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Atomic clocks are typically operated by locking a local oscillator (LO) to a single atomic ensemble.

In this Letter, we propose a scheme where the LO is locked to several atomic ensembles instead of one.

This results in an exponential improvement compared to the conventional method and provides a stability

of the clock scaling as ð�NÞ�m=2 with N being the number of atoms in each of the m ensembles and � a

constant depending on the protocol being used to lock the LO.
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Atomic clocks provide very precise time measurements
useful for a broad range of areas in physics. The quantum
noise of the atoms limits the stability of atomic clocks,
resulting in the standard quantum limit where the stability

scales as 1=
ffiffiffiffi
N

p
, with N being the number of atoms [1,2].

Various ways of improving the resolution have been sug-
gested, such as using entangled states with reduced atomic
noise [3–6] to push the resolution to the Heisenberg limit
where it scales as 1=N [7–12]. Another approach to
increasing the stability is to use optical atomic clocks
where the higher operating frequency leads to an improved
stability [13–17]. Since an atomic clock is typically
operated through Ramsey spectroscopy [18], the resolution
can also be enhanced by increasing the Ramsey time T,

resulting in an improvement scaling as 1=
ffiffiffiffi
T

p
[19–21].

For clocks with trapped atoms, where there are no other
limitations, T becomes limited only by the decoherence in
the system. In practice, this decoherence often originates
from the frequency fluctuations of the local oscillator (LO)
used to drive the atomic clock transition [20]. Hence,
the stability can also be increased by simply devising
methods to increase the Ramsey period by stabilizing
the LO [22].

In this Letter, we suggest a scheme where the frequency
of the LO is locked to the atomic transition using several
ensembles of atoms. This procedure allows increasing the
Ramsey period each time another ensemble is used. As a
result, we find that the stability of the clock can increase
exponentially with the number of ensembles. Figure 1(a)
illustrates the idea behind the scheme. The feedback of the
first ensemble locks the frequency of the LO, thus reducing
the noise to the atomic noise. Having reduced the noise in
the LO, the second ensemble can be operated with a longer
Ramsey time. Through a second feedback, the noise of the
LO can be further reduced, as shown in the simulation in
Fig. 1(b) (details are given later). The procedure can be
extended to any number of ensembles, and for uncorrelated

atoms, the stability of the LO will scale as
ffiffiffiffi
�

p ð�T1NÞ�m=2,

where m is the number of ensembles (each containing N
atoms), � is a parameter characterizing the frequency
fluctuations of the unlocked LO, and T1 is the Ramsey

time of the first ensemble. Hence, the scheme can provide
an exponential improvement in the stability with the total
number of atoms. In order for the clock to be stable, we
need �T1 � 1, and hence the protocol requires a minimum
number of atoms to improve the performance. With the
conventional Ramsey protocol, we find that the scheme
works for a minimum ensemble size of 20 atoms. To
further optimize the performance of the scheme, we study
an adaptive measurement protocol for estimating the LO
frequency offset, which extends the applicability of the
scheme down to ensembles with only 4 (7) atoms for white
(1=f) noise in the LO. This makes the scheme relevant for
atomic clocks based on trapped ions, which are typically
constructed with only a few ions [19]. A related procedure
involving multiple measurements on a single ensemble
was proposed in Ref. [22]. By using multiple ensembles,
our procedure avoids disturbances from the measurements

FIG. 1 (color online). (a) Illustration of locking the LO using
several ensembles. The feedback of the first ensemble stabilizes
the LO such that the second ensemble can be operated with a
longer Ramsey time. The feedback from the second ensemble
then further stabilizes the LO. (b) Numerical simulation of the
noise spectrum SðfÞ of the LO when locked to between 1 and 3
ensembles. The data were simulated as described in the text for
N ¼ 20 and T1 ¼ 0:1=� for the conventional Ramsey scheme.
The first feedback lowers the noise of the LO and whitens the
spectrum, even though the unlocked LO was assumed to be
subject to 1=f noise. The second and third feedbacks further
lower the noise of LO by a constant factor.
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affecting later measurements. Recently and independently
from this work, a manuscript appeared which treats essen-
tially the same locking scheme that we suggest [23].
Taking the different figures of merit into account, that
work arrives at results consistent with ours.

