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We demonstrate improved operation of exchange-coupled semiconductor quantum dots by substantially
reducing the sensitivity of exchange operations to charge noise. The method involves biasing a double dot
symmetrically between the charge-state anticrossings, where the derivative of the exchange energy with
respect to gate voltages is minimized. Exchange remains highly tunable by adjusting the tunnel coupling.
We find that this method reduces the dephasing effect of charge noise by more than a factor of 5 in
comparison to operation near a charge-state anticrossing, increasing the number of observable exchange
oscillations in our qubit by a similar factor. Performance also improves with exchange rate, favoring fast
quantum operations.

DOI: 10.1103/PhysRevLett.116.110402

Gated semiconductor quantum dots are a leading candi-
date for quantum information processing due to their high
speed, density, and compatibility with mature fabrication
technologies [1,2]. Quantum dots are formed by spatially
confining individual electrons using a combination of
material interfaces and nanoscale metallic gates. Although
several quantized degrees of freedom are available [3–5], the
electron spin is often employed as a qubit due to its long
coherence time [6,7]. Spin-spin coupling may be controlled
via the kinetic exchange interaction, which has the benefit of
short range and electrical controllability. Numerous qubit
proposals use exchange, including as a two-qubit gate
between ESR-addressed spins [8], a single axis of control
in a two dot system also employing gradient magnetic fields
[9] or spin-orbit couplings [10], or as a means of full qubit
control on a restricted subspace of at least three coupled
spins [11–13]. However, since exchange relies on electron
motion, it is susceptible to electric field fluctuations, or
charge noise. Limiting the consequence of this noise is
critical to attaining performance of exchange-based qubits
adequate for quantum information processing.
Charge noise in semiconductor quantum dots may

originate from a variety of sources including electric
defects at interfaces and in dielectrics [14]. These defects
typically result in electric fields that exhibit an approximate
1=f noise spectral density. Conventional routes for reduc-
ing charge noise include improving materials and interfaces
[15] and dynamical decoupling [16–19]. In this Letter,

rather than addressing the microscopic origins or detailed
spectrum of charge noise, we introduce a “symmetric”
mode of operation where the exchange interaction is less
susceptible to that noise. This is done by biasing the device
to a regime where the strength of the exchange interaction
is first-order insensitive to dot chemical potential fluctua-
tions but is still controllable by modulating the interdot
tunnel barrier. This dramatically reduces the effects of
charge noise.
The principle of symmetric operation can be understood

by treating charge noise as equivalent to voltage fluctuations
on confinement gates. This approximation is valid when
materials or interfaces proximal to gates are the dominant
source of noise [14]. In this context, noise sensitivity may be
reduced by biasing the device to a “sweet spot”where small
changes in gate voltages only weakly alter the strength of
the exchange interaction. Previously explored methods
include using a triple quantum dot with balanced exchange
interactions [20,21] (see the Supplemental Material [22] for
a comparison), operating far from the (1,1) charge regime
where excited states flatten the exchange profile [21,23,24],
using double dots populated with more than two electrons
[25], or tailoring exchange derivatives via magnetic field
gradients [26]. The strategy we pursue in this Letter has the
advantage of employing only pairwise exchange without
requiring high or inhomogeneous magnetic fields and
maintains tunability of the exchange coupling rate from
being negligibly small to many GHz.
Symmetric operation is diagrammed in Fig. 1. The

difference in chemical potential between two dots is
denoted Δ and is predominantly controlled by two gates
labeled P1 and P2 in Fig. 1(a). For an ideal double
quantum dot, Δ ¼ αðVP1 − VP2Þ where α is the “lever
arm” that converts voltage to chemical potential. A third
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gate, labeled X1, controls the potential barrier that sets the
rate at which an electron can tunnel, tc=h. Figure 1(b)
shows eigenenergies for a double dot as calculated with a
Hubbard model. Crucially, although the detuningΔ is often
used to control J, the tunnel coupling tc can also modify the
energy difference between the singlet and triplet energy
eigenstates, JðΔ; tcÞ. In particular, JðΔ ¼ 0; tcÞ is a “sweet
spot” where the effects of charge noise on exchange are
reduced because ∂J=∂Δ ¼ 0 [28,29], as evident from
Fig. 1(b). We refer to JðΔ ¼ 0; tcÞ as a symmetric operating
point (SOP) because the double quantum dot is biased to
the center of the (1,1) charge cell and equidistant from the
(2,0) and (0,2) anticrossings.
Although any system of exchange-coupled quantum dot

