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We show that the effect of measurement backaction results in the generation of multiple many-body
spatial modes of ultracold atoms trapped in an optical lattice, when scattered light is detected. The
multipartite mode entanglement properties and their nontrivial spatial overlap can be varied by tuning the
optical geometry in a single setup. This can be used to engineer quantum states and dynamics of matter
fields. We provide examples of multimode generalizations of parametric down-conversion, Dicke, and
other states; investigate the entanglement properties of such states; and show how they can be transformed
into a class of generalized squeezed states. Furthermore, we propose how these modes can be used to detect
and measure entanglement in quantum gases.
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Recently, the field of quantum gases [1,2] has grown
considerably, due to the suitability of atomic systems for
quantum simulation of a wide array of systems with origins
in other fields, such as condensed matter and particle
physics. Such systems also have use in entanglement
and quantum information processing (QIP) [3]. Control
is achieved by light fields, and there has been recent interest
in the regime when the light exhibits decidedly quantum
properties, thus uniting quantum optics with many-body
physics (see Refs. [4,5] for reviews). This fully quantum
regime enables one to go beyond standard questions of
ultracold gases trapped in fixed classical potentials, thus
broadening the field even further.
Measurement backaction, the evolution of a state due to

observation, is one of the primary manifestations of
quantum mechanics. It was exploited in the breakthrough
cavity QED experiments [6], where atoms were used as
probes of quantum states of light. Intriguing Fock and
Schrödinger cat states were prepared in a single cavity
using quantum nondemolition (QND) methods. However,
scaling to a large number of cavities provides an extreme
challenge.
In contrast, we consider a case where the roles of light

and matter are reversed: Ultracold atoms are trapped in an
optical lattice, and light is used as a global QND probe.
Thus, the lattice sites represent the storage of multiple
quantum states of matter fields, and the number of
illuminated sites can be tuned from few to thousands,
enabling scaling. We show how the quantum nature of light
manifest in the measurement backaction can be used to
establish a rich mode structure of the matter fields, with
nontrivial delocalization over many sites and entanglement
properties. These modes can be used for quantum state
engineering, including multimode generalizations of para-
metric down-conversion (PDC) and Dicke states. We focus
on the mode entanglement properties of these states, which

exhibit genuine multipartite mode entanglement [7,8], and
contrary to the entanglement inherent to the symmetrization
of indistinguishable particles, may be extracted for use in
QIP. In contrast to setups with atomic ensembles, we
consider optical lattices, which enables the modes to have
a significant amount of spatial overlap, and the light allows
us to introduce effective long-range interactions, allowing
for new schemes to be realized. Furthermore, using their
nontrivial spatial overlap, we suggest how they can be used
in the measurement of entanglement. Being based on off-
resonant scattering, these ideas can be exported to other
systems, such as molecules [9], fermions [10], and
spins [11].
We study a generalized Bose-Hubbard model [4], where

atoms in an optical lattice scatter light [Fig. 1(a)], and
crucially, light is elevated to a dynamical variable (see

FIG. 1 (color online). (a) Setup: Light is scattered from atoms in
an optical lattice. Generated spatial structure of three matter-field
modes in 2D (b) and 1D (c) lattices. Sites of the same color are
indistinguishable from light scattering and thus belong to the
same mode. The superposition of three indistinguishable atom
distributions in (c) is protected by light scattering.
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Supplemental Material [12] for details). As ultracold
particles are delocalized, the atomic state is a superposition
of Fock state configurations jni ¼ jn1;…; nMi correspond-
ing to different occupations nj at M sites. If the light probe
is in a coherent state and the atoms in a Fock state, the
scattered light will also be coherent with an amplitude αn
[13–16] dependent on the particular matter configuration:
αn ¼ ChnjD̂jni, where D̂ ¼ P

ju
�
outðrjÞuinðrjÞn̂j sums

density-dependent contributions from illuminated sites,
uðrÞ are the mode functions of probe and scattered light,
and C is the Rayleigh scattering coefficient into a cavity or
free space [17]. Due to the linearity of quantum mechanics,
since the general atomic state is in a superposition of Fock
states, the light and matter become entangled, with joint
state jψi ¼ P

fngc0njnijαni.
When light is scattered into a cavity with a decay rate κ,

detection of the escaped photons alters the probability
amplitudes cn [4]: cnðm; tÞ ¼ αmn e−jαnj