Wewill now describe the locking of the LO to the atomic
transition using Ramsey spectroscopy. We model an
ensemble of N atoms as a collection of spin-1=2 particles

with total angular momentum ~J. We define the angular

momentum operators Ĵx, Ĵy, and Ĵz in the usual way, and

initially the atoms are pumped to have h ~Ji along the z

direction hĴxi ¼ hĴyi ¼ 0. In Ramsey spectroscopy, the

atoms are illuminated by a near-resonant �=2 pulse from
the LO, followed by the Ramsey time T of free evolution,
and finally another near-resonant �=2 pulse is applied.

The Heisenberg evolution of Ĵz is Ĵ3 ¼ cosð��ÞĴy þ
sinð��ÞĴz, where �� ¼ �!T is the acquired phase of
the LO relative to the atoms. At the end of the Ramsey

sequence, Ĵ3 is measured and used to make an estimate

��e ¼ � arcsinð2Ĵ3=NÞ of ��. The feedback loop then
steers the frequency of the LO towards the atomic transi-
tion by applying a frequency correction of �! ¼
����e=T to the LO, where � sets the strength of the
feedback loop. The operation of an atomic clock thus
consists of repeating a cycle of initialization, Ramsey-
sequence, measurement and feedback. The total time
of this clock cycle is denoted as Tc, and we assume that
Tc � T; i.e., we assume a negligible Dick noise [24].

We now consider an atomic clock with two atomic
ensembles operated with different Ramsey times and
show how this can improve the stability of the clock.
These considerations can then easily be extended to several
ensembles. Note that we assume the intrinsic linewidth of
the atoms to be negligible, such that the atomic linewidth
is only limited by the Ramsey time. The first ensemble is
operated with Ramsey time T1, and we assume that the
second ensemble is operated with Ramsey time T2 ¼ nT1,
where n is an integer. We can make two discrete time scales
describing ensembles one and two, respectively. Ensemble
one is measured at tk ¼ kT1, and ensemble two is mea-
sured at ts ¼ sT2 ¼ snT1. The frequency offset of the LO
between time tk�1 and tk is then

�!ðtÞ ¼ �!0ðtÞ þ �!1ðtk�1Þ þ�!2ðts�1Þ; (1)

where �!0ðtÞ is the frequency fluctuation of the unlocked
LO, �!1ðtk�1Þ is the sum of the frequency corrections
applied up to time tk�1 from the first ensemble, and
�!2ðts�1Þ is the sum of the frequency corrections applied
up to time ts�1 from the second ensemble (ts�1 � tk�1).
The feedback loops are described by the equations

�!1ðtk�1Þ ¼ �!1ðtk�2Þ � ���e1ðtk�1Þ=T1; (2)

�!2ðts�1Þ ¼ �!2ðts�2Þ � ���e2ðts�1Þ=T2; (3)

where ��e1ðtk�1Þ and ��e2ðts�1Þ are the estimated phases
from the first and second ensembles at times tk�1 and ts�1,
respectively. Using Eq. (1), we can write the phase
of the LO relative to the atoms of the second ensemble at
time ts as

��2ðtsÞ ¼
Z T2

0
dt0�!ðts � t0Þ ¼ ��s�1 þ � ~�ðtsÞ; (4)

where ��s�1 ¼
RT2

0 �!2ðts�1Þdt0 is the accumulated

phase due to the feedback of the second ensemble and

� ~�ðtsÞ ¼
Z T2

0
dt0� ~!ðts � t0Þ

¼
Z T2

0
dt0�!0ðts � t0Þ þ�!1ðts � t0Þ (5)

is the accumulated phase due to the frequency oscillations
of the LO when locked by the feedback of the first en-
semble. For now, we assume that T2 � T1, such that the
feedback of the first ensemble has stabilized the LO, but
later we will relax this assumption. From Eqs. (3) and (4),
we then derive the difference equation