pairs could potentially benefit from symmetric operation,
we use Si-based triple-quantum-dot devices for our dem-
onstration. A SEM image of a device is shown in Fig. 1(c).
Metallic plunger gates P1 − P3 are deposited on an
undoped Si=SiGe heterostructure. When the plungers are
forward biased, individual electrons are drawn from a bath

and accumulate beneath the plungers [13,15]. The X and T
gates are deposited on an insulating layer that overlaps the
plungers and control tunnel barriers between the dots and to
the electron bath. Some devices in our study differ from
Ref. [13] by the addition of a metal screening gate which
prevents charge accumulation under gate leads [30]. A
proximal dot charge sensor formed by the M and Z gates
enables single-shot readout of the qubit state [13]. P and X
gate control lines are capable of nanosecond pulse rise
times and amplitudes of 140 mV. The devices are operated
in a dilution refrigerator, giving Te ∼ 100 mK.
The third dots in our devices enable initialization and

measurement [see Fig. 2(a) of Ref. [13] ]. In the experi-
ments described below, we prepare the qubit state by
biasing near the (1,0,1)–(1,0,2) charge transition where a
two-electron singlet state is preferentially loaded into dot 3.
One of the electrons is then transferred into dot 2 by
ramping P2 and P3. We define this singlet state between
dots 2 and 3 as the north pole of a qubit Bloch sphere [11].
Exchange between dots 1 and 2 occurs at a frequency
JðΔ; tcÞ=h ¼ JðVÞ=h, where V denotes the gate voltages.
This interaction rotates the qubit state about an axis which
is tipped 120° from the north pole [11–13]. After some
evolution, we measure the qubit state using Pauli blockade
by biasing near the (1,0,2)–(1,1,1) charge transition.
Sweeping the evolution time yields Rabi oscillations which
have a maximum contrast of 75% due to the tilted rotation
axis.
We demonstrate singlet-triplet Rabi oscillations in

Fig. 2(a) by sweeping the exchange duration and Δ while
holding tc constant. The Rabi frequency is given by
JðΔ; tcÞ=h and is large even with Δ ¼ 0 because VX1 is
forward biased during evolution, increasing tc. J increases
with jΔj, producing a chevron pattern. The number of
resolvable oscillations is greatest at the SOP (Δ ¼ 0),
giving preliminary indication that using a SOP can enhance
the quality of the exchange interaction. This improvement
can be interpreted in the context of gate-referred charge
noise. As discussed in the Supplemental Material [22], for
large detuning jdJ=dΔj ≈ J2=t2c. Thus, as J is increased by
detuning, it becomes quadratically more susceptible to
charge noise. When Δ ¼ 0, however, the dominant deriva-
tive is now dJ=dVX1 ¼ ð∂J=∂tcÞðdtc=dVX1Þ, proportional
only to J. Increasing J with tc, then, only linearly increases
susceptibility to charge noise. (This scaling is valid when J
is exponentially dependent on VX1; later, we show that it
can be subexponential and, thus, even more favorable.)
The shape of the Rabi oscillations shown in Fig. 2(b) can

be modeled with a two-channel decay process. One process
is due to the hyperfine interaction between the electron spin
and that device’s natural abundance of 29Si nuclei and is
described by Eq. (12) of Ref. [31]. The other process is due
to charge noise, which, for the 1=f spectrum of noise seen
in these devices [13], imposes a Gaussian envelope. For this
illustrative example, the relatively low value of J and the