2κtc0n=N (N is the
normalization), the first factor reflecting m quantum jumps
(photons detected) and the second the non-Hermitian
evolution during a time t. The measurement hence changes
the state of both light and matter, this being the measure-
ment backaction. While light amplitude and phase are
measured, the distribution of αn is narrowed and the state is
gradually projected towards terms with only one α (squeez-
ing below the standard limit is not required). With
continuous measurement, light is pinned by the quantum
Zeno effect, and the atoms will undergo Zeno dynamics
[18–20], which is constrained such that they may only
evolve within the region of Hilbert space with configura-
tions jni corresponding to the measured α. Thus, the result
of coherent collective scattering strikingly contrasts the
outcome of incoherent light scattering, where atoms are
localized to a mixed state and coherence is destroyed [21].
Such controlled dynamics has applications in quantum
simulations [22].
If both modes are traveling waves, D̂ ¼ P

me
imδn̂m,

where δ ¼ ðkout − kinÞd (for two wave vectors k and lattice
vector d). This is a consequence of diffraction [23]:
Depending on the angle, the light will show diffraction
maxima (δ ¼ 0; 2π;…) and minima in between. Thus,
the choice of δ (via angles or light frequencies) determines
the states to which light can be projected, and hence the
corresponding atomic configurations. This choice thus
controls the region of Hilbert space to which atomic
dynamics is restricted during continuous lightmeasurement.
Importantly, when δ ¼ 2π=R (R ∈ Z), the atoms at sites

jþmR scatter light with the same phase and amplitude,
and are therefore indistinguishable to light scattering. This
crucially gives rise to R spatial atomic modes: The atoms at
indistinguishable sites belong to the same mode, while
different atomic modes scatter light with different phases.
Physically, δ ¼ 2π=R corresponds to the angles of multiple
diffraction minima and a small number of maxima. For
example, for δ ¼ 2π (diffraction maximum) one mode

(R ¼ 1) is formed as all atoms scatter light in phase,
and D̂ ¼ N̂K is the atom number operator for all K
illuminated sites (the remaining M − K nonilluminated
sites can be considered as an additional mode). For
δ ¼ π (diffraction minimum for orthogonal light waves),
two modes are generated (R ¼ 2) as the atoms at neigh-
boring sites scatter light with opposite phase: D̂ ¼P

mð−1Þmn̂m ¼ N̂even − N̂odd gives the number difference
between even and odd sites. For other diffraction minima,
more spatially overlapping modes are generated, as shown
in Figs. 1(b) and 1(c) for R ¼ 3 modes.
Multiple operators D̂ can be measured. It is possible to

fully characterize R modes by measuring all of
δ ¼ 2πm=R, m ∈ ½0; ðR − 1Þ=2�∩Z, with the rth mode
composed of sites j satisfying jmodR ¼ r. The measured
operators can be written in the form of an invertible
Vandermonde matrix [24]. The inverse then reveals the
occupation numbers for each mode (one has a system of
linear equations to determine all atom numbers).
Ultimately, for R ¼ M, this leads to the determination of
atom numbers at all lattice sites nj without the requirement
of single-site resolution [25–27]. In this case, the quantum
measurement will project the state to a single multisite Fock
state with well-defined atom number at all sites jn1;…nMi.
This is a direct multimode analogy of preparation of a
photon Fock state in a single cavity [6]. After this state is
achieved, the quantum dynamics under continuous meas-
urement is usually finished.
Although such effective single-site access is useful, here

we focus on essentially many-body states. Importantly,
even after the atom number in the modes is defined, the
modes are still given by superpositions of Fock states, and
thus quantum dynamics is not extinct, in contrast to the
single-cavity QED case [6]. For example, in Fig. 1(c), all
three states correspond to the same α and thus are protected
in a superposition. The Zeno effect prevents the mode atom
numbers from changing, and thus prevents interactions
between modes, but not within modes. This results in
multiple “virtual” lattices on a single physical lattice. By
forgoing measurements with certain δ, the restriction on the
interaction between modes is partially lifted. This control
over the interaction between modes allows for engineering
of desired dynamics.
First, we show how an atomic state akin to a photonic