��2ðtsÞ���2ðts�1Þ¼� ~�ðtsÞ�� ~�ðts�1Þ����e2ðts�1Þ:
(6)

From this expression, we see that the evolution of the
second phase ��2 is essentially driven by the noise of

the stabilized LO from the first step � ~� but is stabilized
by the second feedback loop described by ���e2 .
To solve Eq. (6), we need to characterize the width of the

noise of the stabilized LO from the first stage h� ~�2i ¼RT2

0 dt
RT2

0 dt0h� ~!ðtÞ� ~!ðt0Þi. From Eqs. (2) and (5), we can

derive a difference equation for � ~�ðtkÞ¼
RT1

0 � ~!ðtk�t0Þdt0,
which is the acquired phase of the LO relative to the first
ensemble between time tk�1 and tk (we can neglect the
feedback from the second ensemble since T2 � T1):

� ~�ðtkÞ�� ~�ðtk�1Þ¼��0ðtkÞ���0ðtk�1Þ����e1ðtk�1Þ:
(7)

Here, ��0ðtkÞ ¼
RT1

0 �!0ðtk � t0Þdt0 is the phase of the

unlocked LO. In comparison to Eq. (6), we see that the

evolution of the phase � ~� is driven by the noise of
the unlocked LO but is stabilized by the first feedback
loop described by���e1 . To solve this equation, we follow
Ref. [25], where the locking of the LO to a single ensemble
is described. First, we derive a differential equation from

Eq. (7) in the limit N � 1, treating Ĵx, Ĵy, and Ĵz as

Gaussian variables and considering for now a LO subject
to white noise. Assuming that the atoms start out in a
coherent spin state, we can solve this equation to obtain

h� ~�2i ¼ T2=NT1 ¼ ~�T2; (8)

where we have defined the parameter ~� ¼ 1=NT1, which
characterizes the noise of the stabilized LO. This noise is
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effectively white for both white and 1=f noise in the
unlocked LO [Fig. 1(b) and Ref. [25]]. The second
ensemble thus sees an effective white noise in the LO
with ~� ¼ 1=ðT1NÞ.

We now return to Eq. (6). Writing ��2ðtÞ � �!ðtÞT2,
the stability of the clock after running for a time � � T2 is

��ð�Þ ¼ 1

!�T2

�Z �

0
dt

Z �

0
dt0h��2ðtÞ��2ðt0Þi

�
1=2

; (9)

where ! is the frequency of the atomic transition.
Following similar arguments as before, we can derive
and solve a differential equation from Eq. (6) to obtain
an expresion for h��2ðtÞ��2ðt0Þi. Inserting this into Eq. (9)
and taking the limit of � � T2 results in

��ð�Þ ¼ 1

!

ffiffiffiffiffiffiffiffiffiffiffiffi
1

�NT2

s
: (10)

Equation (10) describes how the stability improves with T2

and N. The longest T2 we can allow is determined by how
well the LO is stabilized by the first ensemble as contained
in ~�, and we parametrize it by T2;max ¼ �2=~�. In a similar

fashion, we assume that T1;max ¼ �1=� for the first

ensemble. With these parametrizations, we can express
the stability as

��ð�Þ ¼ 1

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

�N2�1�2

s
¼ 1

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��1=�2

�ðN�T1;maxÞ2
s

: (11)

With white noise in the unlocked LO, we can pick �1 ¼
�2. As previously noted, the noise of the LO will also be
approximately white with ~�� 1=NT1 after locking it to the
first ensemble also for other types of noise, e.g., 1=f noise.
In that case, it is desirable to have �2 � �1, but we still
expect �1=�2 to be of order unity. Equation (11) shows
that by locking the LO to two ensembles of uncorrelated
atoms, the stability can be significantly improved.
If N�T1 � 1, the stability obtained from Eq. (11) is
much better than the single ensemble result in Eq. (10)
(with T2!T1). The arguments leading to Eq. (11)
can be generalized in a straightforward way to
show that if the LO is locked to m ensembles each con-

taining N atoms, the stability of the clock is ��ð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1=�Þðm�1Þ�=ð!2�Þ

q
ðN�T1;maxÞ�m=2 (since the noise of

the LO is white after locking it to the first ensemble, we use
� ¼ �2 ¼ � � � ¼ �m). By continuing the procedure, we
thus improve the stability exponentially.

