crystals. Instead, in the second protocol, we perform the
Delaunay triangulation of the seed pattern and connect the
barycenters of neighboring triangles by walls (in three
dimensions, bonds in the plane) to form a trivalent network
[39]. This protocol enforces a uniform structure with three
bonds at each node, favoring the opening of a gap due to the
local topology [25,40,41]. We use a fixed wall thickness of
w=a ¼ 0.288. Finally, to enforce PBGs in both polarizations
simultaneously, we combine the two protocols and form a
decorated network consisting of rods (radius r=a ¼ 0.2275)
and Delaunay walls (thickness w=a ¼ 0.0593) [Fig. 2]. All
geometric parameters are optimized to yield a maximally
wide PBG, see also the Supplemental Material [33]. The
results for the HD system and the SHU system in TM, TE
polarization as well as in both polarizations simultaneously
are equally similar [33].
Next, we analyze the normalized PBGwidth for TM, TE,

and both polarizations simultaneously as a function of
stealthiness χ and packing density ϕ. As shown in Fig. 3,
the PBG is initially narrow but widens with increasing χ
and ϕ. Interestingly, the central frequency ν0 of the PBG is

almost unchanged at ν0a=c≃ 0.35. ν0 also coincides with
the PBG center of a hexagonal lattice with identical
scatterer geometry and area filling fraction. For comparison
we include in Fig. 3 results obtained when the seed pattern
is the hexagonal lattice. In this case, the PBG is even wider,
which suggests that the amorphous patterns attempt to
asymptotically reach the crystal values but cannot exceed
them—at least not for the two-dimensional structures
considered here. The joint PBG for TM and TE polarization
is generally narrower than the PBG for TM or TE
polarization alone and typically reaches only a width of
approximately 13% for amorphous patterns and 19% for
the hexagonal lattice.
Robustness of the photonic band gap.—Finally, we

address briefly the influence of imperfections on the width
of the PBG. Imperfections are unavoidable in the exper-
imental realization of photonic materials and the robustness
of the PBG is an important design parameter. For simplicity
we restrict our analysis to the case of random link removal in
the network of walls and for TE polarization, following the
procedure described in Ref. [42]. A percentage p of links is
removed randomly and for each value of p we calculate the
NDOS for ten different structures. As shown in Fig. 4, we
find that the removal of links gradually reduces the width of
the gap. Our results indicate that, within statistical error, the
results are the same for the SHU and the HD structure.
Moreover, our results are similar to those obtained for the
corresponding hexagonal lattices of dielectricwalls [42]; see
also the Supplemental Material [33].
Discussion and conclusion.—Our findings demonstrate

that disordered packings in real and reciprocal space are
equally suitable for generating isotropic PBG materials in

FIG. 2. Decorated network structure derived from (a) a HD seed
pattern with N ¼ 200, ϕ ¼ 0.60, and (c) a SHU seed pattern with
N ¼ 200, χ ¼ 0.50. (b) and (d) The average of the square
amplitude of the corresponding Fourier transforms taken over
1000 network realizations.
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two dimensions. SHU patterns restrict the accessible phase
space in a different way, but are not found to be more
efficient in opening wider PBGs than HD patterns. The
parameters ϕ and χ acquire their meaning due to the

presence of a maximum value, i.e., a value where the
accessible phase space volume is zero, the system is fully
constrained, and dynamics disappears. In the case of HDs
this value is the packing density of the densest packing of
disks in the hexagonal lattice, ϕmax ¼ π=

ffiffiffiffiffi
12

p ≃ 0.91. For
SHU patterns the maximum value is obtained once the
excluded zone in reciprocal space touches the Bragg peaks.
Interestingly, and for reasons that are unclear, our results
suggest that SHU patterns converge towards the square
lattice [33] after the appearance of intermediate stacked-
slider phases with local hexagonal order [43], and thus
χmax ¼ π=4≃ 0.79. Since the phase space restrictions that
are imposed by χ and ϕ are highly nonlinear, no simple
linear relationship exists between them well below their
maximum value.
The characteristic length scale for the development of a

PBG, the so-called Bragg length lB, is typically on the order
of the characteristic structural length scale a. Suppression
of scattering at wave numbers smaller than 2π=lB, as
targeted by hyperuniformity, should therefore play a
marginal role in the formation of the PBG. Indeed, we
believe that the emergence of a PBG is a side effect of
hyperuniformity. Increasing χ prevents scattering for k < K
and the intensity piles up, due to a sum rule, just above K
[44]. Suppression of scattering at small wave numbers and
hyperuniformity (strictly or in approximation) are then
natural consequences of the development of short-range
order and vice versa.
In all cases studied the maximum bandwidth

approaches the crystal values only asymptotically. The
influence of defects is local and it affects the band gap
most whenever such defects percolate as shown in
Ref. [42]. Moreover, in Ref. [45] it was found that the
band gap of polycrystalline photonic structures remains
nearly unchanged from that of the perfect crystalline
structure as long as the crystal domains are larger than a
few times the Bragg length lB. These observations, taken
together, suggest that the band gap formation is deter-
mined by local properties. Optimization of short-range
order, in particular the tailoring of Bragg scattering at the
isotropic Brillouin zone, and the appropriate topology are
expected to be the key aspects for enforcing a photonic
band gap in dielectric materials.
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FIG. 4. Robustness of the band gap for a HD structure at
ϕ ¼ 0.6 (a) and a SHU structure at χ ¼ 0.5 (b). The plot shows
the averaged normalized PBG width for networks of dielectric
walls, where a percentage p of links is removed randomly. The
shaded area represents the smallest and largest gap within the
ensemble of ten configurations studied. The calculation was
performed in TE polarization.
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