PDC state [28] (jψPDCi ¼
P

ncnjnijni) can be realized by
measurement, and readily generalized to a multimode case.
The initial state is a superfluid (SF) delocalized over all
sites. For a large lattice, this can be approximated by the
Gutzwiller (mean field) ansatz [2] with a product over all
sites, where each site is in a coherent state:

jψi ¼ ⊗
M

i¼1

P
n e

−ν=2νn=2=
ffiffiffiffiffi
n!

p jnii, where ν is the lattice

filling factor. This state can be prepared with an external
phase reference [29]. Measuring the amplitude and phase
for δ ¼ π and either post-selecting or using feedback
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(modifying the trapping potential) [30] to get hD̂iδ¼π ¼ 0,
we project to the state

jψi ¼ 1

N

X
n

e−λ

n!
λnjnijni; ð1Þ

where λ ¼ νK=R is the average initial occupation number
of each mode (here R ¼ 2). The two modes are defined as
odd and even sites. Note that while post-selection or
feedback is needed to get equal mode occupation, the
measurement will deterministically project to a state with a
fixed difference in occupation ΔN:

jψi ¼ 1

N

X
n

e−λffiffiffiffiffi
n!

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ ΔN!

p λnþΔN=2jnijnþ ΔNi: ð2Þ

For large N, ΔN will become vanishingly small compared
to the average number [ΔN ≤ OðhNi1=2Þ and thus
ΔN ≪ λ]; hence, the states (1) and (2) exhibit many similar
properties, such as their entanglement, and post-selection
and feedback are not strictly necessary.
We now generalize the procedure to several modes. By

measuring all D̂ operators required to characterize R
modes, excluding δ ¼ 0 (which measures the total atom
number), and again post-selecting equal numbers in all
modes, we obtain the state

jψi ¼ 1

N

X
n

�
e−λλn

n!

�
R=2

jni⊗R: ð3Þ

It is truly multimode and has genuine multipartite entan-
glement (that is, any possible bipartitioning of modes
shows nonzero entanglement [31]). This entanglement
can be expressed by the entanglement entropy [8], the
von Neumann entropy of the reduced density matrix of one
of the subsystems (identical for the choice of either
subsystem) EðjψiABÞ ¼ SðρAÞ ¼ −TrðρAlog2ρAÞ. For all
bipartitionings, if λ ≫ 1, E ¼ ð1=2Þlog2ð2πeλ=RÞ. As with
the two-mode case, even without post-selection, the state
will still deterministically be projected to one with fixed
number differences between each mode, and it will share
similar properties to the “ideal” case (3).
In quantum optics, simple multimode PDC or four-wave

mixing produces multipartite entanglement that is not
genuine (entanglement exists between mode pairs, but
not between all of them) [32], as photons are produced
in pairs, while higher nonlinearities are challenging to
achieve. In contrast, our system produces a kind of
genuinely entangled multimode squeezed state which is
generally non-Gaussian. In optics, similar continuous
variable (CV) Gaussian-like states are obtained using
multiple beam splitters, which complicates the scaling
to many modes [33], or frequency combs [34]. The
atom-optics system we suggest here may provide advan-
tages using the mode entanglement of quantum matter
fields.

This method can also be used to create states similar to
generalized squeezed states [35], which in optics are
expected to be formed from the highly nonlinear process
described by the Hamiltonian H ¼ gak þ g�ða†Þk. By
taking the multimode case above (with R modes taking
the place of the k-photon process), and then lowering the
lattice potential between the modes (but leaving a global
trap), the atoms will behave as a single mode, with the state
jψi ¼ P

ncnjN0 þ nRi, where N0 and cn depend on the
measured light. This generalizes squeezed vacuums con-
taining even numbers of photons (pairs) to triplets, qua-
druplets, etc. for increasing R.
Measurement at different angles results in other states. A

case δ ¼ 0 (diffraction maximum) reveals the total number
of atoms illuminated and thus projects to the “fixed atom-
number SF” ormultimode generalization of a “spin coherent
state.” Using several such measurements, or in combination
with measurements for other δ [e.g., measuring the total
atom number in (1)–(3)], one prepares a product state of

several SFswithNi atoms: jψi ¼ ⊗
R

i¼1
jNiii in themode basis.