In our analytical calculations above, we have assumed
N � 1. To investigate the performance for smaller N, we
simulate an atomic clock locked to between 1 and 4 atomic
ensembles, each with atom numbers from N ¼ 20 to
N ¼ 100. From the simulations, we can generalize to the
case where the LO is locked to m ensembles. We simulate
the full quantum evolution of the atomic state through
the Ramsey sequences and subsequent measurements and

implement the feedback on the LO similar to the descrip-
tion in Eq. (1) and above. The assumption of T2 � T1 can
be relaxed by applying a phase correction in the measure-
ment [26]. The number of atoms required in each ensemble
to increase the Ramsey time by a factor a at each level is
set by the white noise level of the stabilized LO. Using
Eq. (8) and remembering that � parametrizes the maximal
Ramsey time for white noise, we have that T2=NT1 ¼
~�T2 ¼ �. Assuming T2 ¼ aT1, we find that N � a=�
atoms are required in each ensemble to increase the
Ramsey time by a factor of a at each level. The minimum
number of atoms required for our protocol to work is thus
obtained by setting a ¼ 2.
To determine �, we investigate the errors that limit the

Ramsey time T for a LO subject to white noise character-
ized by �. For experiments or simulations running with a
fixed Ramsey time, there is always a finite probability that
phase jumps large enough to spoil the measurement strat-
egy occur since Ramsey spectroscopy with projective
measurements is only effective for phases & �=2. In our
simulations, we see these phase jumps as an abrupt break-
down as we increase T. Simulating a clock running for a
time � ¼ 106T with a single ensemble of N ¼ 105 atoms,
we see the stability increase with T until a maximum of
Tmax � 0:1=� is reached. Increasing T beyond this point
results in a rapid decrease in the stability. From this, we
conclude that Ramsey spectroscopy with projective mea-
surements only allows for �� 0:1, and thus Nmin ¼ 20.
To determine �1 for an LO subject to 1=f noise, we do a
similar simulation where the noise spectrum of the LO is
SðfÞ ¼ �2=f (f is frequency). From this simulation, we
find that �1 � 0:1 as for white noise. Note that this con-
struction introduces a weak (logarithmic) dependence on
the number of steps that we simulate [26].
We have simulated clocks with an unlocked LO subject

to both white and 1=f noise with the constraint � ¼ 0:1.
In Fig. 2, the stability of the clocks is plotted against the
ensemble size N. Figure 2 confirms that the scheme works

FIG. 2 (color online). The stability of atomic clocks for a LO
subject to (a) white noise and (b) 1=f noise. Circle, square,
upward triangle, and downward triangle are the stability of a
clock with the LO locked to 1, 2, 3, and 4 ensembles containing
N atoms each. The clocks were simulated with �1 ¼ 0:1 and
Tj ¼ nTj�1. Counting from the left (low N), the points are for

integers n from 2 to 10. The dashed lines are the analytical
calculations.
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down to atom numbers of N ¼ 20 where we gain a factor
of �2m�1 in �2

�ð�Þ by locking the LO to m ensembles

for both white and 1=f noise. Furthermore, the numerical
results are seen to agree nicely with the analytical calcu-
lations. We obtain practically the same long term stability
for 1=f noise as for white noise since the first feedback
whitens the noise for small frequencies [cf. Fig. 1(b)].