FIG. 1. (a) Schematic of a double-dot potential energy as a
function of position, in which the left dot has a chemical potential
higher than the right dot by the detuning Δ. The chemical
potentials are predominantly controlled by gates P1 and P2
(schematized above each) and the barrier by X1. When X1 is
forward biased, the tunnel coupling tc is increased, with the blue
curve indicating low tc and the red curve high tc. (b) Schematic of
eigenenergies of the double dot as a function of Δ, according to a
simple Hubbard model. Here, the singlet states are again colored
blue to red as tc is increased, while the triplet states are colored
green. Exchange J is the difference between singlet and triplet
energies; ∂J=∂Δ vanishes at the symmetric operating point
Δ ¼ 0. Note that our definition of Δ corresponds to the chemical
potential difference of singly occupied dots and not distance from
the anticrossing (typically notated ε as in Refs. [2,13,27]).
(c) Representative electron micrograph of a triple quantum
dot, with gate traces labeled. We false color gates P1, X1, and
P2, respectively, red, green, and blue.
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natural isotopic abundance of this sample renders the
charge decoherence time comparable to the magnetic
dephasing time. In the discussion that follows, however,
because we focus on higher values of J in isotopically
purified silicon samples, charge noise will dominate the
decay envelope.
For gate-referred 1=f charge noise, this envelope can be

expressed as expð−σ2V
P

jjdJ=dVjj2t2=ℏ2Þ. Here, σ2V is the
variance of the noise (e.g., the noise spectral density
integrated over relevant time scales) and j indexes all
gates; see Ref. [23] and the Supplemental Material [22].
Increasing the Rabi decay time for fixed J can then be
accomplished by reducing

P
jjdJ=dVjj2 [28]. We define

the insensitivity I as

I ¼ J=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j
jdJ=dVjj2

q
; ð1Þ

which has units of voltage. With this metric, the expected
envelope of Rabi oscillations is exp ½−ðJt=ℏÞ2ðσV=IÞ2�, so
that the number of oscillations that occur before the
amplitude decays by 1=e is I=ð2πσVÞ. As long as σV is
not too strong a function of control parameters (e.g., noise
not varying from one gate to the next), we can optimize
device performance by maximizing I with respect to V. In
particular, only the charge noise variance and not the
detailed structure of its spectral density is relevant to this

calculation, enabling predictions of bias-dependent charge
noise performance based on device electrostatics.
In order to demonstrate the advantage of symmetric

operation, we must independently control Δ and tc. The
plunger and exchange gates affect both parameters due to
capacitive cross talk. Using a routine described in the
Supplemental Material [22], we orthogonalize these control
axes. Modulation of tc is accomplished by changing VX1
along with small compensating voltages on plunger gates,
while Δ is modified by biasing P1 and P2 with approx-
imately equal and opposite voltages. We show the effect of
these parameters on J in Fig. 3, where we evolve for a fixed
time at a point that is swept in both tc (parametrized by
VX1) and Δ. This “fingerprint” plot shows fringes due to
varying J, the curvature of which indicates where
dJ=dΔ ¼ 0. This locus of points, which on this plot is
approximately parallel to the x axis due to our orthogon-
alization scheme, is known as the symmetric axis and
indicates the location of the SOP for a given J.
Symmetric operation maximizes I . To demonstrate

this, we choose various combinations of Δ and tc where
J=h ¼ 160 MHz, shown in the inset of Fig. 4(a). At each
evolution point, we explicitly measure I by determining
how the Rabi oscillation frequency changes due to small
perturbations in each of the seven relevant gate voltages.
We plot the resulting insensitivity in Fig. 4(a) and find that
it is maximized at Δ ¼ 0 with a value of ∼30 mV and
rapidly decreases to less than 5 mV for large Δ.
To test the validity of I as a metric for the effects of

charge noise, we measure the number of Rabi oscillations
NRabi ≡ Jτ=h that occur in a 1=e decay time τ. If the gate-
referred charge-noise variance σ2V were equal and uncorre-
lated on all gates, then we would expect I ∝ NRabi.
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FIG. 2. Rabi oscillations at a SOP. (a) We observe exchange
oscillations by biasing to a detuning (y axis) for a given time
(x axis). The middle of the plot, whereΔ ¼ 0 and J is minimized,
corresponds to the SOP. The gray scale measures singlet
probability and ranges from 100% (white) to 25% (black).
(b) Evolving at Δ ¼ 0 reveals a time-domain Rabi oscillation
showing a double Gaussian decay with a 1=e time of 1.0 μs due
to hyperfine interactions and 1.5 μs due to charge noise.
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FIG. 3. Fingerprint plot demonstrating the dependence of
exchange on Δ and VX1. We plot the average singlet probability
after evolving for 500 ns at a potential specified by the axes. The z
scale is the same as in Fig. 2. A faint set of additional fringes is
present in this data [prominent near ðΔ; VX1Þ ¼ ð−20; 100Þ�,
likely due to excited state population (Supplemental Material
[22]). The device used here and in all subsequent figures differs
from the device used in Fig. 2 by the addition of a screening gate
[30] and the use of enriched 28Si (800 ppm29Si)[13].
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To determine NRabi, we measure τ along the voltage arc
where JðΔ; tcÞ=h ¼ 160 MHz. The resulting NRabi is
plotted in Fig. 4(b) (red circles). Though it qualitatively
follows I and is maximum near Δ ¼ 0, the quantities are
not strictly proportional, indicating that our assumptions
are not fully supported. In particular, as discussed in the
Supplemental Material [22], by including some knowledge
of the relative geometries of the P and X gates in this
device, we can more accurately model NRabi with a
generalized definition of I [blue crosses in Fig. 4(b)].
Charge noise is not the only source of degradation for