This corresponds to the multimode generalization of Dicke
states if written in the symmetrized particle basis. Note that
those SF modes may be noncontinuous in space; e.g., one
SF can occupy each third site (Fig. 1), which in time-of-
flight measurements would be revealed as the period change
in the matter-wave interference.
Another interesting case is when for δ ¼ π the amplitude

of α is measured but not the phase. For two modes, this
gives the magnitude of the number difference between the
two modes jΔNj but not its sign. This results in a super-
position of cat states

P
ncnðjn; nþ ΔNijαΔNi � jnþ

ΔN; nij − αΔNiÞ=
ffiffiffi
2

p
. If the light is turned off, this leads

to the atomic cat state, which could be maintained by
freezing matter dynamics by other means (e.g., by ramping
up the lattice depth).
In Fig. 2, we present quantum trajectories of the evolution

of entanglement entropy (using quantumMonte Carlo wave

FIG. 2 (color online). Quantum trajectories for the growth
of entanglement between two modes where the detected
variables are (a) atom number difference in the diffraction
minimum, (b) total atom number in the diffraction maximum,
and (c) absolute value of atom number difference in the
minimum. The insets show the final entanglement distribution
functions. hNi ¼ 50, τ ¼ 2jCj2κt.
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function simulation [36]) for these three cases: (a) phase-
sensitive measurement at the diffraction minimum (δ ¼ π),
(b) diffraction maximum (δ ¼ 0), and (c) phase insensitive
measurement at theminimum (δ ¼ π) (all forR ¼ 2modes).
We see that during the measurement, when light-matter
entanglement obviously degrades, matter-matter entangle-
ment between initially separable modes is established and it
grows significantly. While the final average entanglement is
similar for all cases, the distribution widths are clearly
different (see insets). In Fig. 2(a), the distribution is very
narrow, as amplitudes of the Fock state in Eq. (2) only have a
weak dependence on ΔN for the typical ΔN ≪ hNi. In
Fig. 2(b), the distribution is broad, as the total atom number
measurement projects to SFs with different N, and because
of the scaling as log2 N1=2 [37], the final E depends on the
measured atom number. In Fig. 2(c), the distribution is
even broader as the state is a superposition of cat states.
It has the highest probability to be projected to a state
with large entanglement even though the average for all
scenarios is the same. Importantly, for large N, all three
widths vanish due to the logarithmic scaling. Thus, the
entanglement in effect evolves deterministically, and sim-
ulation of a single quantum trajectory will be enough to
describe the entanglement evolution, providing a significant
numerical simplification.
Next, we show how the multimode structure of matter

fields enables entanglement to be established between
several spatially separated many-body systems, even if
they are initially in Fock states without any phase coher-
ence between them. Importantly, our method does not
require any particle subtraction or light-induced particle
exchange between the systems, in contrast to previous
proposals [38,39]. The idea is to introduce additional
submodes in the systems, which is possible in our setup.
We start with two SFs with fixed atom numbers NA and NB
(they can be prepared by measuring light at δ ¼ 0). We
define two new submodes within each SF, composed of the
odd and even sites, and write the state of each subsystem in
the basis jNodd; Neveni. Measurement for δ ¼ π across the
two subsystems then projects to a state with a fixed atom
number difference between odd and even sites across the
two subsystems: jψi ¼ P

kðNA
k Þ1=2ðNB

lðkÞÞ1=2jk; NA − kijlðkÞ;
NB − lðkÞi=N , where lðkÞ ¼ ðNA þ NB − ΔNÞ=2 − k,
and ΔN is the measured number difference. The state
of subsystem A is then ρA ¼ P

kðNA
k ÞðNB

lðkÞÞjk; NA−
kihk; NA − kj=N 2. There is thus entanglement between
A and B if this reduced state has a nonzero entropy, i.e.,
ðNA
k ÞðNB