The conventional Ramsey protocol considered so far has
a lower limit of Nmin ¼ 20 in order for our protocol to
work. This limit is due to the inability of the conventional
protocol to effectively resolve phases larger than �=2. In
Ref. [27], we presented an adaptive protocol for estimating
the phase, which effectively resolves phases & �. Again,
simulating a clock running for a time � ¼ 106T1 with a
single ensemble of N ¼ 105 atoms, we find that this pro-
tocol enables us to extend the Ramsey time to �� 0:3 for
white noise and to �1 � 0:2 for a LO subject to 1=f noise
[26]. However, the type of weak measurements described
in Ref. [27] is hard to implement for ensembles of few
atoms. We have therefore modified the protocol such that
individual atoms are read out one at a time, and a Bayesian
procedure similar to that of Refs. [28,29] is used for the
phase estimation and atomic feedback. We perform inter-
mediate feedbacks during the measurements to rotate the
atomic state to be almost in phase with the LO. Because of
the rotations, the protocol can resolve phases & � as the
protocol in Ref. [27]. This protocol is described in detail in
the Supplemental Material [26]. With this adaptive mea-
surement strategy, we simulate clocks locked to between 1
and 4 ensembles for atom numbers from N ¼ 4 to 34 with
an unlocked LO subject to both white and 1=f noise with
the constraint� ¼ 0:3. The stability of the clocks is plotted
against the ensemble size N in Fig. 3. For the adaptive
protocol, we can apply the scheme of locking to several
ensembles down to ensemble sizes of N ¼ 4 (7) for white
(1=f) noise where we gain a factor of �2m�1 in �2

�ð�Þ by
locking the LO to m ensembles. The minimal number of
atoms is higher for 1=f noise since the adaptive protocol is

not as effective as for white noise where we have a better
understanding of the a priori distribution in the Bayesian
procedure [26]. It should be noted, however, that in prin-
ciple it is only in the first ensemble that we need more
atoms than for white noise since the feedback of the first
ensemble whitens the noise. The adaptive protocol is thus
more effective for the subsequent ensembles.
In conclusion, we have demonstrated a scheme for lock-

ing the LO in an atomic clock to m ensembles of N atoms
each. For this scheme, the stability of the clock scales asffiffiffiffi
�

p ð�T1NÞ�m=2, where T1 is the Ramsey time of the first

ensemble. Our scheme thus provides an exponential
improvement in the stability with the number of atoms.
For the conventional Ramsey protocol, our scheme is
applicable down to ensemble sizes of N ¼ 20 atoms while
it is applicable down to ensemble sizes of N ¼ 4 (7) using
an adaptive protocol. This makes the scheme relevant for
atomic clocks with trapped ions. The performance of the
protocol can be improved further by considering squeezed
states, but this is beyond the scope of this article.
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Rev. Lett. 104, 073602 (2010).

[9] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N.
Kjærgaard, and E. S. Polzik, Proc. Natl. Acad. Sci. U.S.A.
106, 10 960 (2009).

[10] A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak,
N. Kjaergaard, and E. S. Polzik, New J. Phys. 12, 065032
(2010).

FIG. 3 (color online). The stability of atomic clocks with
adaptive measurements for a LO subject to (a) white noise and
(b) 1=f noise. Circle, square, upward triangle, and downward
triangle are the stability of a clock with the LO locked to 1, 2, 3,
and 4 ensembles of N atoms each. The adaptive protocol allows
for (a) �1 ¼ 0:3 and (b) �1 ¼ 0:2. The clocks were simulated
with Tj ¼ nTj�1, and counting from the left (low N), the points

are for integers n from 2 to 10. The dashed lines are fits of the
simulated data.

PRL 111, 090802 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

30 AUGUST 2013

090802-4

http://dx.doi.org/10.1103/PhysRevLett.82.4619
http://dx.doi.org/10.1103/PhysRevLett.82.4619
http://dx.doi.org/10.1103/PhysRevA.47.3554
http://dx.doi.org/10.1103/PhysRevA.50.67
http://dx.doi.org/10.1103/PhysRevA.54.R4649
http://dx.doi.org/10.1103/PhysRevLett.92.230801
http://dx.doi.org/10.1103/PhysRevLett.92.230801
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1126/science.1097576
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1088/1367-2630/12/6/065032
http://dx.doi.org/10.1088/1367-2630/12/6/065032
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