exchange-based control: finite T1 and hyperfine dephasing
will also play a role. Their effects are generally diminished
by making the evolution time as short as possible, requiring
J to be maximized. When J is controlled solely by Δ, this
poses a major problem as I will drop precipitously; one
must trade-off between infidelity sources. Fortunately, for
symmetric operation, there is no such penalty; indeed,
performance actually improves. We see this by first noting
that J will depend exponentially on the height of the tunnel
barrier when tc is small. As we approach the large-J limit,
however, the SOP double dot merges into a larger two-
electron single dot where the former barrier is shallow. In
this regime, J will saturate to near that broader potential’s
orbital excited energy and not depend on tc (Supplemental

Material [22]). This is reflected in the inset of Fig. 5, where
JðVÞ behaves subexponentially with increasing VX1. Since
the main contributor to I whenΔ ¼ 0 is this exchange gate,
we see, in Fig. 5, that I monotonically increases with J,
doubling over the selected range. We may fit this behavior
at high J using a one-dimensional WKB approximation
appropriate for shallow barrier tunneling [32] which
correctly captures the subexponential behavior of J and
increased I but breaks down at low tc. In some cases,
detailed 3D single-electron Poisson-Schrödinger simula-
tions including disorder captures the full behavior.
We have shown that symmetric operation improves the

noise characteristics of semiconductor qubits employing
the exchange interaction. Compared to detuning, it is
substantially less sensitive to noise, particularly for large
J where fast gates are possible. Though we demonstrated
symmetric operation with an exchange-only Si triple dot,
the principle should work equally well in any device where
Δ and tc can be separately controlled. Indeed, we recently
became aware of demonstrations in GaAs double dots
[33,34]. Future work will be to characterize the benefits of
symmetric operation on control fidelity using techniques
such as randomized benchmarking.

We thank C. Jones, J. Kerckhoff, S. Meenehan, and D.
Underwood for discussions. This research was developed
with funding from the Defense Advanced Research
Projects Agency (DARPA). The views, opinions, and/or
findings contained in this material are those of the authors
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

FIG. 4. Insensitivity and number of fringes along a constant-J
curve. (a) We measure I along a contour where J=h ≈ 160 MHz
for various Δ and VX1 (inset). I is peaked near Δ ¼ 0 at a value
of ∼30 mV, rapidly falling to below 5 mV as jΔj is increased.
(b) We verify that I is a valid proxy for device performance by
measuring the number of fringes present in a 1=e decay time with
a series of time-Rabi experiments where the evolution point is
swept along the same contour. Because of the presence of two
evolution frequencies in this device (Supplemental Material
[22]), we apply a high-pass filter to the time-domain data before
extracting the decay coefficient. We plot the product of that
coefficient and J=h as closed red circles. We also plot a
generalized definition of I (blue crosses) which better models
the data (Supplemental Material [22]).
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FIG. 5. Asymptotic behavior along the symmetric axis. (inset)
We measure J as a function of VX1 along the symmetric operating
vector, JðΔ ¼ 0; tcÞ, and find that it is subexponential at large J.
(main figure) As a consequence of this asymptotic behavior, I
monotonically increases with J, roughly doubling over the
relevant voltage range. We plot several representative error bars
in black and suppress the rest for clarity. We compare the
insensitivity of several similar devices in the Supplemental
Material [22].
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