lðkÞÞ ≠ 0 for at least two k. This occurs whenever

jΔNj ≠ ðNA þ NBÞ. Such a scheme for entanglement
generation will readily work for multiple initially separable
systems.
So far, we have used light detection defined by the

on-site (n̂i) density-dependent operators D̂. Note that it is
also possible to measure the combinations of conjugate

operators b†i biþ1 (n̂i ¼ b†i bi) by concentrating the probe
light between sites [17]. Detecting combinations of these
operators may enable generation of clusterlike and other
states used for QIP [33,40].
We now propose how to exploit the nontrivial spatial

overlap (Fig. 1) between the modes for measurement of
entanglement in an atomic system. The modes can be used
as multiple copies of a system of interest, and their overlap
enables a straightforward shift from one copy to the
neighboring one in space.
Moments TrðρmÞ of the density matrix of a state can be

determined by acting generalized SWAP operations on
multiple copies of the state conditional on the state of an
external qubit, where m is the number of copies [41]
(Fig. 3). Unlike other proposals based on this circuit
[42–44], ours easily generalizes to arbitrary numbers of
dimensions. These moments can be used to find the
purity (m ¼ 2), as well as the Rényi entropies
HmðρÞ ¼ log2½TrðρmÞ�=ð1 −mÞ, and, by expanding the
logarithm in a Taylor series, the entanglement entropy.
Each virtual lattice is used to support a copy of the

system, prepared in an appropriate many-body state of
interest. Two internal states fj0i; j1ig of an impurity atom
may be used as the qubit. We allow one of these states to
couple to an incident coherent light beam that scatters from
the qubit into a cavity; thus, the combined state of the qubit
and cavity is ðj0ij0i þ j1ijαiÞ= ffiffiffi

2
p

. The cavity is positioned
such that it also has spatial overlap with one of the sets of
subsystems in the lattice, and it is then used to drive Rabi
transitions in the atoms in this region so that these atoms are
now in another internal state (Fig. 3). The lattice is chosen
such that it is formed from two potentials with equal lattice
spacing, one coupling to each of the internal states of the
atoms. These potentials are then moved (shifted) by half a
site in opposite directions, in the same fashion as a collision
gate [45]. Essentially, this is possible due to the particular
spatial overlap of multiple modes we have proposed here.
This transposition of the atom effects the desired SWAP
gate, and the probability of detecting the atom in the
excited state after a further Rabi π=2 pulse is proportional
to the desired TrðρmA Þ [41]. Hence, this determines the
entanglement between this subsystem and the (nonillumi-
nated) rest of the system through the von Neumann entropy.
In summary, we have shown how to use quantum

measurement of light to construct a multimode structure

FIG. 3 (color online). Quantum circuit for the measurement of
density matrix moments. Spatially overlapped matter modes are
used as multiple copies for the generalized SWAP (permutation)
gate. Diagram of the setup for measuring entanglement between
illuminated and nonilluminated regions.
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for ultracold atoms. We have demonstrated how this may be
controlled to engineer the states and dynamics of the
matter, and we have provided examples of multimode
generalizations of down-conversion, Dicke, SF, and other
states. We have also shown how the nontrivial spatial
overlap between matter-field modes can be exploited to
produce genuine multipartite entanglement and used for the
measurement of entanglement in quantum gases. Enhanced
scattering at a particular angle can be achieved with a
cavity. Currently, there are three operating experiments
where a Bose-Einstein condensate (BEC) is trapped in a
cavity [46–48], but without a lattice. There have also been
two works where light was scattered from truly ultracold
atoms in a lattice, and the measurement object was light
[49,50], without a cavity. The combination of these setups
can lead to the realization of our scheme. The primary
sources of error we would expect in an experimental
implementation would be atom loss due to heating and
spontaneous emission and miscounting of scattered pho-
tons due to imperfect detection, both of which increase
classical uncertainty leading to reduced purity of the final
state. In a recent experiment [20], the Zeno effect was used
to localize an atom in a lattice to a single site, demonstrat-
ing a simple example of the general ideas discussed here.
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